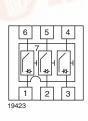
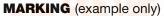
RoHS

COMPLIANT


GREEN

(5-2008)

Vishay Semiconductors


3-Channel EMI-Filter with ESD-Protection

FEATURES

- Ultra compact LLP75-7L package
- 3-channel EMI-filter and ESD-protection
- Low leakage current
- Line resistance R_S = 100 Ω
- Typical cut off frequency f_{3dB} = 100 MHz
- ESD-protection acc. IEC 61000-4-2
 - ± 30 kV contact discharge
 - ± 30 kV air discharge
- e4 precious metal (e.g. Ag, Au, NiPd, NiPdAu) (no Sn)
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC WWW.DZSC.COM

Dot = pin 1 marking

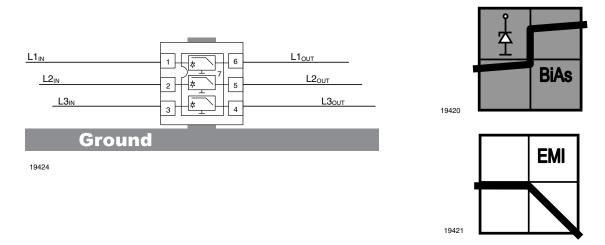
YY = type code (see table below)

XX = date code

ORDERING INFORMATION					
DEVICE NAME	ORDERING CODE	TAPED UNITS PER REEL (8 mm TAPE ON 7" REEL)	MINIMUM ORDER QUANTITY		
VEMI35AA-HAF	VEMI35AA-HAF-G-08	3000	15 000		

PACKAGE DATA						
DEVICE NAME	PACKAGE NAME	TYPE CODE	WEIGHT	MOLDING COMPOUND FLAMMABILITY RATING	MOISTURE SENSITIVITY LEVEL	SOLDERING CONDITIONS
VEMI35AA-HAF	LLP75-7L	9F	4.2 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	260 °C/10 s at terminals

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT	
Peak pulse current	All I/O pin to pin 7; acc. IEC 61000-4-5; t _p = 8/20 µs; single shot	I _{PPM}	4	Α	
ESD immunity	Contact discharge acc. IEC61000-4-2; 10 pulses	\/	± 30	kV	
	Air discharge acc. IEC61000-4-2; 10 pulses	V _{ESD}	± 30		
Operating temperature	Junction temperature	TJ	- 40 to + 125	°C	
Storage temperature	g (b)	T _{STG}	- 55 to + 150	°C	

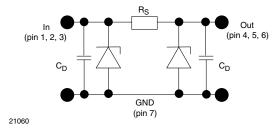

Vishay、Semicronductotso的商

3-Channel EMI-Filter with ESD-Protection

APPLICATION NOTE

With the VEMI35AA-HAF 3 different signal or data lines can be filtered and clamped to ground. Due to the different clamping levels in forward and reverse direction the clamping behavior is <u>Bi</u>directional and <u>Asymmetric</u> (BiAs).

The 3 independent EMI-filter are placed between


pin 1 and pin 6

pin 2 and pin 5, and

pin 3 and pin 4.

They all are connected to a common ground pin 7 on the backside of the package. Each filter is symmetrical so that all ports (pin 1 to 6) can be used as input or output.

The circuit diagram of one EMI-filter-channel shows two identical Z-diodes at the input to ground and the output to ground. These Z-diodes are characterized by the breakthrough voltage level (V_{BR}) and the diode capacitance (C_D). Below the breakthrough voltage level the Z-diodes can be considered as capacitors. Together with these capacitors and the line resistance R_S between input and output the device works as a low pass filter. Low frequency signals ($f < f_{3dB}$) pass the filter while high frequency signals ($f > f_{3dB}$) will be shorted to ground through the diode capacitances C_D .

Each filter is symmetrical so that both ports can be used as input or output.

3-Channel EMI-Filter with ESD-Protection

Vishay Semiconductors

ELECTRICAL CHARACTERISTICS VEMI35AA-HAF (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Protection paths	Number of channels which can be protected	N _{channel}	-	-	3	channel	
Reverse stand off voltage	at I _R = 1 μA each input to pin 2	V_{RWM}	5	-	-	V	
Reverse current	at V _R = 5 V each input to pin 2	I _R	-	-	1	μΑ	
Reverse break down voltage	Each input to pin 2 at I _R = 1 mA	V_{BR}	6	-	-	V	
Pos. clamping voltage	at I _{PP} = 1 A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}	-	-	7.8	V	
	at I _{PP} = I _{PPM} = 4 A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}	-	-	8	V	
Neg. clamping voltage	at I _{PP} = - 1 A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}	- 1	-	-	V	
	at $I_{PP} = I_{PPM} = -4$ A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}	- 1.2	-	-	V	
Input capacitance	at $V_R = 0 V$; $f = 1 MHz$	C _{IN}	-	60	-	pF	
	at V _R = 2.5 V; f = 1 MHz	C _{IN}	-	37	-	pF	
ESD-clamping voltage	at ± 30 kV ESD-pulse acc. IEC 61000-4-2	V _{CESD}	-	7.5	-	V	
Line resistance	Measured between input and output; I _S = 10 mA	R _S	90	100	110	Ω	
Cut-off frequency	V_{IN} = 0 V; measured in a 50 Ω system	f _{3dB}	-	100	-	MHz	

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

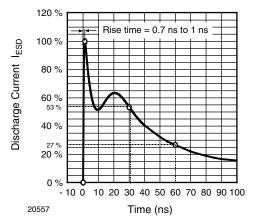


Fig. 1 - ESD Discharge Current Wave Form acc. IEC 61000-4-2 (330 Ω /150 pF)

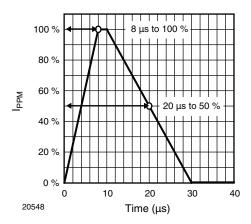


Fig. 2 - 8/20 µs Peak Pulse Current Wave Form acc. IEC 61000-4-5

Violationsiconductous商

3-Channel EMI-Filter with ESD-Protection

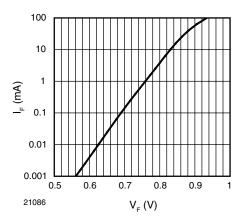


Fig. 3 - Typical Forward Current I_{F} vs. Forward Voltage V_{F}

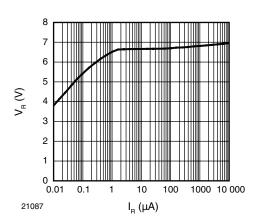


Fig. 4 - Typical Reverse Voltage V_{R} vs. Reverse Current I_{R}

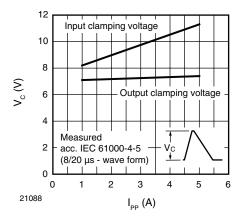


Fig. 5 - Typical Peak Clamping Voltage V_{C} vs. Peak Pulse Current I_{PP}



Fig. 6 - Typical Capacitance C_D vs. Reverse Voltage V_R

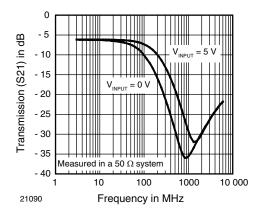
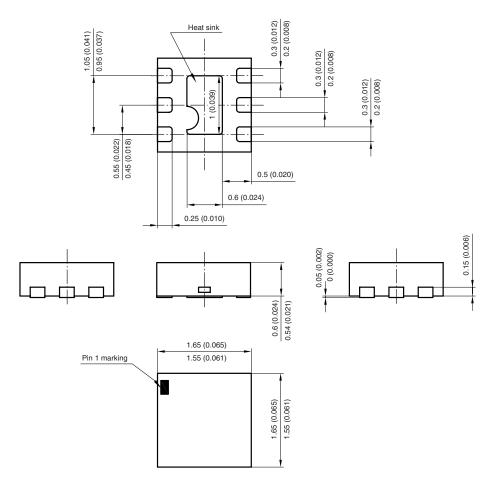
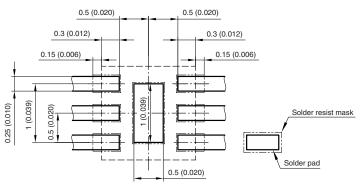



Fig. 7 - Typical Small Signal Transmission (S21) at $\,$ Z $_{0}$ = 50 $\,$ Ω


3-Channel EMI-Filter with ESD-Protection

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters (inches): LLP75-7L

Foot print recommendation:

Document no.:S8-V-3906.02-014 (4) Created - Date: 04. April 2006

20500

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com