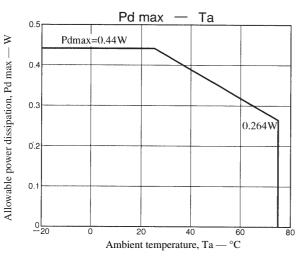
查询"LB1991"供应商

Monolithic Digital IC

LB1991V

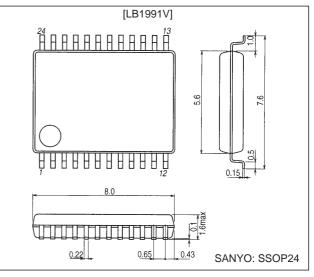

Three-Phase Brushless Motor Driver for Portable VCR Capstan Motors

Overview

The LB1991V is a 3-phase brushless motor driver IC that is optimal for driving the capstan motor in portable VCR products.

Functions

- 3-phase full-wave voltage drive technique (120° voltage-linear technique)
- Torque ripple correction circuit (overlap correction)


Specifications Absolute Maximum Ratings at $Ta = 25^{\circ}C$

- Speed control technique based on motor voltage and current control.
- Built-in FG comparators
- Built-in thermal shutdown circuit

Package Dimensions

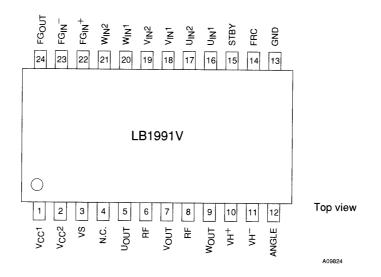
unit: mm

3175A-SSOP24

Parameter	Symbol	Conditions	Ratings	Unit
	V _{CC} 1 max		10	V
Maximum supply voltage	V _{CC} 2 max		11	V
	V _S max		11	V
Applied output voltage	V _O max		V _S + 2	V
Maximum output current	I _O max		1.0	A
Allowable power dissipation	Pd max	Independent IC	440	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

Allowable Operating Ranges at Ta = $25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
	V _{CC} 1	$V_{CC}1 \leq V_{CC}2$	2.7 to 6.0	V
Supply voltage	V _{CC} 2		3.5 to 9.0	V
	VS		Up to V _{CC} 2	V
Hall input amplitude	V _{HALL}	Between Hall effect element inputs	±20 to ±80	mVp-p


SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

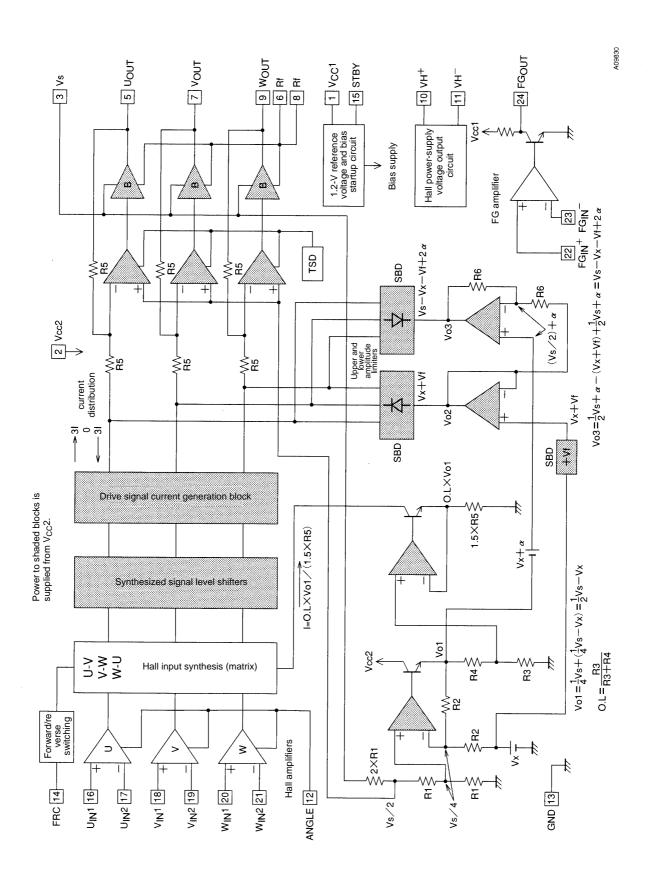
Electrical Characteristics at Ta = 25°C, $V_{CC}1$ = 3 V, $V_{CC}2$ = 4.75 V, V_S = 1.5 V

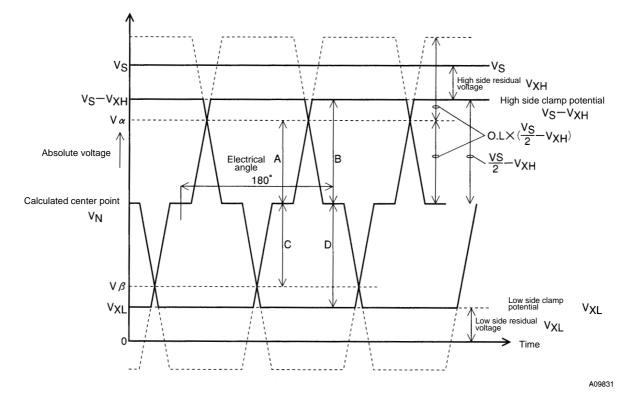
Parameter	Symbol	Conditions	Ratings			Unit
	Symbol		min	typ	max	
[Supply Current]						
V _{CC} 1 current drain	I _{CC} 1	I _{OUT} = 100 mA		3	5	mA
V _{CC} 2 current drain	I _{CC} 2	I _{OUT} = 100 mA		7.0	10.0	mA
V _{CC} 1 quiescent current	I _{CC} 1Q	V _{STBY} = 0 V		1.5	3.0	mA
V _{CC} 2 quiescent current	I _{CC} 2Q	V _{STBY} = 0 V			100	μA
VS quiescent current	I _S Q	V _{STBY} = 0 V		75	100	μA
[VX1]	·					
High side residual voltage	V _{XH} 1	I _{OUT} = 0.2 A	0.15	0.22	0.29	V
Low side residual voltage	V _{XL} 1	I _{OUT} = 0.2 A	0.15	0.20	0.25	V
[VX2]	L					
High side residual voltage	V _{XH} 2	I _{OUT} = 0.5 A		0.25	0.40	V
Low side residual voltage	V _{XL} 2	I _{OUT} = 0.5 A		0.25	0.40	V
Output saturation voltage	V _O (sat)	I _{OUT} = 0.8 A, Sink + Source			1.4	V
Overlap	O.L	$R_L = 39 \ \Omega \times 3$, Rangle = 20 k Ω *2	73	80	87	%
High/low overlap difference	۵0.L	(Average high side overlap) – (Average low side overlap) *2	-8		+8	%
[Hall Amplifiers]						
Input offset voltage	V _{HOFF}	*1	-5		+5	m\
Common-mode input voltage range	V _{HCM}	Rangle = 20 k Ω	0.95		2.1	V
I/O voltage gain	V _{GVH}	Rangle = 20 k Ω	25.5	28.5	31.5	dE
[Standby Pin]	I	1	I			
High-level voltage	V _{STH}		2.5			V
Low-level voltage	V _{STL}				0.4	V
Input current	I _{STIN}	V _{STBY} = 3 V		25	40	μA
Leakage current	I _{STLK}	V _{STBY} = 0 V			-30	μA
[FRC Pin]		1 -				
High-level voltage	V _{FRCH}		2.5			V
Low-level voltage	V _{FRCL}				0.4	V
Input current	I _{FRCIN}	V _{FRC} = 3 V		20	30	μA
Leakage current	I _{FRCLK}	V _{FRC} = 0 V			-30	μA
[VH]						
Hall supply voltage	V _{HALL}	$I_{\rm H} = 5 \text{ mA}, V_{\rm H}(+) - V_{\rm H}(-)$	0.85	0.95	1.05	V
(–) pin voltage	V _H (–)	$I_{\rm H} = 5 \mathrm{mA}$	0.81	0.88	0.95	V
[FG Comparator]						
Input offset voltage	V _{FGOFF}		-3		+3	m\
Input bias voltage	IbFG	V_{FGIN} + = V_{FGIN} - = 1.5 V			500	nA
Input bias current offset	Δl _{bFG}	V_{FGIN} + = V_{FGIN} - = 1.5 V	-100		+100	nA
Common-mode input voltage range	V _{FGCM}		1.2		2.5	V
Output high-level voltage	V _{FGOH}	At the internal pull-up resistors	2.8			V
Output low-level voltage	V _{FGOL}	At the internal pull-up resistors			0.2	V
Voltage gain	V _{GFG}	*1		100	-	dE
Output current (sink)	I _{FGOS}	For the output pin low level			5	m/
[TSD]	1,003		I		-	
TSD operating temperature	T-TSD	Design target value *1		180		°C
TSD temperature hysteresis	ATSD	Design target value *1		20		°C
lotos: 1. Itoma aposified as design target va						

Notes: 1. Items specified as design target values in the conditions column are not tested. 2. The standard for overlap is the value as measured.

Pin Assignment

Truth Table


\square	Source phase \rightarrow Sink phase		Hall input		
1	$V\toW$	н	н		н
	$W\toV$	п		L	L
2	$U\toW$	н	L	1	н
2	$W\toU$	п		L	L
3	$U\toV$	н	L	н	н
	$V\toU$	п			L
4 -	$W\toV$	1	L	н	н
	$V\toW$	L		п	L
5	$W\toU$		н	н	н
	$U\toW$	L		П	L
6	$V\toU$		н		н
	$U\toV$			L	L


Note: The "H" entries in the FRC column indicate a voltage of 2.50 V or higher, and the "L" entries indicate a voltage of 0.4 V or lower. (When V_{CC}1 is 3 V.) At the Hall inputs, for each phase a high-level input is the state where the (+) input is 0.02 V or higher than the (-) input. Similarly, a low-level input is the state where the (+) input is 0.02 V or lower than the (-) input.

Pin Functions

Pin No.	Pin	Equivalent circuit	Pin function
1	V _{CC} 1	Supply voltage for all circuits other than the IC internal output block and the amplitude control block.	
2	V _{CC} 2	Supply voltage for the IC internal output control block and the amplitude control block.	
3	VS	Motor drive power supply. The voltage applied to this pin must not exceed $V_{\mbox{CC}}2.$	
5	U _{OUT}	U phase output	
7	V _{OUT}	V phase output (These outputs include built-in spark killer diodes.)	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
9	W _{OUT}	W phase output	ξ5kΩ
6, 8	R _f	Ground for the output power transistors	NV960
10	VH+	Hall element bias voltage supply A voltage that is typically 0.95 V is generated between the VH ⁺ and	
11	VH-	VH [−] pins. (When IH is 5 mA.)	
13	GND	Ground for circuits other than the output transistor The Rf pin potential is the lowest output transistor potential.	
14	FRC	Forward/reverse selection. Applications can select motor forward or reverse direction rotation using this pin. (This pin has hysteresis characteristics.)	
15	STBY	Selects the bias supply for all circuits other than the FG comparators. The bias supply is cut when this pin is set to the low level.	
16 17	U _{IN} 1 U _{IN} 2	U phase Hall element input The logic high level is the state where the IN+ voltage is greater than the IN- voltage.	
18 19	V _{IN} 1 V _{IN} 2	V phase Hall element input The logic high level is the state where the IN+ voltage is greater than the IN- voltage.	
20 21	W _{IN} 1 W _{IN} 2	W phase Hall element input The logic high level is the state where the IN+ voltage is greater than the IN- voltage.	ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE A
12	ANGLE	Hall input/output gain control. The gain is controlled by the resistor connected between this pin and ground.	
22	FG _{IN} +	FG comparator noninverting inputs. There is no internally applied bias.	15kΩξ ξ20kΩ
23	FG _{IN} –	FG comparator inverting inputs. There is no internally applied bias.	
24	FG _{OUT}	FG comparator outputs. There is an internal 20-k Ω resistor load.	

Block Diagram

Overlap Generation and Calculation Method

[Overlap Generation]

Since the voltage generated in the amplitude control block is, taking the center point as the reference, $2 \times \text{coverlap} \times (1/2 \text{ V}_S - \text{V}_X)$ on one side, the intersection point of the waveform will be $\text{coverlap} \times (1/2 \text{ V}_S - \text{V}_X)$ from the center point.

To clamp that waveform at $(1/2 V_S - V_X)$ referenced to the center point the overlap must be: A/B × 100 = <overlap> × 100 (%).

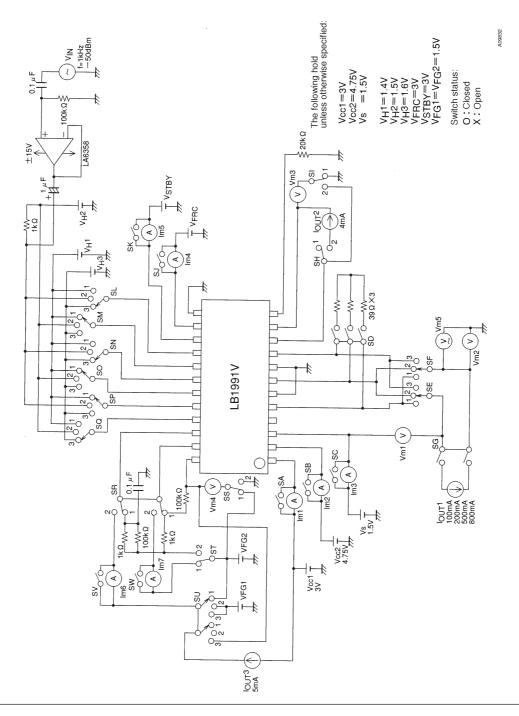
[Overlap Calculation]

• High side overlap

Calculated center point:
$$V_{N} = \frac{(V_{S} - V_{XH} - V_{XL})}{2} + V_{XL} = \frac{(V_{S} - V_{XH} + V_{XL})}{2}$$

Since A = V α - V_N, B = V_S - V_{XH} - V_N, the high side overlap will be:
 = $\frac{A}{B} = \frac{V\alpha - ((V_{S} - V_{XH} + V_{XL})/2)}{V_{S} - V_{XH} - ((V_{S} - V_{XH} + V_{XL})/2)} \times 100 (\%)$
Which can be calculated as:
$$= \frac{2V\alpha - (V_{S} - V_{XH}) - V_{XL}}{(V_{S} - V_{XH}) - V_{XL}} \times 100 (\%).$$

• Low side overlap


Since $C = V_N - V\beta$, and $D = V_N - V_{XL}$, the low side overlap will be:

 $< verlap > = \frac{C}{D} = \frac{((V_S - V_{XH} + V_{XL})/2)}{((V_S - V_{XH} + V_{XL})/2) - V_{XL}} \times 100$ Which can be calculated as:

Which can be calculated as:

$$= \frac{(V_{S} - V_{XH}) - V_{XL} - 2V\beta}{(V_{S} - V_{XH}) - V_{XL}} \times 100 \ (\%).$$

Test Circuit

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1998. Specifications and information herein are subject to change without notice.