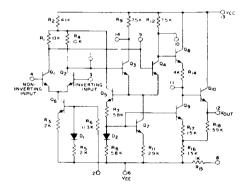


Operational Amplifiers


Features:

- These new types have all the desirable features and characteristics of their prototypes plus lower noise figures and improved input characteristics for offset voltage, offset current, bias current, and impedance
- All types are electrically identical within their voltage aroups
- For use in telemetry, data-processing, instrumentation, and communication equipment
- Built-in temperature stability from -55°C to +125°C for TO-5 style, and ceramic dual-in-line packages; 0°C to +70°C for plastic dual-in-line packages

Applications:

- Narrow-band and band-pass amplifier
- **Operational functions**
- Feedback amplifier
- DC and video amplifier
- Multivibrator
- . Oscillator
- Comparator
- Servo driver .
- Scaling adder
- Balanced modulator-driver

6-VOLT TYPES	12-VOLT TYPES	PACKAGE
CA3010A	CA3015A	12-Lead TO-5 Style
CA3029A	CA3030A	14-Lead Plastic Dual-In-Line (TO-116)

CA3029A, CA3030A

CA3010A, CA3015A

− I VEE

OFF:

712

Copyright © Harris Corporation 1990

File Number 310

∧. Ris

5

-0 vcc [/]

Voui

7

ABSOLUTE-MAXIMUM VOLTAGE AND CURRENT LIMITS, TA = 25°C

Voltage or current limits shown for each terminal can be applied under the indicated

查询"CLASCO 5体"性中语

Terminal		Voltage or Current Limits Circuit Conditions					Term	Terminal		or Current nits	Circuit Conditions			
CA3010A	CA3029A	Nega- tive	Posi- tive			Voltage	CA3015A	CA3030A	Nega- tive	Posi- tive				
12	1	DO NO		VOLTAGE FROM AN EX- RCE TO THIS TERMINAL			12	1	DO NO	T APPLY	Terminal Voltag Y VOLTAGE FROM AN EX- IRCE TO THIS TERMINAL			
				CA3010A	CA3029A						CA3015A	CA3030A		
1	2	-8 V	0 V	4 10	6 13	-8 +6	1	2	-16 V	0 V	4 10	6 13	-16 +12	
2	3	-4 V	+1 V	1 3 4 10	2 4 6 13	0 0 -6 +6	2	3	-8 V	+1 V	1 3 4 10	2 4 6 13	0 0 -12 +12	
3	4	-4 V	+1 V	1 2 4 10	2 3 6 13	0 0 -6 +6	3	4	-8 V	+1 V	1 2 4 10	2 3 6 13	0 0 -12 +12	
-	5		NO	CONNECT	ION		-	5	NO CONNECTION					
4	6	-10 V	0 V	1 10	2 13	0 +6	4	6	-20 V	a v	1 10	2 13	0 +12	
	7		NO	CONNECT	ION		-	7	NO CONNECTION					
5	8	DO NOT APPLY VOLTAGE FROM AN EX- TERNAL SOURCE TO THIS TERMINAL					5	8	DO NOT APPLY VOLTAGE FROM AN EX- TERNAL SOURCE TO THIS TERMINAL					
6	9			VOLTAG			6	9	DO NOT APPLY VOLTAGE FROM AN EX- TERNAL SOURCE TO THIS TERMINAL					
7	10	0 V	+7 V	1 4 10	2 6 13	0 -6 +6	7	10	0 V	+14 V	1 4 10	2 6 13	0 -12 +12	
8	11	DO NO TERN	T APPLY	VOLTAG	E FROM A HIS TERMI	N EX- NAL	8	11	DO NOT APPLY VOLTAGE FROM AN EX- TERNAL SOURCE TO THIS TERMINAL					
9	12	3D n	ıA	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			9	12	30	mA	$\begin{array}{c ccccc} 4 & 6 & -12 \\ 10 & 13 & +12 \\ 400 & & \text{Between Terminals} \\ & 6 & 12 \\ & 6 & 32 \\ & CA3030A, \\ & 4 & 8 & 9 & (CA3015A) \\ \end{array}$			
10	13	0 V	+10 V	1 4	2 6	0 -6	10	13	0 V	+20 V	1 4	2 6	0	
11	14	0 V	+7 V	1 4 10	2 6 13	0 -6 +6	11	14	0 V	+14 V	1 4 10	2 6 13	0 -12 +12	
CAS	CASE Internally connected to Terminal No.4, CASE CA3010A (Substrate) DO NOT GROUND						CA	Internally connected to Terminal No.4 CASE CA3015A (Substrate) DO NOT GROUM						

CA3010A CA3015A	CA3029A	CA3015A	CA3010A
	CA3030A	CA3030A	CA3029A
OPERATING TEMPERATURE RANGE55°C to +125°C	-40°C to +80°C	MAXIMUM SIGNAL VOLTAGE	-4 V to +1 V
STORAGE TEMPERATURE RANGE65°C to +200°C	-65 °C to +150 °C	MAXIMUM DEVICE DISSIPATION 600 mW	300 mW

3-49

1300

ELECTRICAL CHARACTERISTICS at TA = 25°C

查询"CA3015A Characteristics	"供应商 Symbols	Special Test Conditions Terminal No.8 CA3029A, CA3030A, Terminal No.5 (CA3010A, CA3015A) Not Connected		Test Cir- cuit	CA3010A CA3029A		CA3015A CA3030A			Units	Typical Charac- teristic Curves	
		Unless Otherwis		Fig.	Min.	Typ.	Max.	Min.	Typ.	Max.		Fig.
STATIC CHARACTERISTIC	S:								• • • • •			
Input Offset Voltage	V ₁₀	VCC = +6V, = +12V	VEE = -6V = -12V	4	-	0.9	2	-	- 1	- 2	mν	2
Input Offset Current	110	= +6V = +12V	= -6V = -12V	5		0.3	1.5 -	-	0.5	- 1.6	μA	2
Input Bias Current	[!] 18	= +6V = +12V	= -6V = -12V	5	-	2.5	4 -	-	- 4.7	- 6	μA	3
Input Offset Voltage Sensitivity: Positive	∆v ₁₀ /∆vcc	= +6V = +12V	= -6V ≈ -12V	4	-	0.10 -	1 -	-	0.096	- 0.5	mV/V	none
Negative	∆VI0/∆VEE	= +6V = +12V	= -6V = -12V	4	-	0.26 -	1	-	- 0.156	- 0.5	111 \$ 7 \$	none
		= +6 V = +12V	= -6 V = -12V		-	40 -	•	•	175	-		ĺ
Device Dissipation	PD	5 shorted to 9	VCC = +6V VEE = -6V	4	-	102	-	-	-	-	mW	none
		8 shorted to 12	$V_{CC} = +12V,$ $V_{EE} = -12V$		-	·	•	-	500	-		
DYNAMIC CHARACTERIST	CS: All tests	at f = 1 kHz excep	BWOL								_	
Open-Loop Differential Voltage Gain	A _{OL}	V _{CC} = +6V, = +12V	VEE = -6V = -12V	8	57 -	60 -	-	- 66	- 70	•	dB	6&7
Open-Loop Bandwidth at -3 dB Point	BW _{OL}	= +6V = +12V	= -6V = -12V	8	200	300	-	- 200	- 320	-	kHz	6&7
Slew Rate	SR	$V_{CC} = +6V V_E$ = +12V	E = -6V R _S = = -12V 1 kΩ	none	-	3	-	-	- 7	-	V. µs	none
Common-Mode Rejection Ratio	CMR	$V_{CC} = +6V,$ $= +12V$	VEE = -6V = -12V	11	70 -	94 -	•	- 80	103	-	dB	12
Maximum Output-Voltage Swing	V ₀ (P-P)	= +6V = +12V	= -6V = -12V	8	4	6.75 -	-	- 12	- 14	· ·	V _{P-P}	9&1
Input Impedance	Z _{IN}	= +6V = +12V	= -6V = -12V	14	15	20	-	- 7.5	10	-	kΩ	13
Output Impedance	ZOUT	= +6V = +12V	= -6V = -12V	15		160 -	-	-	85	-	Ω	16
Common-Mode Input-Voltage Range	V _{ICR}	= +6V	= -6V	11	+0.5 to -4		-	-	-	-	v	none
		= +12V	= -12V		-	-	-	to -8	-	-		
Noise Figure	NF	V _{CC} = +3V , V _E = +6V = +9V	E = -3V = -6V R _S = = -9V 1 kΩ	18	•	6.3 8.3 -	9 12 -	-	6.3 8.3 10	9 12 14	dB	17
		= +12V			-	-	-	-	11	16		

LEAD TEMPERATURE (During Soldering):

ALL TYPES

3-50

TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS

百间"CA301%Au供应商前ircles are for CA3029A, CA3030A trail: Numbers in Square Boxes are for CA3010A, CA3015A.

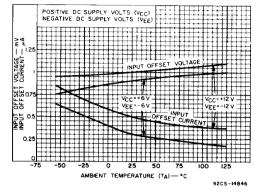


Fig. 2 — Input offset voltage and current

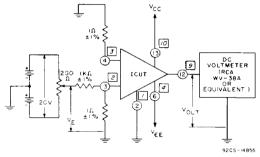


Fig. 4 — Input offset voltage, input offset voltage sensitivity, and and device dissipation test circuit.

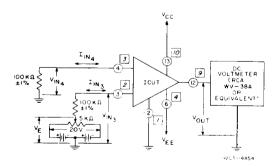


Fig. 5 — Input offset current and input bias current test circuit.

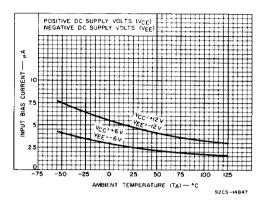


Fig. 3 — Input bias current

Procedure:

- Input Offset Voltage
- 1. Adjust VE for a DC Output Voltage (V_{OUT}) of 0 ± 0.1 volts.
- 2. Measure VE and record input Offset Voltage in millivolts as $V_{E}/1000.$
- Input Offset Voltage Sensitivity
- 1. Adjust V_E for a DC Output Voltage (V_{OUT}) of 0 \pm 0.1 volts.
- 2. Increase VCC by 1 volt and record output voltage (VOUT).
- 3. Decrease $|V_{CC}|$ by 1 volt and record output voltage (V_{OUT}) .
- 4. Divide the difference between V_OUT measured in steps 2 and 3 by the change in V_{CC} in steps 2 and 3.

$$\frac{v_{OUT}}{v_{CC}} = \frac{v_{OUT} (\text{Step 2}) - v_{OUT} (\text{Step 3})}{2 \text{ volts}}$$

5. Refer the reading to the input by dividing by Open Loop Voltage Gain (AOL)

- 6. Repeat procedures 1 through 5 for the Negative Supply (VFF).
- 7. Device Dissipation
- PT = VCCIC + VEEIE
- IC = Direct Current into Terminal 13 or 10
- $I_E = Direct Current out of Terminal 6 or 4$

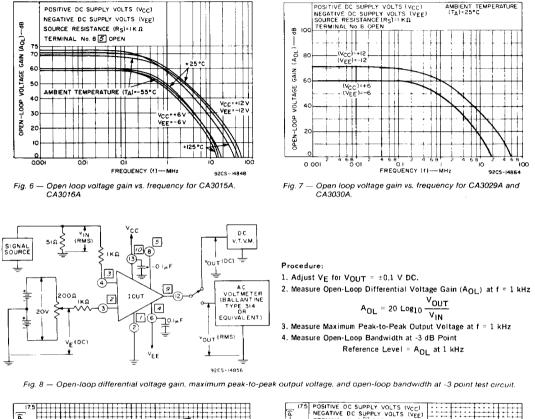
Procedure:

Input Bias Current and Input Offset Current

- 1. Adjust VE for $|V_{OUT}| \le 0.1 \text{ V DC}$.
- 2. Measure and record V_E and V_{IN4}
- 3. Calculate the Input Bias Current using the following equation:

$$\mathbf{1}_{\mathbf{14}} = \frac{\mathbf{V}_{\mathbf{1N4}}}{\mathbf{100} \ \mathbf{k}\Omega}$$

4. Calculate the Input Offset Current using the following equation:


$$I_{10} = V_E [100 \ k\Omega]$$

3-51

3

查询"CA3015A"供如的bers in Circles are for CA3029A CA3030A

inat Numbers in Circles are for CA3029A, CA3030A, Italic Numbers in Square Boxes are for CA3010A, CA3015A.

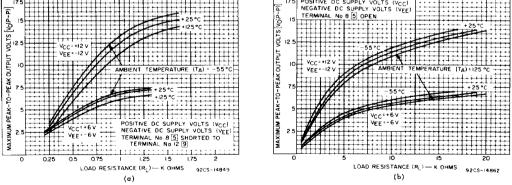


Fig. 9 — Maximum peak-to-peak output voltage vs. load resistance for CA3010A. CA3015A

3-52

TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS 查询"CA3046点"做应商</mark> Circles are for CA3029A, CA3030A, Italie Numbers in Square Boxes are for CA3010A, CA3015A.

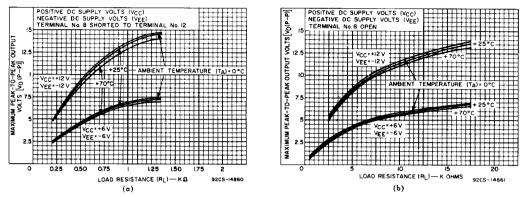
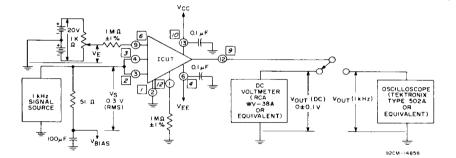



Fig. 10 — Maximum peak-to-peak output voltage vs. load resistance for CA3029A and CA3030A.

Procedures:

Common-Mode Rejection Ratio:

- 1. Set $V_{BIAS} = 0$. Adjust V_E for $V_{OUT}(DC) = 0 \pm 0.1 V$.
- 2. Apply 1-kHz sinusodial input signal and adjust for $V_S = 0.3 V$ (RMS).
- (NMS).
 3. Measure and record the RMS value of V_{OUT}. An oscilloscope is used for this measurement so that the output signal may be visually separated from noise output.
- 4. Calculate Common-Mode Voltage Gain:

ACM = VOUT /VS

 A_{CM} in dB = -20 LOG_{10} VS/VOUT

5. Calculate Common-Mode Rejection Ratio:

CMR in dB = A_{DIFF} in dB - A_{CM} in dB.

Common-Mode Input-Voltage Range;

- Calculate and record CMR for various positive and negative values of V_{BIAS} within the maximum limits shown on Page 2. The Common-Mode Input-Voltage Range limits are those values of V_{BIAS} at which CMR is 6 dB less than that calculated in Step 5 of the procedure given above.
- Fig. 11 Common-mode rejection ratio and common-mode inputvoltage-range test circuit.

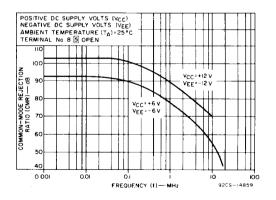


Fig. 12 - Common-mode rejection ratio vs. frequency.

OPERATIONAL Amplifiers

3

3-53

TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS

Vcc

2 1001

3

Fig. 14 — Single-ended input impedance test circuit.

20 K Ω + 1 %

51N

20 K VA VB - I

I- KHZ SIGNAU SOURCE

0.1

9205-14853

查询"CA3015A[®]供应商</mark>bers in Circles are for CA3029A, CA3030A Numbers in Square Boxes are for CA3010A, CA3015A.

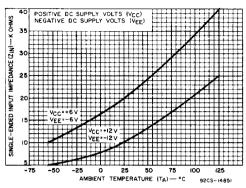
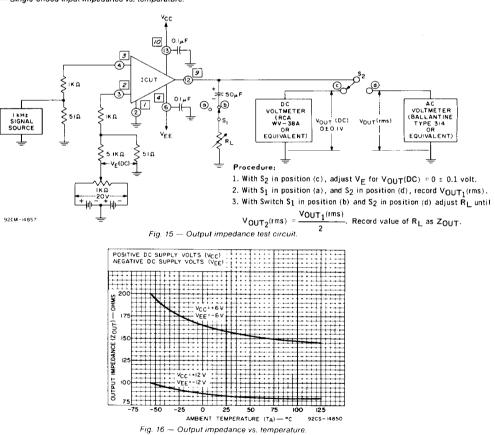



Fig. 13 — Single-ended input impedance vs. temperature.

3-54