FAIRCHILD

SEMICONDUCTOR

74F2240 Octal Buffer/Line Driver with 25 Ω Series Resistors in the Outputs

General Description

The 74F2240 is an inverting octal buffer and line driver designed to drive capacitive inputs of MOS memory devices, address and clock lines or act as a low undershoot general purpose bus driver.

The 25Ω series resistor in the outputs reduces undershoot and ringing and eliminates the need for external resistors.

January 1995 Revised May 1999

Features

- 3-STATE outputs drive bus lines or buffer memory address registers
- Outputs sink 12 mA and source 15 mA
- 25Ω series resistors in outputs eliminate the need for external resistors
- Designed to drive the capacitive inputs of MOS devices
- Guaranteed 4000V minimum ESD protection

Ordering Code:

Order Number	Package Number	Package Description
74F2240SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F2240QC	V20A	20-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.350 Square

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

Connection Diagram

Truth Table

OE ₁	D _{1n}	O _{1n}	OE ₂	D _{2n}	O _{2n}
Н	Х	Z	Н	Х	Z
L	Н	L	L	Н	L
L	L	Н	L	L	Н

Unit Loading/Fan Out

Pin	Description	U.L.	Output	
Names	Description	HIGH/LOW	I _{OH} /I _{OL}	
$\overline{\text{OE}}_1, \overline{\text{OE}}_2$	3-STATE Output			
	Enable Input	1.0/1.667	20 µA/–1 mA	
	(Active LOW)			
l ₀ - l ₇	Inputs	1.0/1.667	20 µA/–1 mA	
$\overline{O}_0 - \overline{O}_7$	Outputs	750/20	–15 mA/12 mA	

© 1999 Fairchild Semiconductor Corporation DS010898.prf

-
Ģ
4
2
2
ш
4
Ň

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to + 150°C
Ambient Temperature under Bias	-55° to $+125^{\circ}C$
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
In HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

Recommended Operating Conditions

Free Air Ambient	Temperature
Supply Voltage	

0°C to 70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	V _{cc}	Conditions
VIH	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH 10% V _{CC}	2.4			V	Min	$I_{OH} = -3 \text{ mA}$
	Voltage 10% V _{CC}	2.0			v	IVIIII	I _{OH} = -15 mA
V _{OL}	Output LOW Voltage 10% V _{CC}			0.75	V	Min	I _{OL} = 12 mA
I _{IH}	Input HIGH Current			5.0	μΑ	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdown Test			7.0	μA	Max	V _{IN} = 7.0V
ICEX	Output HIGH Leakage Current			50	μΑ	Max	V _{OUT} = V _{CC}
V _{ID}	Input Leakage	4 75			V	0.0	I _{ID} = 1.9 μA
	Test	4.75			v	0.0	All Other Pins Grounded
I _{OD}	Output Leakage			3 75	ıιΔ	0.0	V _{IOD} = 150 mV
	Circuit Current			5.75	μΛ	0.0	All Other Pins Grounded
IIL	Input LOW			1.0	0 mA Max	Мак	$V_{IN} = 0.5V$
	Current			-1.0		$(\overline{OE}_1, \overline{OE}_2, D_n)$	
I _{OZH}	Output Leakage Current			50	μΑ	Max	V _{OUT} = 2.7V
I _{OZL}	Output Leakage Current			-50	μΑ	Max	$V_{OUT} = 0.5V$
I _{OS}	Output Short-Circuit Current	-100		-225	mA	Max	$V_{OUT} = 0V$
I _{ZZ}	Bus Drainage Test			500	μΑ	0.0	$V_{OUT} = 5.25V$
ICCH	Power Supply Current		16	29	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current		47	75	mA	Max	V _O = LOW
I _{CCZ}	Power Supply Current		45	63	mA	Max	V _O = HIGH Z

www.fairchildsemi.com

Г

t_{PLH}

t_{PHL}

 t_{PZH}

t_{PZL}

t_{PHZ}

t_{PLZ}

Propagation Delay

Output Enable Time

Output Disable Time

Data to Output

	AC EI	ectrical Characteristics				
	Symbol			$T_A = +25^{\circ}C$		
		Parameter	$V_{CC} = +5.0V$			
			$C_L = 50 \text{ pF}$			
			Min	Тур	Max	

3.0

2.0

2.0

4.0

2.0

2.0

4.9

3.7

3.9

6.7

4.1

4.9

7.5

6.0

6.5

9.5

6.5

8.5

74F2240

Units

ns

ns

ns

 $T_A = 0^\circ C \text{ to } +70^\circ C$ $V_{CC} = +5.0V$

 $C_L = 50 \ pF$

Min

3.0

2.0

2.0

4.0

2.0

2.0

Max

7.5

6.0

7.0

10.0

7.0

9.5

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.