查<mark>询"\$</mark>N54LS145-SP"供应商

SN54145, SN54LS145, SN74145, SN74LS145 BCD-TO-DECIMAL DECODERS/DRIVERS

SDLS051

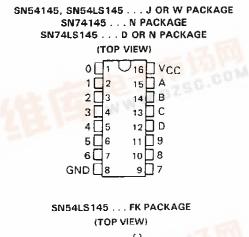
FOR USE AS LAMP, RELAY, OR MOS DRIVERS

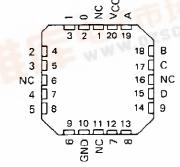
- Full Decoding of Input Logic
- SN54145, SN74145, and SN74LS145 Have 80-mA Sink-Current Capability
- All Outputs Are Off for Invalid BCD Input Conditions
- Low Power Dissipation of 'LS145 ... 35 mW Typical

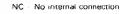
FUNC	TION	TAR	11
FUNC	1100	IND	

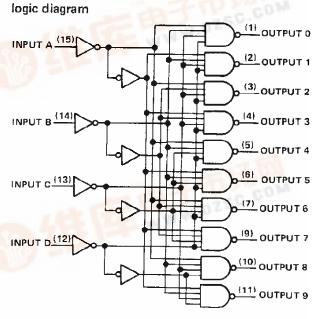
NO.		INP	UTS				1."	0	UT	PUT	5	, G		
1.00.	D	С	8	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	н	н	н	Н	Н	н	Н	Н	Н
1	L	L	L	н	н	L	н	н	н	Н	н	н	н	н
2	Ŀ	L	н	L	н	н	L	н	Н	Н	н	н	н	н
3	L	L	н	н	н	н	н	L	н	н	н	н	н	н
4	Ł	н	L	L	н	Н	Н	Н	L	H	Н	Н	Н	Н
5	Ł	н	L	Η	н	н	н	н	н	L	н	н	н	н
6	L	н	н	L	н	н	н	н	н	н	Ł	н	н	н
7	L	н	н	н	н	H	н	н	н	н	н	L	н	н
8	н	L	L	L	н	н	н	н	н	н	н	н	L	н
9	н	L	L	н	н	н	н	н	н	н	н	н	н	L
	Н	Ľ	Н	L	н	H	Н	Н	н	н	Н	Н	н	Н
0	н	L	н	н	н	н	н	н	н	н	Н	н	н	н
Ę	н	н	L	L	н	н	н	н	н	н	н	н	н	н
INVALID	н	н	L	н	н	н	н	н	н	н	н	н	н	н
=	н	н	н	L	н	н	н	н	н	н	н	н	н	н
	н	н	Н	H	н	н	н	н	н	Н	Н	Н	н	н

H = high level (off), L = low level (on)


description




dzsc.com


These monolithic BCD-to-decimal decoder/drivers consist of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid BCD input logic ensures that all outputs remain off for all invalid binary input conditions. These decoders feature high-performance, n-p-n output transistors designed for use as indicator/relay drivers or as open-collector logic-circuit drivers. Each of the highbreakdown output transistors (15 volts) of the SN54145, SN74145, or SN74LS145 will sink up to 80 milliamperes of current. Each input is one Series 54/74 or Series 54LS/74LS standard load, respectively. Inputs and outputs are entirely compatible for use with TTL or DTL logic circuits, and the outputs are compatible for interfacing with most MOS integrated circuits. Power dissipation is typically 215 milliwatts for the '145 and 35 milliwatts for the 'LS145.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Taxas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Pin numbers shown are for D, J, N, and W packages.

SN54LS145, SN74LS145 查询 **BCD 4106 DEC MA供应EGO DERS/DRIVERS**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Input voltage , , , , , , , , , , , , , , , , , , ,
Maximum current into any output (off-state)
Operating free-air temperature range: SN54145
SN74145
Storage temperature range -65° C to 150° C

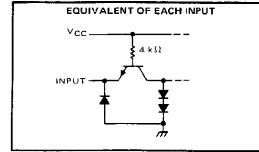
NOTE 1: Voltage values are with respect to network ground terminal.

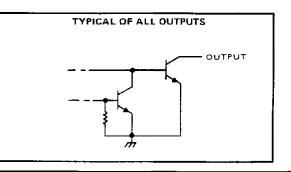
recommended operating conditions

		SN5414	5	SN74145			
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
Off-state output voltage, VO(off)			15			15	V
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDIT	IONST	MIN	TYPİ	ΜΑΧ	UNIT
VIH	High-level input voltage			2			V
V _{IL}	Low-level input voltage					0.8	V
Vik	Input clamp voltage	V _{CC} = MIN, I _I = -12 mA				-1.5	V
IO(off)	Otf-state output current	$V_{CC} = MIN, V_{IH} = 2 V,$ $V_{IL} = 0.8 V, V_{O(off)} = 15$	v			250	μA
VOion)	On-state output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V	1 _{O(on)} = 80 mA 1 _{O(on)} = 20 mA		0.5	0.9 0.4	v
1	Input current at maximum input voltage	VCC = MAX, VI = 5.5 V		-		1	mA
Ιн	High-level input current	V _{CC} = MAX, V ₁ = 2.4 V				40	μA
¹ ۱۲ – –	Low-level input current	V _{CC} = MAX, V _I = 0.4 V	·····			-1.6	mA
100	Supply current	Ver - MAX - See New 7	SN54145		43	62	
lec	Supply current	V _{CC} = MAX, See Note 2	SN74145		43	70	mΑ


[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25$ °C. NOTE 2: I_{CC} is measured with all inputs grounded and outputs open.


switching characteristics, V_{CC} = 5 V, T_A = 25° C

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
	ropagation delay time, low-to-high-level output	$C_1 = 15 \text{ pF}$, $R_1 = 100 \Omega$. See Note 3	50	ns
TPHL Pr	ropagation delay time, high-to-low-level output		50	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

schematics of inputs and outputs

TEXAS INSTRUMENTS POST OFFICE BOX 655012 . DALLAS, TEXAS 75265

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) Input voltage															
Operating free-air temperature range:															
	SN74LS145														
Storage temperature range		• •	•	•	 -	•		-		•		_	-65	'C to	150°C

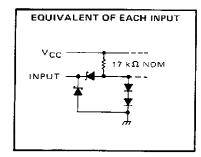
NOTE 1: Voltage values are with respect to network ground terminal.

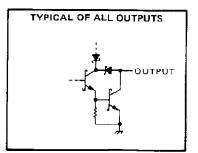
recommended operating conditions

	Si	154LS1	45	SI			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
Off-state output voltage, VO(off)		-	15			15	V
Operating free-air temperature, T _A	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CON	DITIONET	SN	154LS1	45	SN74LS145			
		TEST COM	DITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
⊻н	High-level input voltage			2			2			V
VIL	Low-level input voltage			† ···	_	0.7	†		0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	lı = -18 mA			-1.5	-		-1.5	l v
IO(off)	Off-state output current	V _{CC} ≠ MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, V _{OH} = 15 V			250			250	μА
		Vcc - MIN,	I _{OL} = 12 mA		0,25	0.4		0.25	0.4	<u> </u>
V _{O(on)}	On-state output voltage	V _{IH} ≈ 2 V,	I _{OL} = 24 mA	1				0.35	0.5	1 v
		V _{IL} = V _{IL} max	I _{OL} = 80 mA	-				2.3	3	1
4	Input current at maximum input voltage	VCC = MAX,	V ₁ = 7 V			0.1			0.1	mA
Ч н	High-level input current	V _{CC} = MAX,	VI = 2.7 V			20			20	μA
ΠL.	Law-level input current	V _{CC} = MAX,	VI = 0.4 V			-0.4			-0.4	mA
ICC	Supply current	V _{CC} = MAX,	See Note 2		7	13		7	13	mA


[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. $\frac{1}{2}$ All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 2: 1_{CC} is measured with all inputs grounded and outputs open.


switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER				TEST CONDITI	ONS	MIN	MAX	UNIT
tPLH	Propagation delay time, iow-to-high-level output	<u> </u>	= 45 pE	R ₁ = 665 Ω.	See Note 3		50	ns
TPHL	Propagation delay time, high-to-low-level output	CL.	= 45 pF,	H L - 600 32,	See Note S		50	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

schematic of inputs and outputs

11-Nov-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-8508401VEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type
85084012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
8508401EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type
8508401FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type
SN54LS145J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type
SN74145N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74145N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74145NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS145D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS145DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS145DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS145DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS145DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS145DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS145N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS145N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN74LS145NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS145NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS145NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS145NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SNJ54145J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type
SNJ54LS145FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54LS145J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type
SNJ54LS145W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

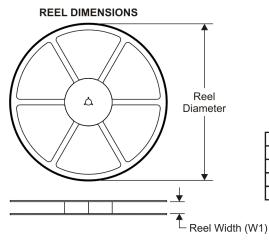
OBSOLETE: TI has discontinued the production of the device.

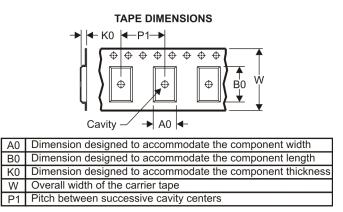
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

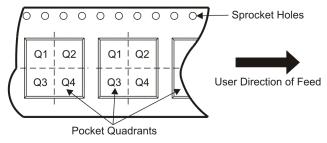
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

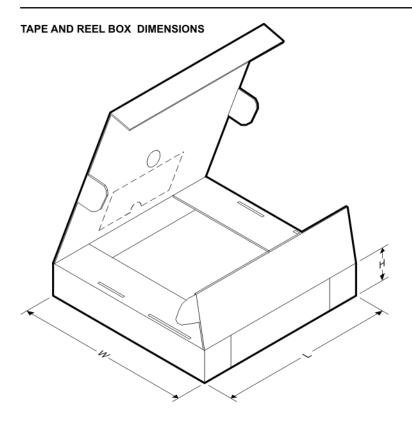

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


₩ TEXAS INSTRUMENTS 查询"SN54LS145-SP"供应商

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS145DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS145NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

11-Nov-2009

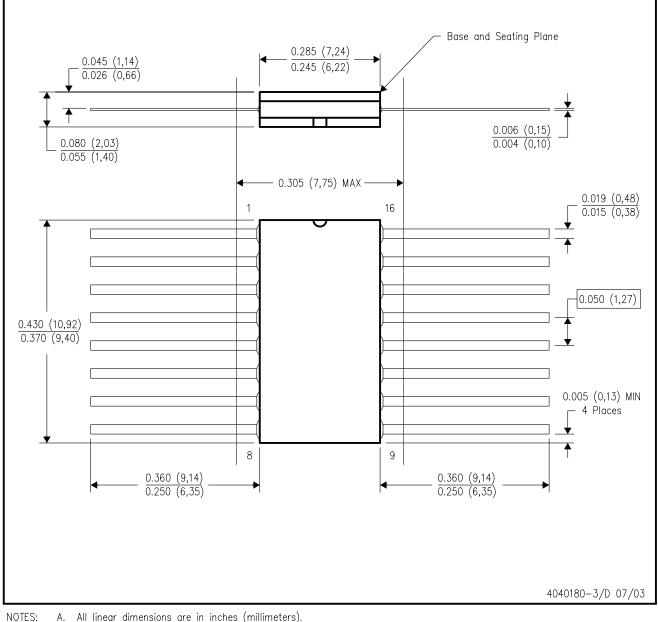
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS145DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS145NSR	SO	NS	16	2000	346.0	346.0	33.0

J (R-GDIP-T**)

14 LEADS SHOWN

PINS ** 20 14 16 18 DIM 0.300 0.300 0.300 0.300 В Α (7,62) (7,62) (7,62) (7,62) BSC BSC BSC BSC 14 8 0.785 0.960 .840 1.060 B MAX (19,94) (21, 34)(24, 38)(26, 92)B MIN С 0.300 0.300 0.300 0.310 C MAX (7,62) (7, 62)(7,87) (7, 62)7 0.245 0.245 0.220 0.245 0.065 (1,65) C MIN (6,22) (6,22) (5, 59)(6,22) 0.045 (1,14) 0.060 (1,52) Α 0.015 (0,38) 0.200 (5,08) MAX ¥ Seating Plane ↑ 0.130 (3,30) MIN 0.026 (0,66) 0.014 (0,36) 0"-15" 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040083/F 03/03


NOTES: A. All linear dimensions are in inches (millimeters).

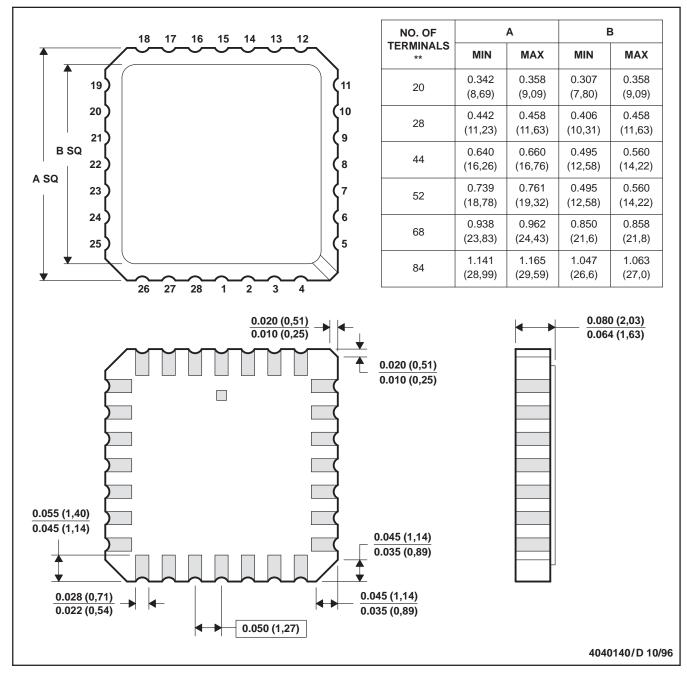
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

CERAMIC DUAL IN-LINE PACKAGE

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC


FK (S-CQCC-N**)

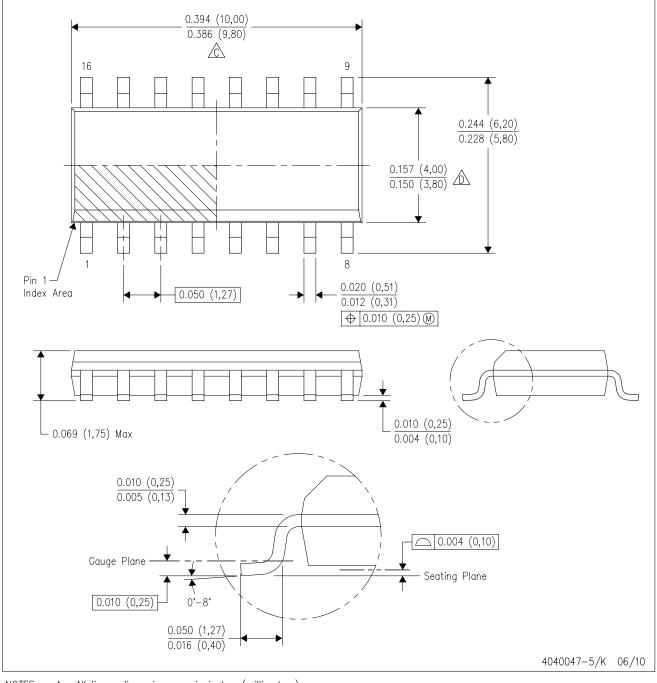
MLCC006B - OCTOBER 1996

LEADLESS CERAMIC CHIP CARRIER

QCC-N**)

28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

查询"SN54LS145-SP"供应商

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AC.

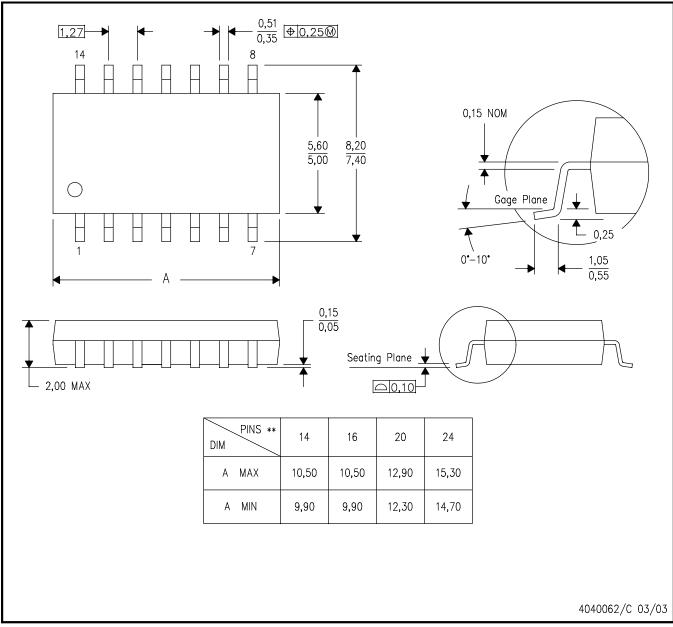
LAND PATTERN DATA

查询"SN54LS145-SP"供应商

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) -16x0,55 - 14x1,27 -14x1,27 16x1,95 4,80 4,80 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 Example 2,00 Solder Mask Opening (See Note E) -0,07 All Around 4211283-4/B 09/10

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



查询"SN54LS145-SP"供应商

MECHANICAL DATA

NS (R-PDSO-G**) 14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

查询"SN54LS145-SP"供应商

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated