

Oki. Network Solutions for a Global Society

FEDL9212-01 Issue Date: Nov., 26, 2002

OKI Semiconductor ML9212

32-Bit Duplex/Triplex (1/2 duty / 1/3 duty) VF Controller/Driver with Digital Dimming

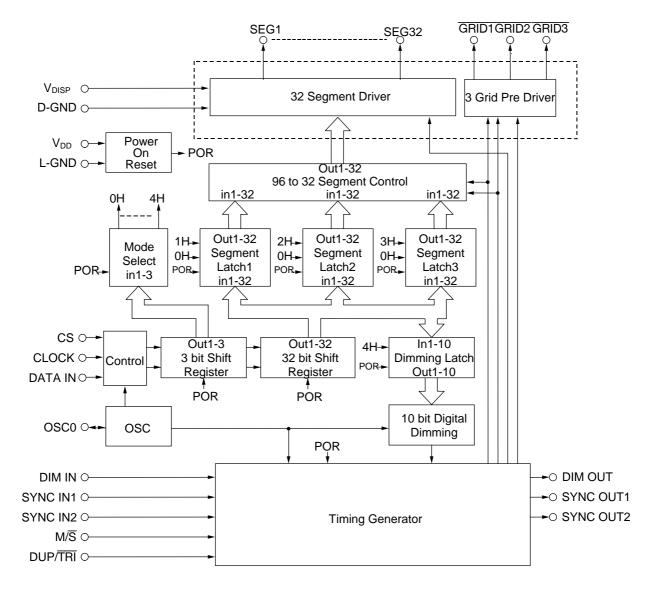
GENERAL DESCRIPTION

The ML9212 is a full CMOS controller/driver for Duplex or Triplex (1/2 duty or 1/3 duty) vacuum fluorescent display tube. It consists of a 32-segment driver multiplexed to drive up to 96 segments, and 10-bit digital dimming circuit.

ML9212 features a selection of a master mode and a slave mode, and therefore it can be used to expand segments for the VFD driver with keyscan and A/D converter function.

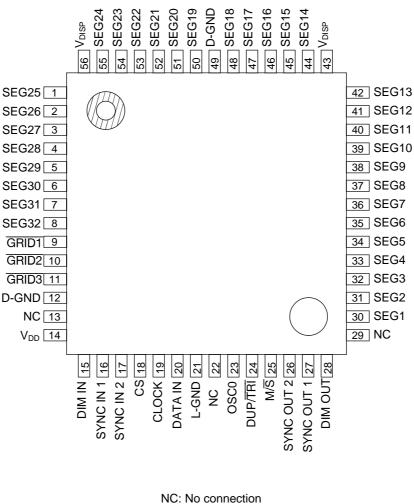
ML9212 provides an interface with a microcontroller only by three signal lines: DATA IN, CLOCK and CS.

FEATURES


• Logic supply voltage (V _{DD})	: 4.5 to 5.5 V
• Driver supply voltage (V _{DISP})	: 8 to 18 V
• Duplex/Triplex (1/2 duty / 1/3 duty) sel	ectable
$DUP/\overline{TRI} = 1/2$ duty selectable at "H" l	
$DUP/\overline{TRI} = 1/3$ duty selectable at "L" le	evel
• Number of display segments	
Max. 64-segment display (during 1/2 du	uty mode)
Max. 96-segment display (during 1/3 du	uty mode)
Master/Slave selectable	
$M/\overline{S} = Master mode selectable at "H" le$	evel
M/\overline{S} = Slave mode selectable at "L" lev	el
• Interface with a microcontroller	
Three lines: CS, CLOCK, and DATA I	N
• 32-segment driver outputs	: $I_{OH} = -5$ mA at $V_{OH} = V_{DISP}$ -0.8 V (SEG1 to 22)
(can be directly connected to VFD tube	: $I_{OH} = -10 \text{ mA}$ at $V_{OH} = V_{DISP} - 0.8 \text{ (SEG23 to 32)}$
and require no external resisters)	: $I_{OL} = 500 \ \mu A$ at $V_{OL} = 2 \ V$ (SEG1 to 32)
• 3-grid pre-driver outputs	: $I_{OH} = -5.0 \text{ mA}$ at $V_{OH} = V_{DISP} - 0.8 \text{ V}$
(require external drivers)	$I_{OL} = 10 \text{ mA at } V_{OL} = 2 \text{ V}$
• Logic outputs	: $I_{OH} = -200 \ \mu A$ at $V_{OH} = V_{DD} - 0.8 \ V$
	$I_{OL} = 200 \ \mu A$ at $V_{OL} = 0.8 \ V$
• Built-in digital dimming circuit (10-bit	resolution)
\mathbf{P} = \mathbf{P} = \mathbf{H} = \mathbf{P} = \mathbf{H} = \mathbf{H} = \mathbf{H} = \mathbf{H} = \mathbf{H} = \mathbf{H} = H	

- Built-in oscillation circuit (external R and C)
- Built-in Power-On-Reset circuit
- Package options:

⁵⁶⁻pin plastic QFP (QFP56-P-910-0.65-2K)(ML9212GA)


ML9212

BLOCK DIAGRAM

ML9212

PIN CONFIGURATION (TOP VIEW)

(OPEN)

56-pin Plastic QFP

PIN DESCRIPTIONS

Symbol	Pin	Туре	Description
V _{DISP}	43, 56		Power supply pins for VFD driver circuit. 43 pin and 56 pin should be connected externally.
V _{DD}	14		Power supply pin for logic drive.
D-GND	12, 49		D-GND is ground pin for the VFD driver circuit. L-GND is ground pin
L-GND	21	—	for the logic circuit. 12 pin, 21 pin and 49 pin should be connected externally.
SEG1 to 22	30 to 42, 44 to 48, 50 to 53	0	Segment (anode) signal output pins for a VFD tube. These pins can be directly connected to the VFD tube. External circuit is not required. $I_{OHL} \leq -5$ mA
SEG23 to 32	1 to 8, 54, 55	0	Segment (anode) signal output pins for a VFD tube. These pins can be directly connected to the VFD tube. External circuit is not required. $I_{OHL} \le -10$ mA
GRID1 to 3	9, 10, 11	ο	Inverted Grid signal output pins. For pre-driver, the external circuit is required. $I_{OL} \leq 10 \text{ mA}$
CS	18	I	Chip select input pin. Data is not transferred when CS is set to a Low level.
CLOCK	19	I	Shift clock input pin. Serial data shifts at the rising edge of the CLOCK.
DATA IN	20	I	Serial data input pin (positive logic). Data is input to the shift register at the rising edge of the CLOCK signal.
DUP/TRI	24	I	$\begin{array}{l} \mbox{Duplex/Triplex operation select input pin.} \\ \mbox{Duplex (1/2 duty) operation is selected when this pin is set to V_{DD}.} \\ \mbox{Triplex (1/3 duty) operation is selected when this pin is set to L-GND.} \end{array}$
M/S	25	I	Master/Slave mode select input pin. Master mode is selected when this pin is set to V_{DD} . Slave mode is selected when this pin is set to L-GND.
DIM IN	15	I	Dimming pulse input. When the slave mode is selected, the pulse width of the all segment output are controlled by a input pulse width of DIM IN. Connect this pin to the master side DIM OUT pin at the slave mode. When the master mode is selected, the input level of this pin is ignored and the pulse width of the all grids and segment outputs are controlled by a built-in 10-bit dimming circuit. Connect this pin to V _{DD} or L-GND at the master mode.

查询"ML9212"供应商

OKI Semiconductor

ML9212

Symbol	Pin	Туре	Description				
SYNC IN 1, 2	16, 17	I	Synchronous signal input. When the slave mode is selected, connect these pins to the master side SYNC OUT 1, and 2 pins. When the master mode is selected, the input level of these pins are ignored. Connect these pins to V _{DD} or L-GND at the master mode.				
DIM OUT	28	0	Dimming pulse output. Connect this pin to the slave side DIM IN pin.				
SYNC OUT 1, 2	26, 27	0	Synchronous signal output. Connect these pins to the slave side SYNC IN 1, and 2 pins.				
OSC0	23	I/O	RC oscillator connecting pins. Oscillation frequency depends on display tubes to be used. For details refer to ELECTRICAL CHARACTERISTICS.				
NC	13,22,29	-	OPEN pins.				

ABSOLUTE MAXIMUM RATING

Parameter	Symbol	Condition	Ratings	Unit
Driver Supply Voltage	V _{DISP}	—	-0.3 to +20	V
Logic Supply Voltage	V _{DD}	—	-0.3 to +6.5	V
Input Voltage	V _{IN}	—	–0.3 to V _{DD} +0.3	V
Power Dissipation	PD	Ta ≥ 105°C	233	mW
Storage Temperature	Storage Temperature T _{STG} —		–55 to +150	°C
	I _{o1}	SEG1 to 22	-10.0 to +2.0	mA
	I _{o2}	SEG23 to 32	-20.0 to +2.0	mA
Output Current	I _{o3}	GRID1 to 3	-10.0 to +20.0	mA
	I ₀₄	DIM OUT, SYNC OUT1, SYNC OUT2	-2.0 to +2.0	mA

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Driver Supply Voltage	V _{DISP}		8.0	13.0	18.0	V
Logic Supply Voltage	V _{DD}		4.5	5.0	5.5	V
High Level Input Voltage	V _{IH}	All inputs except OSC0	$0.8V_{DD}$	—	—	V
Low Level Input Voltage	VIL	All inputs except OSC0	_	—	$0.2V_{DD}$	V
Clock Frequency	f _C			—	2.0	MHz

查询"ML9212"供应商

FEDL9212-01

OKI Semiconductor

ML9212

Parameter	Symbol	Conditi	on	Min	Тур.	Max.	Unit
Oscillation Frequency	f _{osc}	R = 10 kΩ±5%, C = 27 pF±5%		2.2	3.3	4.4	MHz
Fromo Froguenov	f	R = 10 kΩ±5%,	1/3 duty	179	269	358	Hz
Frame Frequency	f _{FR}	C = 27 pF±5%	1/2 duty	268	403	538	ΠZ
Operating Temperature	T _{OP}	_		-40	_	+105	°C

ML9212

ELECTRICAL CHARACTERISTICS

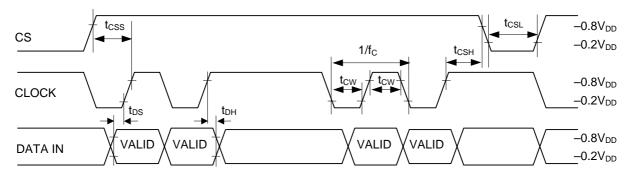
DC Characteristics

$Ia = -40 \text{ to } +105^{\circ}\text{C}, V_{\text{DISP}} = 8.0 \text{ to } 18.0 \text{ V}, V_{\text{DD}} = 4.5 \text{ to } 5.5$							
Parameter	Symbol	Applied pin	Condition		Min.	Max.	Unit
High Level Input Voltage	VIH	*1)		_	$0.8V_{DD}$		V
Low Level Input Voltage	VIL	*1)		_	—	$0.2V_{\text{DD}}$	V
High Level Input Current	I _{IH}	*1)	V⊩	$_{H} = V_{DD}$	-1.0	+1.0	μA
Low Level Input Current	IIL	*1)	V _{IL} = GND		-1.0	+1.0	μA
	V _{OH1}	SEG1-22		I _{OH1} = -5 mA	$V_{\text{DISP}} - 0.8$		V
High Level Output Voltage	V _{OH2}	SEG23-32	V _{DISP} = 9.5V	$I_{OH2} = -10 \text{ mA}$	$V_{\text{DISP}} - 0.8$		V
	V _{OH3}	GRID1-3		I _{OH3} = -5 mA	$V_{\text{DISP}} - 0.8$		V
	V _{OH4}	*2)	$V_{DD} = 4.5 V$	I _{OH4} = -200 μA	$V_{DD} - 0.8$		V
	V _{OL1}	SEG1-22		l _{OL1} = 500 μA	—	2.0	V
Low Level Output	V _{OL2}	SEG23-32	$V_{DISP} = 9.5V$	l _{OL2} = 500 μA	—	2.0	V
Voltage	V _{OL3}	GRID1-3		l _{OL3} = 10 mA	—	2.0	V
	V _{OL4}	*2)	$V_{DD} = 4.5 V$	I _{OL4} = 200 μA	—	0.8	V
	I _{DISP}	V _{DISP}	R = 1	0 kΩ±5%,		100	uA
Supply Current	I _{DD}	V _{DD}		C = 27 pF±5% no load		5.0	mA

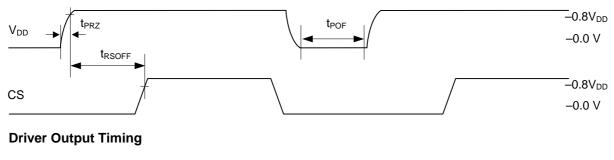
Та = -40 to +105°C Vp 8 0 to 18 0 V Vpr 45 to 55 V

*1) CS, CLOCK, DATA IN, DIM IN, SYNC IN 1, SYNC IN 2, M/S, DUP/TRI *2) DIM OUT, SYNC OUT 1, SYNC OUT 2

ML9212

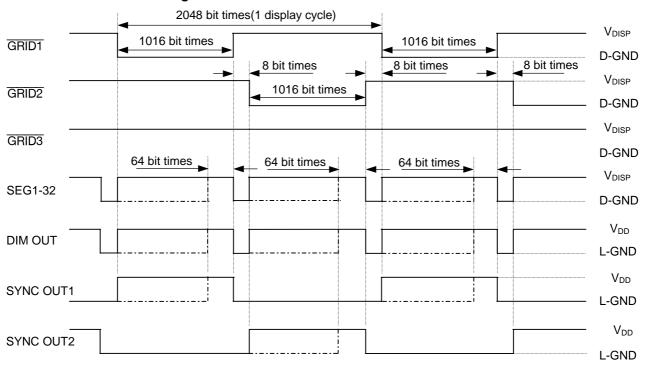

AC Characteristics

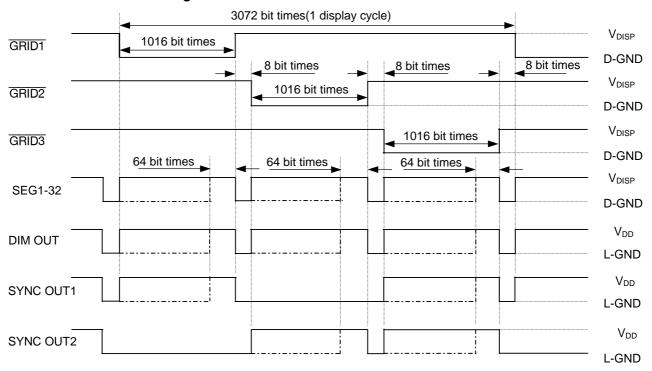
		li	$a = -40 \text{ to } + 105^{\circ}\text{C}, V_{\text{DISP}}$	= 0.0 10 10.0	$v, v_{DD} = 4.3$	5 10 5.5 V
Parameter	Symbol		Condition	Min.	Max.	Unit
Clock Frequency	f _C		—	—	2.0	MHz
Clock Pulse Width	t _{CW}		—	200	—	ns
Data Setup Time	t _{DS}		200	—	ns	
Data Hold Time	t _{DH}		200	—	ns	
CS Off Time	t _{CSL}		20	—	μS	
CS Setup Time (CS-Clock)	t _{CSS}		200	—	ns	
CS Hold Time (Clock-CS)	t _{CSH}	_		200	_	ns
CS Wait Time	t _{RSOFF}	—		400	—	ns
Output Slow Pata Timo	t _R	$C_{1} = 100 \text{ pE}$	$t_R = 20\%$ to 80%	—	2.0	μS
Output Slew Rate Time	t _F	$C_L = 100 \text{ pF}$ $t_F = 80\% \text{ to 20\%}$		—	2.0	μS
V _{DD} Rise Time	t _{PRZ}	Mou	nted in a unit	_	100	μS
V _{DD} Off Time	t _{POF}	Mounted in	n a unit, V _{DD} = 0.0 V	5.0	—	ms


Ta = -40 to +105°C, V_{DISP} = 8.0 to 18.0 V, V_{DD} = 4.5 to 5.5 V

TIMING DIAGRAM

Data Input Timing


Reset Timing



ML9212

Output Timing (Duplex Operation) *1bit time = 4/f_{osc} Solid line : The dimming data is 1016/1024 at the master mode Dotted line : The dimming data is 64/1024 at the master mode

Output Timing (Triplex Operation) *1bit time = 4/f_{osc} Solid line : The dimming data is 1016/1024 at the master mode Dotted line : The dimming data is 64/1024 at the master mode

ML9212

FUNCTIONAL DESCRIPTION

Power-on Reset

When power is turned on, ML9212 is initialized by the internal power-on reset circuit.

The status of the internal circuit after initialization is as follows:

- The contents of the shift registers and latches are set to "0".
- The digital dimming duty cycle is set to "0".
- All segment outputs are set to Low level.
- GRID1 outputs are set to Low level.
- $\overline{\text{GRID2}}$ to $\overline{3}$ outputs are set to High level.

Data Transfer Method

Data can be transferred between the rising edge and the next falling edge of chip select input.

The mode data, segment data and dimming data are written by a serial transfer method. The serial data is input to the shift register at the rising edge of a shift clock pulse.

The mode data (M0 to M2) must be transferred after the segment data and dimming data succeedingly.

When the chip select input falls, an internal LOAD signal is automatically generated and data is loaded to the latches.

Function Mode

Function mode is selected by the mode data (M0 to M2). The relation between function mode and mode data is as follows:

FUNCTION MODE	OPERATING MODE	FUNCTION DATA			
	OPERATING MODE	MO	M1	M2	
0	Segment Data for GRID1-3 Input	0	0	0	
1	Segment Data for GRID1 Input	1	0	0	
2	Segment Data for GRID2 Input	0	1	0	
3	Segment Data for GRID3 Input	1	1	0	
4	Digital Dimming Data Input	0	0	1	

Segment Data Input [Function Mode: 0 to 3]

- ML9212 receives the segment data when function mode 0 to 3 are selected.
- The same segment data is transferred to the 3 segment data latches corresponding to GRID1 to 3 at the same time when the function mode 0 is selected.
- The segment data is transferred to only one segment data latch corresponding to the specified GRID when the function mode is 1, 2 or 3 is selected.
- Segment output (SEG1 to 32) becomes High level (lightning) when the segment data (S1 to S32) is set to "1".

[Data Format]

, interest of the second se	
Input Data	: 35 bits
Segment Data	: 32 bits
Mode Data	: 3 bits

Bit	1	2	3	4		29	30	31	32	33	34	35
Input DATA	S1	S2	S3	S4		S29	S30	S31	S32	MO	M1	M2
	Segment Data (32 bits)									ode Dat (3 bits)	ta —►	

FEDL9212-01

OKI Semiconductor

ML9212

[Bit correspondence between segment output and segment data]	[Bit correspondence	between segm	ent output and	segment data]
--	---------------------	--------------	----------------	---------------

SEG n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Segment data	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16
SEG n	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Segment data	S17	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27	S28	S29	S30	S31	S32

Digital Dimming Data Input [Function Mode: 4]

- ML9212 receives the digital dimming data when function mode 4 is selected.
- The output duty changes in the range of 0/1024 (0%) to 1016/1024 (99.2%) for each grid.
- The 10-bit digital dimming data is input from LSB.

[Data Format]

Input Data: 13 bitsDigital Dimming Data: 10 bitsMode Data: 3 bits

Bit	1	2	3	4	5	6	7	8	9	10	11	12	13
Input DATA	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	MO	M1	M2
	LSB MSB MSB Mode Data —>												

```
(3 bits)
```

(LSB)			Duty Cycle								
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	Duty Cycle	
0	0	0	0	0	0	0	0	0	0	0/1024	
1	0	0	0	0	0	0	0	0	0	1/1024	
			:								
1	1	1	0	1	1	1	1	1	1	1015/1024	
0	0	0	1	1	1	1	1	1	1	1016/1024	
1	0	0	1	1	1	1	1	1	1	1016/1024	
			:							:	
1	1	1	1	1	1	1	1	1	1	1016/1024	

Master Mode

Master Mode is selected when M/\overline{S} pin is set at High level. The master mode operation is as follows:

- \bullet The input levels of DIM IN, SYNC IN1 and SYNC IN2 are ignored, and these pins should be connected to L-GND or $V_{\text{DD}}.$
- The pulse width of $\overline{\text{GRID1}}$ to $\overline{3}$ and SEG1 to 32 are controlled by the internal digital dimming circuit.
- The segment Latch1 to 3 corresponding to $\overline{\text{GRID1}}$ to $\overline{3}$ are selected by the internal timing generator.

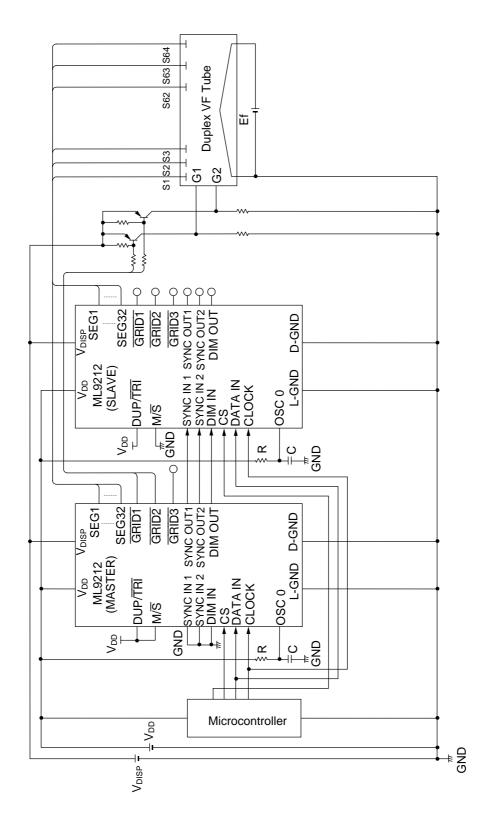
Slave Mode

Slave Mode is selected when M/\overline{S} pin is set at Low level. The slave mode operation is as follows:

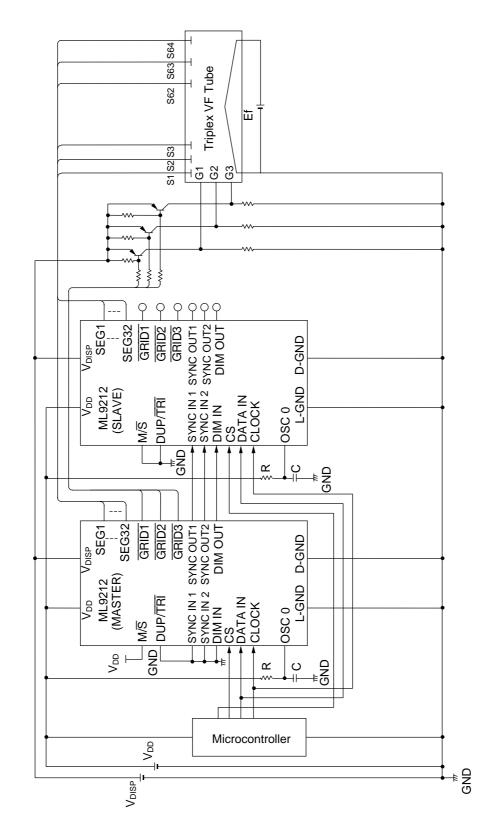
- The internal dimming circuit is ignored.
- The pulse width of SEG1 to 32 are controlled by the pulse width of DIM IN signal.
- The segment Latch1 to 3 corresponding to $\overline{\text{GRID1}}$ to $\overline{3}$ are selected by SYNC IN1 and SYNC IN2 signals.
- The output levels of $\overline{\text{GRID1}}$ to $\overline{3}$ are set at High level. The output levels of DIM OUT, SYNC OUT1 and SYNC OUT2 are set at Low level.

[Correspondence between SYNC IN1, 2 and Segment Latch1 to 3]

[Correspondence between DIM IN and SEG1 to 32]


SYNC IN 1	SYNC IN 2	Segment Latch	GRID
0	0	No	No
1	0	Latch1	GRID1
0	1	Latch2	GRID2
1	1	Latch3	GRID3

DIM IN	SEG1 to 32
0	Low
1	High


Note: Low: Lights OFF High: Lights ON

APPLICATION CIRCUITS

1. Circuit for the duplex VFD tube with 128 segments (2 Grid × 64 Anode)

ML9212

2. Circuit for the triplex VFD tube with 192 segments (3 Grid × 64 Anode)

NOTES ON TURNING POWER ON/OFF

- Connect L-GND and D-GND externally to be an equal potential voltage.
- To avoid wrong operations, turn on the driver power supply after turning on the logic power supply. Conversely, turn off the logic power supply after tuning off the driver power supply.

ML9212

REVISION HISTORY

Document		Pa	ge	
No.	Date	Previous Edition	Current Edition	Description
FEDL9212-01	Nov., 26, 2002	-	-	Final edition 1

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2002 Oki Electric Industry Co., Ltd.