<mark>₩₽₩₽11936@@</mark>(PNP) NJW21194G (NPN)

Preferred Devices

Silicon Power Transistors

The NJW21193G and NJW21194G utilize Perforated Emitter technology and are specifically designed for high power audio output, disk head positioners and linear applications.

Features

- Total Harmonic Distortion Characterized
- High DC Current Gain
 - $h_{FE} = 20 \text{ Min} @ I_C = 8 \text{ Adc}$
- Excellent Gain Linearity
- High SOA: 2.25 A, 80 V, 1 Second
- These are Pb-Free Devices

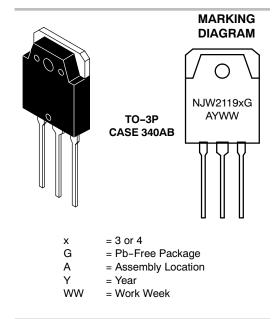
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	250	Vdc
Collector-Base Voltage	V _{CBO}	400	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector-Emitter Voltage - 1.5 V	V _{CEX}	400	Vdc
Collector Current - Continuous - Peak (Note 1)	Ι _C	16 30	Adc
Base Current - Continuous	Ι _Β	5.0	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	P _D	200 1.6	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.625	°C/W
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	40	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

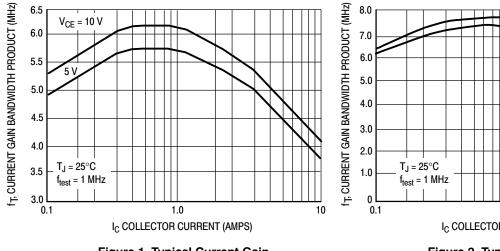

1. Pulse Test: Pulse Width = 5 μ s, Duty Cycle \leq 10%.

ON Semiconductor®

http://onsemi.com

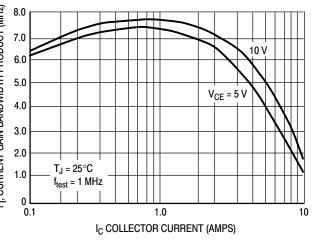
16 AMPERES COMPLEMENTARY SILICON POWER TRANSISTORS 250 VOLTS, 200 WATTS

ORDERING INFORMATION

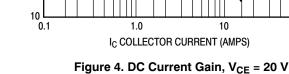

Device	Package	Shipping
NJW21193G	TO-3P (Pb-Free)	30 Units/Rail
NJW21194G	TO-3P (Pb-Free)	30 Units/Rail

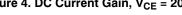
Preferred devices are recommended choices for future use and best overall value.

直该THUX2 CHARA供应该TICS (T_C = 25°C unless otherwise noted)


Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						1
Collector-Emitter Sustaining Voltage $(I_C = 100 \text{ mAdc}, I_B = 0)$		V _{CEO(sus)}	250	-	-	Vdc
Collector Cutoff Current ($V_{CE} = 200 \text{ Vdc}, I_B = 0$)		I _{CEO}	-	-	100	μAdc
Emitter Cutoff Current ($V_{CE} = 5 \text{ Vdc}, I_C = 0$)		I _{EBO}	-	-	100	μAdc
Collector Cutoff Current (V _{CE} = 250 Vdc, V _{BE(off)} = 1.5 Vdc)		ICEX	-	-	100	μAdc
SECOND BREAKDOWN						
Second Breakdown Collector Current with Base Forward Biased ($V_{CE} = 50 \text{ Vdc}, t = 1 \text{ s} (\text{non-repetitive})$ ($V_{CE} = 80 \text{ Vdc}, t = 1 \text{ s} (\text{non-repetitive})$		I _{S/b}	4.0 2.25	-		Adc
ON CHARACTERISTICS						
DC Current Gain ($I_C = 8 \text{ Adc}, V_{CE} = 5 \text{ Vdc}$) ($I_C = 16 \text{ Adc}, I_B = 5 \text{ Adc}$)		h _{FE}	20 8	-	80 -	
Base-Emitter On Voltage (I _C = 8 Adc, V _{CE} = 5 Vdc)		V _{BE(on)}	-	-	2.2	Vdc
Collector-Emitter Saturation Voltage ($I_C = 8 \text{ Adc}, I_B = 0.8 \text{ Adc}$) ($I_C = 16 \text{ Adc}, I_B = 3.2 \text{ Adc}$)		V _{CE(sat)}	- -	-	1.4 4	Vdc
DYNAMIC CHARACTERISTICS						
Total Harmonic Distortion at the Output _R ₩ _{IS} = 28.3 V, f = 1 kHz, P _{LOAD} = 100 W _{RMS}	h _{FE} unmatched	T _{HD}		0.8		%
(Matched pair $h_{FE} = 50 @ 5 A/5 V$)	h _{FE} matched		-	0.08	-	
Current Gain Bandwidth Product $(I_C = 1 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f_{test} = 1 \text{ MHz})$		f _T	4	-	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)		C _{ob}	-	-	500	pF

PNP NJW21193G





TYPICAL CHARACTERISTICS 查询"NJW21194G"供应商 PNP NJW21193G NPN NJW21194G 1000 1000 h_{FE}, DC CURRENT GAIN 100°C h_{FE}, DC CURRENT GAIN Тı T_J = 100°C 25°C 25°C 100 100 -25°C - 25°C V_{CE} = 20 V $V_{CE} = 20 V$ 10 ∟ 0.1 10 L 0.1 1.0 10 100 1.0 10 100 IC COLLECTOR CURRENT (AMPS) IC COLLECTOR CURRENT (AMPS)

Figure 3. DC Current Gain, V_{CE} = 20 V

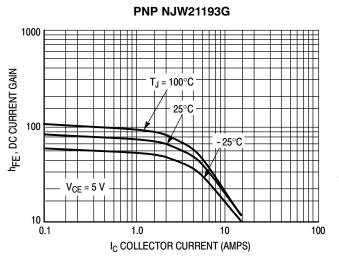
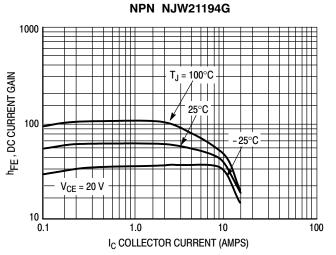
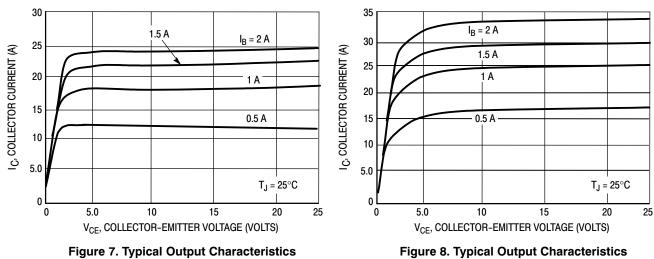
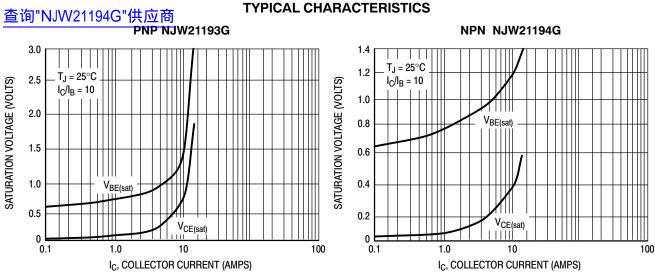




Figure 5. DC Current Gain, V_{CE} = 5 V



NPN NJW21194G

PNP NJW21193G

http://onsemi.com

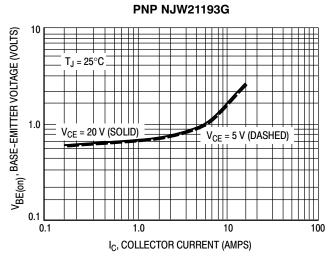


Figure 11. Typical Base–Emitter Voltage

I_C, Collector Current (AMPS)

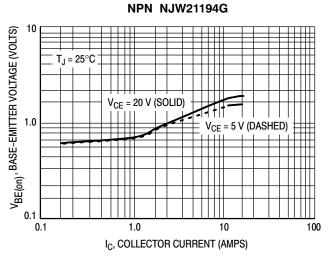
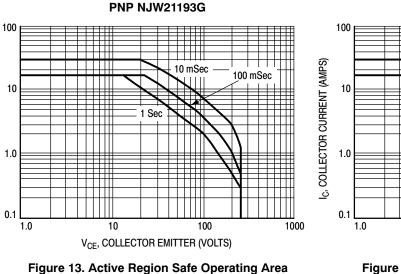
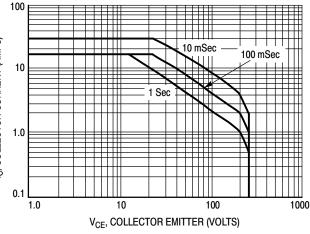




Figure 12. Typical Base-Emitter Voltage

NPN NJW21194G

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 13 is based on $T_{J(pk)} = 150^{\circ}$ C; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

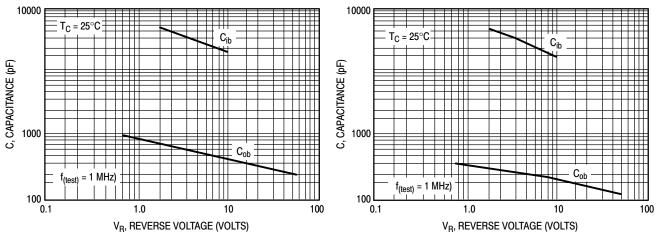


Figure 15. NJW21193G Typical Capacitance

Figure 16. NJW21194G Typical Capacitance

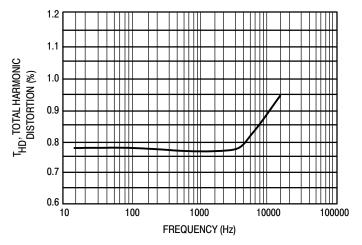


Figure 17. Typical Total Harmonic Distortion

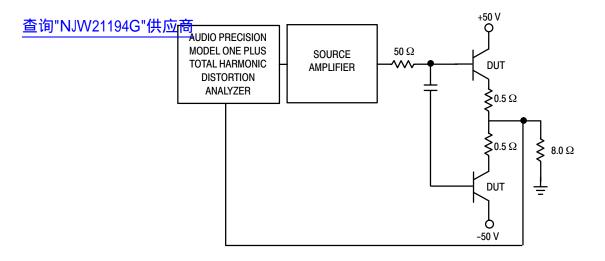
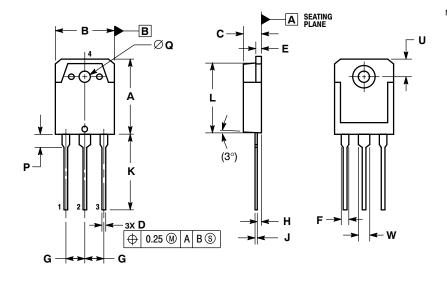



Figure 18. Total Harmonic Distortion Test Circuit

查询"NJW21194G"供应商

PACKAGE DIMENSIONS

TO-3P-3LD CASE 340AB-01 ISSUE A

Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS

 CONTROLLING DIMENSION. MILLIMETERS
 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm EDOM THE TERMINAL TIP

FROM THE TERMINAL TIP.
4. DIMENSION A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	19.70	19.90	20.10	
В	15.40	15.60	15.80	
C	4.60	4.80	5.00	
D	0.80	1.00	1.20	
Е	1.45	1.50	1.65	
F	1.80	2.00	2.20	
G	5.45 BSC			
Н	1.20	1.40	1.60	
J	0.55	0.60	0.75	
K	19.80	20.00	20.20	
L	18.50	18.70	18.90	
Ρ	3.30	3.50	3.70	
Ø	3.10	3.20	3.50	
U	5.00 REF			
W	2.80	3.00	3.20	

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agnociated with such unintended or unauthorized use persons, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agnociated with such unintended or unauthorized use persons and reasonable attorney fees arising out of, directly or indirectly, any claim of personal inju

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

ort: Order Literature: http://www.onsemi.com/orderlit

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

For additional information, please contact your local Sales Representative