MQ105104; MG100E104

5V ECL Quint 2-Input AND/NAND Gate

Description

The MC10E/100E104 is a quint 2-input AND/NAND gate. The function output F is the OR of all five AND gate outputs, while \overline{F} is the NOR. The Q outputs need not be terminated if only the F outputs are to be used.

The 100 Series contains temperature compensation.

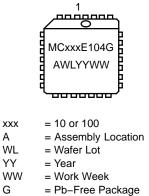
Features

- 600 ps Max. Propagation Delay
- OR/NOR Function Outputs
- PECL Mode Operating Range: $V_{CC} = 4.2$ V to 5.7 V with $V_{EE} = 0$ V
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -4.2 V$ to -5.7 V
- Internal Input 50 kΩ Pulldown Resistors
- ESD Protection: Human Body Model; > 2 kV, Machine Model; > 200 V
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level:

$$Pb = 1$$

Pb–Free = 3 For Additional Information, see Application Note AND8003/D

- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count = 134 devices
- Pb–Free Packages are Available*


ON Semiconductor®

http://onsemi.com

PLCC-28 FN SUFFIX CASE 776

MARKING DIAGRAM*

*For additional marking information, refer to

Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

F

F

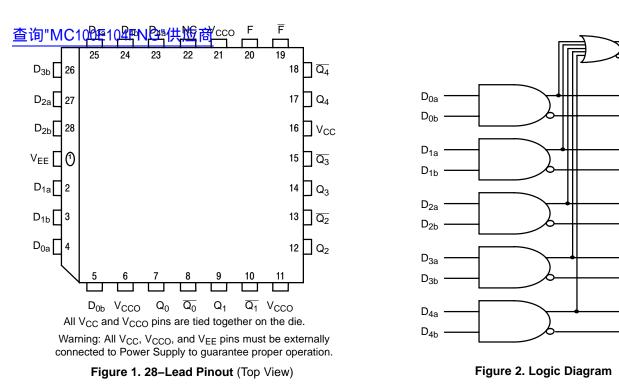
 Q_0

 $\overline{\mathsf{Q}_0}$

 Q_1

 $\overline{Q_1}$

 Q_2


 $\overline{\mathsf{Q}_2}$

 Q_3

 Q_3

 Q_4

 $\overline{\mathsf{Q}_4}$

Table 1. PIN DESCRIPTION

PIN	FUNCTION					
$D_{0a} - D_{4b}$	ECL Data Inputs					
$Q_0 - Q_4$	ECL AND Outputs					
$\overline{Q_0} - \overline{Q_4}$	ECL NAND Outputs					
F	ECL OR Output					
F	ECL NOR Output					
V _{CC} , V _{CCO}	Positive Supply					
V _{EE}	Negative Supply					
NC	No Connect					
Table 2. FUNCTION OUTPUTS						
$F = (D_{0a} \bullet D_{0b}) + (D_{1a} \bullet D_{1b}) + (D_{2a} \bullet D_{2b}) +$						

 $(\mathsf{D}_{3\mathsf{a}} \bullet \mathsf{D}_{3\mathsf{b}}) + (\mathsf{D}_{4\mathsf{a}} \bullet \mathsf{D}_{4\mathsf{b}})$

着动物。BAMAXMUMARATING呈应商

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	$V_{EE} = 0 V$		8	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V		6 6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	PLCC-28 PLCC-28	63.5 43.5	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	PLCC-28	22 to 26	°C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. 10E SERIES PECL DC CHARACTERISTICS $V_{CC} = 5.0 \text{ V}, V_{EE} = 0.0 \text{ V}$ (Note 1)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		38	46		38	46		38	46	mA
V _{OH}	Output HIGH Voltage (Note 2)	3980	4070	4160	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 2)	3050	3210	3370	3050	3210	3370	3050	3227	3405	mV
V _{IH}	Input HIGH Voltage	3830	3995	4160	3870	4030	4190	3940	4110	4280	mV
V _{IL}	Input LOW Voltage	3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
I _{IH}	Input HIGH Current			200			200			200	μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.06 V.

2. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

Table 5. 10E SERIES NECL DC CHARACTERISTICS V_{CCx} = 0.0 V; V_{EE} = -5.0 V (Note 3)

			-40°C		25°C		85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		38	46		38	46		38	46	mA
V _{OH}	Output HIGH Voltage (Note 4)	-1020	-930	-840	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 4)	-1950	-1790	-1630	-1950	-1790	-1630	-1950	-1773	-1595	mV
VIH	Input HIGH Voltage	-1170	-1005	-840	-1130	-970	-810	-1060	-890	-720	mV
V _{IL}	Input LOW Voltage	-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
I _{IH}	Input HIGH Current			200			200			200	μΑ
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.065		0.3	0.2		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

3. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.06 V. 4. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

29 HP M COOF ERESTECHIDG GHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 5)

			–40°C 25°C								
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		38	46		38	46		44	53	mA
V _{OH}	Output HIGH Voltage (Note 6)	3975	4050	4120	3975	4050	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 6)	3190	3295	3380	3190	3255	3380	3190	3260	3380	mV
V _{IH}	Input HIGH Voltage	3835	3975	4120	3835	3975	4120	3835	3975	4120	mV
V _{IL}	Input LOW Voltage	3190	3355	3525	3190	3525	3355	3190	3355	3525	mV
I _{IH}	Input HIGH Current			200			200			200	μΑ
IIL	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.8 V.

6. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

Table 7. 100E SERIES NECL DC CHARACTERISTICS $V_{CCx} = 0 V$; $V_{EE} = -5.0 V$ (Note 7)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		38	46		38	46		44	53	mA
V _{OH}	Output HIGH Voltage (Note 8)	-1025	-950	-880	-1025	-950	-880	-1025	-950	-880	mV
V _{OL}	Output LOW Voltage (Note 8)	-1810	-1705	-1620	-1810	-1745	-1620	-1810	-1740	-1620	mV
V _{IH}	Input HIGH Voltage	-1165	-1025	-880	-1165	-1025	-880	-1165	-1025	-880	mV
V _{IL}	Input LOW Voltage	-1810	-1645	-1475	-1810	-1645	-1475	-1810	-1645	-1475	mV
I _{IH}	Input HIGH Current			200			200			200	μΑ
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

7. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.8 V.

8. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

Table 8. AC CHARACTERISTICS	S V _{CCx} = 5.0 V; V _{EE} = 0.0 V or ¹	$V_{CCx} = 0.0 \text{ V}; V_{EE} = -5.0 \text{ V} (Note 9)$
-----------------------------	--	---

				-40°C			25°C			85°C		
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Toggle Frequency			700			700			700		MHz
t _{PLH} t _{PHL}	Propagation Delay to Output	D to Q D to F	225 500	385 725	600 1000	225 500	385 725	600 1000	225 500	385 725	600 1000	ps
t _{SKEW}	Within-Device Skew (Note 10)	D to Q		75			75			75		ps
t _{JITTER}	Random Clock Jitter (RMS)			< 1			< 1			< 1		ps
t _r t _f	Rise/Fall Time (20 - 80%)	QF	100 300	425 475	700 700	100 300	425 475	700 700	100 300	425 475	700 700	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

9. 10 Series: V_{EE} can vary -0.46 V / +0.06 V.

100 Series: V_{EE} can vary –0.46 V / +0.8 V.

10. Within-device skew is defined as identical transitions on similar paths through a device.

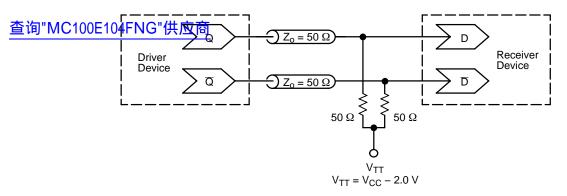
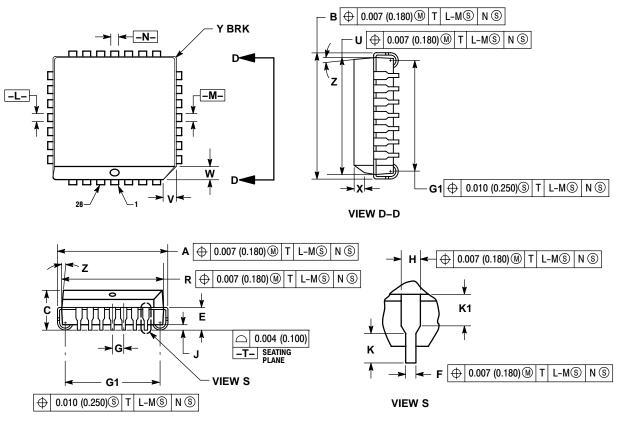


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]		
MC10E104FN	PLCC-28	37 Units / Rail		
MC10E104FNG	PLCC-28 (Pb-Free)	37 Units / Rail		
MC10E104FNR2	PLCC-28	500 / Tape & Reel		
MC10E104FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel		
MC100E104FN	PLCC-28	37 Units / Rail		
MC100E104FNG	PLCC-28 (Pb-Free)	37 Units / Rail		
MC100E104FNR2	PLCC-28	500 / Tape & Reel		
MC100E104FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1642/D	_	The ECL Translator Guide
AND8001/D	_	Odd Number Counters Design
AND8002/D	_	Marking and Date Codes
AND8020/D	_	Termination of ECL Logic Devices
AND8066/D	_	Interfacing with ECLinPS
AND8090/D	_	AC Characteristics of ECL Devices

查询"MC100E104FNG"供应商

PACKAGE DIMENSIONS

PLCC-28 **FN SUFFIX** PLASTIC PLCC PACKAGE CASE 776-02 ISSUE E

NOTES:

- 1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS
- WIERE TOP OF LEAD STROUGHER EATIS
 PLASTIC BODY AT MOLD PARTING LINE.
 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.
 3. DIMENSIONS R AND U DO NOT INCLUDE
- MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
- UDITO (0.230) PER SIDE.
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 THE PACKAGE TOP MAY BE SMALLER THAN
- THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- 7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.485	0.495	12.32	12.57
В	0.485	0.495	12.32	12.57
C	0.165	0.180	4.20	4.57
Ε	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
J	0.020		0.51	
K	0.025		0.64	
R	0.450	0.456	11.43	11.58
U	0.450	0.456	11.43	11.58
۷	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
X	0.042	0.056	1.07	1.42
Y		0.020		0.50
Z	2 °	10°	2 °	10°
G1	0.410	0.430	10.42	10.92
K1	0.040		1.02	

查询"MC100E104FNG"供应商

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use to all applicable coyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative