8-BIT ADDRESSABLE LATCH

FEATURES

- Serial data input
- Active parallel output
- Storage register capability
- Master clear
- Can function as demultiplexer

APPLICATIONS

- Multi-line decoders
- A/D converters

DESCRIPTION

The 4099B 8-bit addressable latch is a serial-input, paralleloutput storage register that can perform a variety of functions.

Data are inputted to a particular bit in the latch when that bit is addressed (by means of inputs A0, A1, A2) and when WRITE DISABLE is at a low level. When WRITE DISABLE is high, data entry is inhibited; however, all 8 outputs can be continuously read independent of WRITE DISABLE and address inputs.

A master RESET input is available, which resets all bits to a logic "0" level when RESET and WRITE DISABLE are at a high level. When RESET is at a high level, and WRITE DISABLE is at a low level, the latch acts as a 1-of-8 demultiplexer; the bit that is addressed has an active output which follows the data input, while all unaddressed bits are held to a logic "0" level.

LOGIC DIAGRAM

TRUTH TABLE

WD	R	Addresse Latch	d Unaddressed Latch
0	0	D	Holds previous data
0	1	D	0
1	0	Holds previou	s data
1	1	0	0

TIMING DIAGRAMS

Fig.1 — Definition of WRITE DISABLE ON time.

Fig. 2 — Master timing diagram.

ELECTRICAL CHARACTERISTICS

查询"4099B"供应商

STATIC CHARACTERISTICS 1, 2

	V _{DD}	ILOW2		+ 25°C			THIGH		11-14-
PARAMETER		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Units
QUIESCENT DEVICE IDD CURRENT	5 10 15	_ _ _	5 10 20	_ _ _	0.02 0.02 0.02	5 10 20		150 300 600	μΑ

DYNAMIC CHARACTERISTICS

 $T_A = 25^{\circ} C$, $C_L = 50 pF$, Input t_r , $t_f = 20 ns$, $R_L = 200 K$

CHARACTERISTIC	SEE FIG 2*	V _{DD} (V)	LIMI ALL PACKA TYP.	UNITS	
Propagation Delay: t _{PLH} ,	(1)	5 10 15	200 75	400 150	
Data to Output WRITE DISABLE to Output. tphl	2	5 10 15	200 80 60	100 400 160 120	ns
Reset to Output,	3	5 10 15	175 80 65	350 160 130	
Address to Output, t _{PLH,} t _{PHL}	9	5 10 15	225 100 75	450 200 150	
Transition Time, T _{THL,} (Any Output) t _{TLH}		5 10 15	100 50 40	200 100 80	ns
Minimum Pulse Width, t _W Data	4	5 10 15	100 50 40	200 100 80	ns
Address	8	5 10 15	200 100 65	400 200 125	ns
Reset	5	5 10 15	. 75 40 25	150 75 50 ,	ns
Minimum Setup Time, t _S Data to WRITE DISABLE	6	5 10 15	50 25 20	100 50 35	ns
Minimum Hold Time, t _H Data to WRITE DISABLE	7	5 10 15	75 40 25	150 75 50	ns
Average Input Capacitanc C ₁	e Any In	put	5		pF

^{*}Circled numbers refer to times indicated on master timing diagram.

Note: In addition to the above characteristics, a WRITE DISABLE ON time (the time that WRITE DISABLE is at a high level) must be observed during an address change for the total time that the external address lines A0, A1, and A2 are settling to a stable level, to prevent a wrong cell from being addressed (see Fig. 1).