

CMOS 8-Stage Presettable Synchronous **Down Counters**

High-Voltage Types (20-Volt Rating)

CD40102B - 2-Decade BCD Type CD40103B - 8-Bit Binary Type

CD40102B, and CD40103B consist of an 8-stage synchronous down counter. with a single output which is active when the internal count is zero. The CD40102B is configured as two cascaded 4-bit BCD counters, and the CD40103B contains a single 8-bit binary counter. Each type has control inputs for enabling or disabling the clock, for clearing the counter to its maximum count, and for presetting the counter either synchronously or asynchronously. All control inputs and the CARRY-OUT/ZERO-DETECT output are active-low logic.

In normal operation, the counter is decremented by one count on each positive transition of the CLOCK. Counting is inhibited when the CARRY-IN/COUNTER ENABLE (CI/CE) input is high. The CARRY-OUT/ ZERO-DETECT (CO/ZD) output goes low when the count reaches zero if the CI/CE input is low, and remains low for one full clock period.

When the SYNCHRONOUS PRESET ENA-BLE (SPE) input is low, data at the JAM input is clocked into the counter on the next positive clock transition regardless of the state of the CI/CE input. When the ASYN-CHRONOUS PRESET-ENABLE (APE) input is low, data at the JAM inputs is asynchronously forced into the counter regard-less of the state of the SPE, CI/CE, or CLOCK inputs. JAM inputs JO-J7 represent two 4-bit BCD words for the CD40102B and a single 8-bit binary word for the CD40103B. When the CLEAR (CLR) input is low, the counter is asynchronously cleared to its maximum count (9910 for the CD40102B and 25510 for the CD40103B) regardless of the state of any other input. The precedence relationship between control inputs is indicated in the truth table.

If all control inputs except CI/CE are high at the time of zero count, the counters will jump to the maximum count, giving a counting sequence of 100 or 256 clock pulses long.

This causes the CO/ZD output to go low to enable the clock on each succeeding clock pulse.

The CD40102B and CD40103B may be cascaded using the CI/CE input and the CO/ZD output, in either a synchronous or ripple mode as shown in Figs.21 and 22.

The CD40102B and CD40103B types are supplied in 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes). The CD40103B types also are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix).

CD40102B, CD40103B Types

SPE APE

CI/CE

10

CLOCK

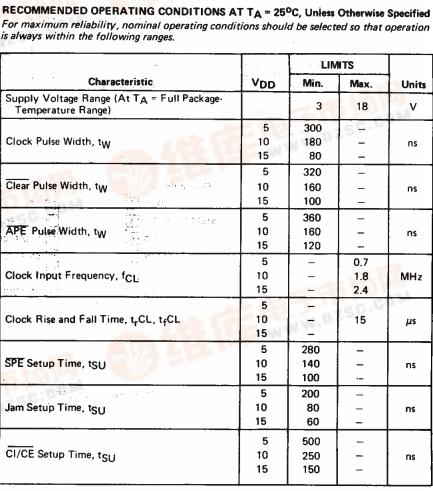
8-STAGE

DOWN COUNTER

CD40102B, CD40103B

FUNCTIONAL DIAGRAM

9205


CO/2D

Features:

- Synchronous or asynchronous preset Medium-speed operation: fcL = 3.6 MHz (typ.) @ VDD = 10 V
- Cascadable
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature) range) = 1 V at VDD = 5 V 2 V at VDD = 10 V
 - 2.5 V at VDD = 15 V
- Standardized, symmetrical output
- characteristics
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Divide-by-"N" counters
- Programmable timers
- Interrupt timers
- Cycle/program counter

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

CD40102B, CD40103B Types

查询"CD40103B-MIL"供应商

MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to VSS Terminal)0.5	V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	nn +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	. 500mW
For T _A = +100°C to +125°C	o 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	. 100mW
OPERATING-TEMPERATURE RANGE (TA)55°C to	+125°C
STORAGE TEMPERATURE RANGE (Tstg)	+150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max	. +265 ⁰ C

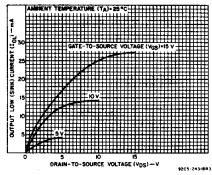
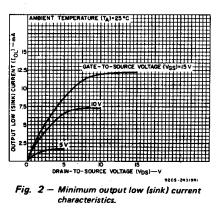



Fig. 1 - Typical output low (sink) current characteristics.

3

COMMERCIAL CMOS HIGH VOLTAGE ICS

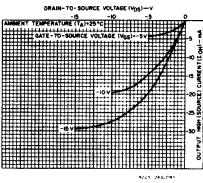
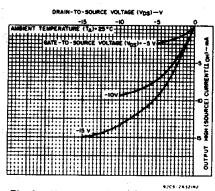
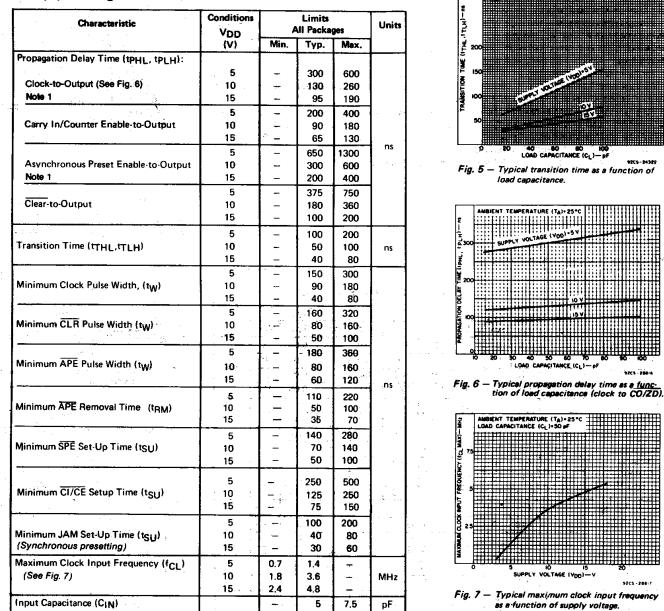
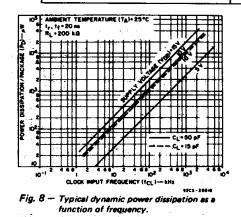
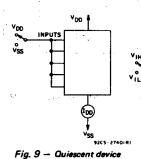


Fig. 3 — Typical output high (source) current characteristics.

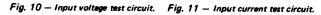



Fig. 4 — Minimum output high (source) current characteristics.


STATIC ELECTRICAL CHARACTERISTICS


CHARACTER-	CONE	NS.	LIMITS AT INDICATED TEMPERATURES (°C)								
ISTIC		VIN	VDD					+25			UNITS
	(V)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.]
Quiescent Device	_	0,5	5	5	5	150	150	-	0.04	5	
Current,	L L	0,10	10	10	10	300	300	-	0.04	10]
IDD Max.	-	0,15	15	20	20	600	600	-	0.04	20	μA
	-	0,20	20	100	100	3000	3000	-	0.08	100	1
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	_	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-]
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	34	6.8	-`	
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mA
(Source) Current, IOH Min.	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-	
	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-	
	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:	-	0,5	5	0.05				-	0	0.05	
Low-Level, VOL Max.		0,10	10	0.05					0	0.05]
VUL max.	-	0,15	15	0.05				-	0	0.05	v
Output Voltage:	-	0,5	5.	4.95				4.95	5		v
High-Level,	-	0,10	10	9.95				9.95	10	-	
VOH Min.	-	0,15	15		14	.95		14.95	15	-	
Input Low	0.5, 4.5		5		1	.5		-	—	1.5	
Voltage,	1, 9	-	10			3				3	
VIL Max.	1.5,13.5	-	15			4			-	4	v
Input High	0.5, 4.5	-	5		3	3.5		3.5	-	-	V
Voltage,	1, 9	-	10		7				-		
VIH Min.	1.5,13.5	1	15		1	1		11		-	
Input Current IIN Max.	-	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μA

Note 1: These parameters and limits also apply to the Synchronous Preset Mode should a Preset condition of JAM Zero on J_O to J₇ exist.


DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C, C_L = 50 pF, Input t_r, t_f = 20 ns, R_L = 200 k Ω

ig. 9 — Quiescent device current test circuit.

BINATION

¥00

V55

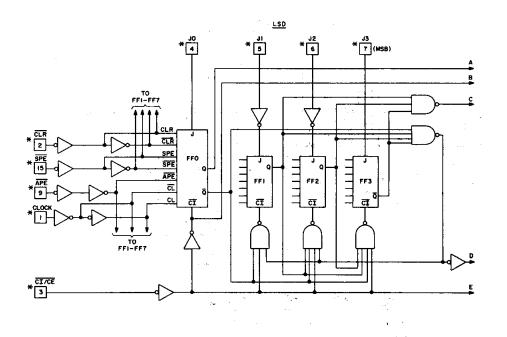
OTE

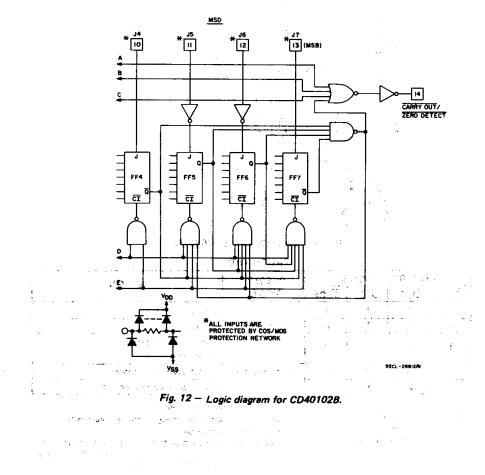
9205-27402

NOTE NEASURE INPUTS SEQUENTIALLY, TO BOTH VDD AND VSS CONNECT ALL UNUSED INPUTS TO EITHER

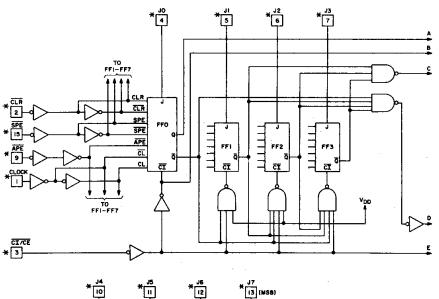
VDD OR VSS

VDO


VSS


OUT

TEST ANY CO OF INPUTS


92C5-2744(R)

ENT TEMPERATURE (TA)-25°C

and the second second

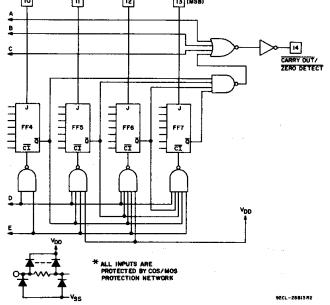


Fig. 13 – Logic diagram for CD40103B.

TRUTH	TADI	E

C	ONTRO	L INPUT	S	PRESET	ACTION	
CLR	APE	SPE	CI/CE	MODE		
1	1	1	1	ľ	Inhibit counter	
1	1	1	0	Synchronous	Count down*	
1	1	0	×	· · ·	Preset on next positive clock transition	
1	0	X	X	Asynchronous	Preset asynchronously	
0	X	X	X	1	Clear to maximum count	

1 = High level

X = Don't care

positive clock transitions

4. JAM inputs: CD40102B BCD; MSD = J7,J6,J5,J4 (J7 is MSB) LSD = J3,J2,J1,J0 (J3 is MSB)

CD40103B Binary; MSB = J7, LSB = J0

*At zero count, the counters will jump to the maximum count on the next clock transition to "High."

CD40102B, CD40103B Types

查询"CD40103B-MIL"供应商

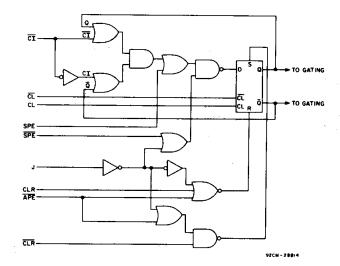
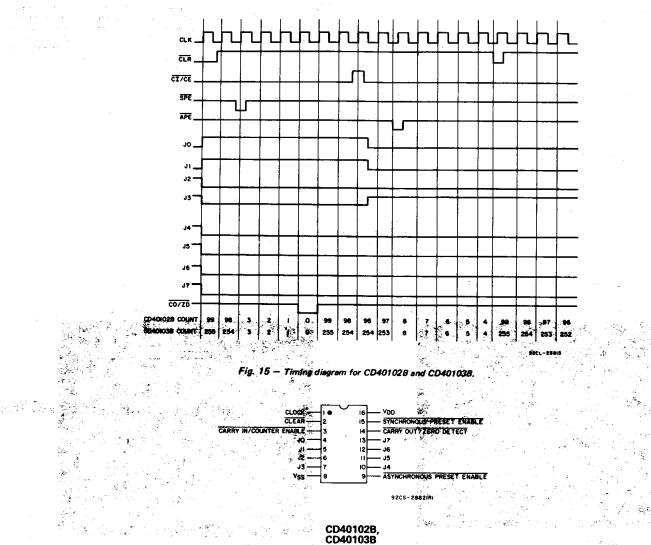



Fig. 14 — Detail logic diagram for flip-flops, FFO – FF7, used in logic diagrams for CD40102B and CD40103B.

TERMINAL ASSIGNMENT

CD40102B, CD40103B Types

查询"CD40103B-MIL"供应商

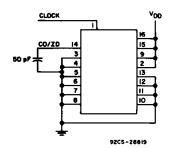


Fig. 16 – Maximum clock frequency test circuit.

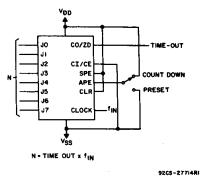


Fig.19 — Programmable timer.

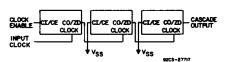


Fig.22 - Ripple cascading.

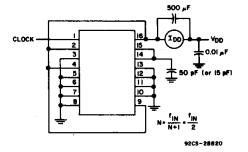


Fig.17 – Dynamic power dissipation test circuit (÷ 2 mode).

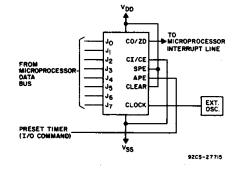


Fig.20 - Microprocessor interrupt timer.

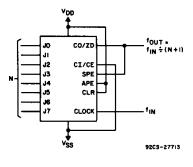
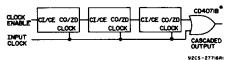



Fig. 18 - Divide-by-"N" counter.

* An output spike (160 ns @ V_{DD} = 5 V) occurs whenever two or more devices are cascaded in the parallel-clocked mode because the clock-tocarry out delay is greater than the carry-in-tocarry out delay. This spike is eliminated by gating the output of the last device with the clock as shown.

Fig.21 - Synchronous cascading.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $(10^{-3}$ inch).

40 50 60 70 80 90 100 110 118 30 40 50 60 70 80 90 100 10 18 0 10 20 30 10 20 0 100 100-14 12 E 12 90 90-15 80 80-70 lif 70-60-97-105 (2.464-2.667) 60-50-50-97-105 (2.464-2.667) 40-40s 30-30-20-20-10 ю 2.4 4 Ξ. 3.1 4 5 0 _____4-10 (0.102-0.254)_J15-123____ (2.921-3.124) 0 - 10 (0.102-0.254) ||5-|23 (2.92|-3.|24) 92CM-35088 ٦ 92CM-35087

Dimensions and pad layout for CD401028.

Dimensions and pad layout for CD40103B.

PACKAG

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Pe
CD40102BE	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pk
CD40102BEE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pk
CD40102BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
CD40102BNSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
CD40102BNSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
CD40102BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
CD40102BPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
CD40102BPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
CD40102BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
CD40102BPWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
CD40102BPWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
CD40103BE	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pk
CD40103BEE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pk
CD40103BF	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pk
CD40103BF3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pk
CD40103BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	
CD40103BNSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
CD40103BNSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260

www.ti.com

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Pe
CD40103BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
CD40103BPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260
CD40103BPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www. information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retard in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

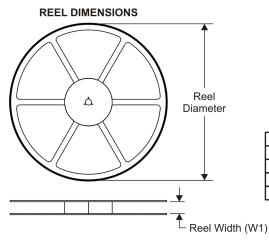
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information but may not have conducted destructive testing or chemical ar TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release

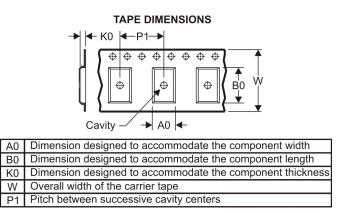
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Cu

OTHER QUALIFIED VERSIONS OF CD40103B, CD40103B-MIL :

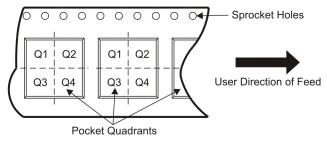
Catalog: CD40103B

Military: CD40103B-MIL


NOTE: Qualified Version Definitions:

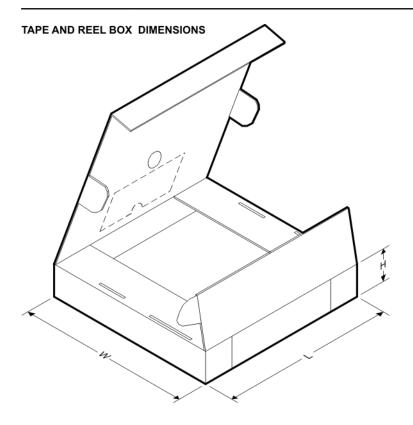

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAG


₩ Texas INSTRUMENTS 查询"GD40103B-MIL"供应商

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD40102BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD40102BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD40103BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

30-Jul-2010

*All dimensions are nominal

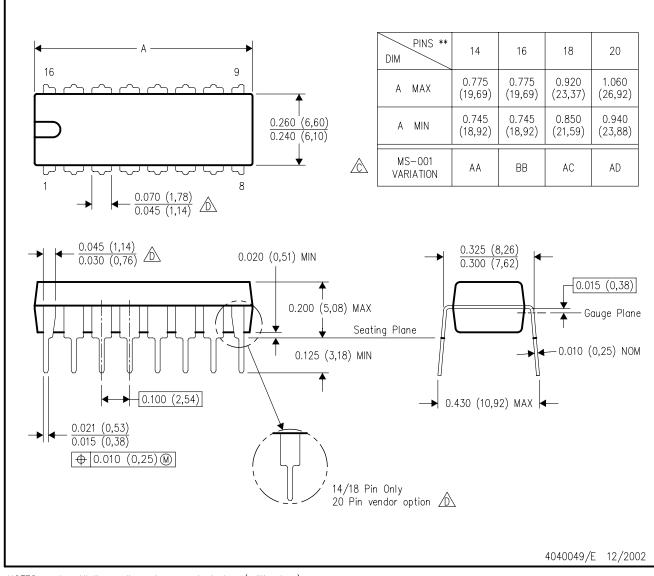
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD40102BNSR	SO	NS	16	2000	346.0	346.0	33.0
CD40102BPWR	TSSOP	PW	16	2000	346.0	346.0	29.0
CD40103BNSR	SO	NS	16	2000	346.0	346.0	33.0

J (R-GDIP-T**)

14 LEADS SHOWN

PINS ** 20 14 16 18 DIM 0.300 0.300 0.300 0.300 В Α (7,62) (7,62) (7,62) (7,62) BSC BSC BSC BSC 14 8 0.785 0.960 .840 1.060 B MAX (19,94) (21, 34)(24, 38)(26, 92)B MIN С 0.300 0.300 0.300 0.310 C MAX (7,62) (7, 62)(7, 87)(7, 62)7 0.245 0.245 0.220 0.245 0.065 (1,65) C MIN (6,22) (6,22) (5, 59)(6,22) 0.045 (1,14) 0.060 (1,52) Α 0.015 (0,38) 0.200 (5,08) MAX ¥ Seating Plane ↑ 0.130 (3,30) MIN 0.026 (0,66) 0.014 (0,36) 0"-15" 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040083/F 03/03

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

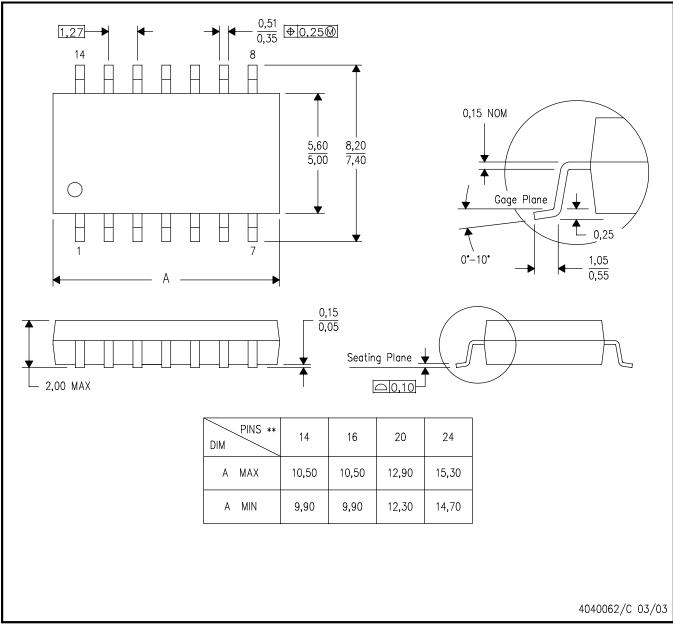
CERAMIC DUAL IN-LINE PACKAGE

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:


- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

MECHANICAL DATA

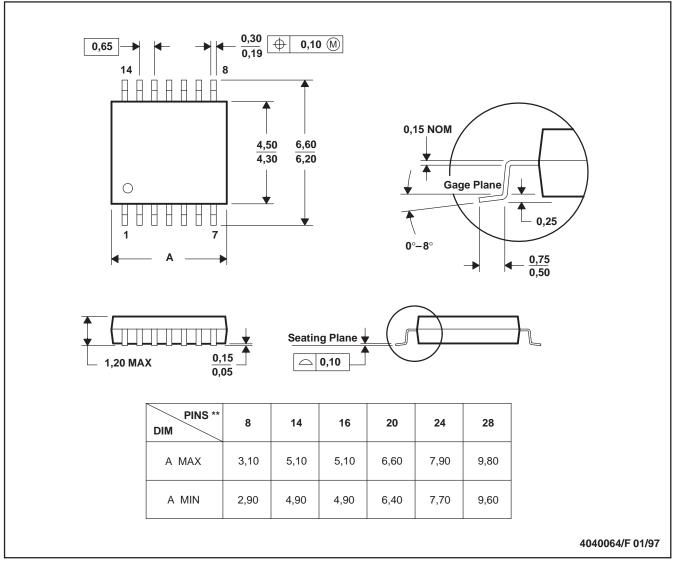
NS (R-PDSO-G**) 14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

MECHANICAL DATA

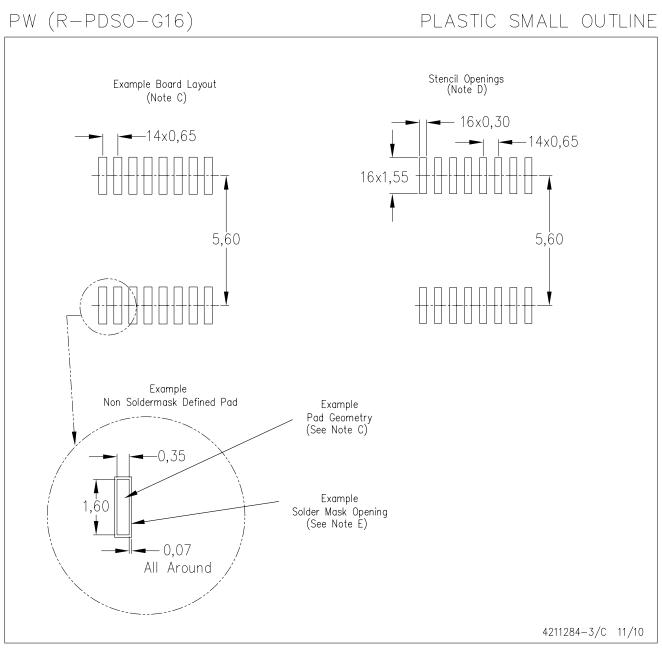

<u> 查询"CD40103B-MII."供应商</u>

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PLASTIC SMALL-OUTLINE PACKAGE

PW (R-PDSO-G**)

14 PINS SHOWN


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

LAND PATTERN DATA

查询"CD40103B-MIL"供应商

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated