www.ti.com

MMC AND SD CARD VOLTAGE-TRANSLATION TRANSCEIVER

FEATURES

- Transceiver for Memory Card Interface [MultiMediaCard (MMC) and Secure Digital (SD) Compliant Products]
- Configurable I/O Switching Levels With Dual-Supply Pins Operating Over Full 1.2-V to 3.6-V Power-Supply Range
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection
 - ±8-kV Contact Discharge
 - ±15-kV Air-Gap Discharge
- EMI Filtering
- Integrated Pullup and Pulldown Resistors on Card-Side I/Os per SD Specification
- ZQS Package Has 100-kΩ Pullup Resistors Via WP and CD Pins

DESCRIPTION/ORDERING INFORMATION

The SN74AVCA406E is a transceiver for interfacing microprocessors with MultiMediaCards (MMCs) and secure digital (SD) cards.

Two supply-voltage pins allow the A-port and B-port input switching thresholds to be configured separately. The A port is designed to track V_{CCA} , while the B port is designed to track V_{CCB} . V_{CCB} and V_{CCB} can accept any supply voltage from 1.2 V to 3.6 V.

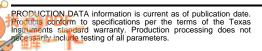
If either V_{CC} is switched off ($V_{CCA} = 0 \text{ V}$ and/or $V_{CCB} = 0 \text{ V}$), all outputs are placed in the high-impedance state to conserve power.

The SN74AVCA406E enables system designers to easily interface low-voltage microprocessors to different memory cards operating at higher voltages.

Memory card standards recommend high ESD protection for devices that connect directly to the external memory card. To meet this need, the SN74AVCA406E incorporates ±15-kV Air-Gap Discharge and ±8-kV Contact Discharge protection on the card side.

The SN74AVCA406E is available in two 0.5-mm-pitch ball grid array (BGA) packages. The 20-ball package has dimensions of 3 mm × 2.5 mm, and the 24-ball package measures 3 mm × 3 mm. Memory cards are widely used in mobile phones, PDAs, digital cameras, personal media players, camcorders, set-top boxes, etc. Low static power consumption and small package size make the SN74AVCA406E an ideal choice for these applications.

ORDERING INFORMATION


T _A	PACKAGE ⁽¹⁾⁽²⁾	20.00	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	UFBGA – ZXY (Pb-Free)	Reel of 2500	SN74AVCA406EZXYR	WM406E
-40°C to 85°C	MicroStar Junior™ BGA – ZQS (Pb-Free)	Reel of 2500	SN74AVCA406EZQSR	WM406E

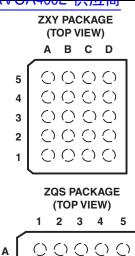
(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

MicroStar Junior is a trademark of Texas Instruments.

f.dzsc.com


В

С

D

Е

 \bigcirc \bigcirc \bigcirc

00000

00000

00000

TERMINAL ASSIGNMENTS (20-Ball ZXY Package)

	Α	В	С	D
5	V _{CCA}	CMD-dir	DAT0-dir	V _{CCB}
4	DAT3A	DAT2A	DAT2B	DAT3B
3	CLKA	GND	GND	CLKB
2	DAT1A	DAT0A	CMDB	DAT0B
1	CLK-f	CMDA	DAT123-dir	DAT1B

TERMINAL ASSIGNMENTS (24-Ball ZQS Package)

	1	2	3	4	5
Α	DAT2A	CMD-dir	DAT0-dir	RSV	DAT2B
В	DAT3A		V_{CCA}	V_{CCB}	DAT3B
С	CLKA	RSV	GND	GND	CLKB
D	DAT0A	CMDA	CD	CMDB	DAT0B
Е	DAT1A	CLK-f	DAT123-dir	WP	DAT1B

REFERENCE DESIGN

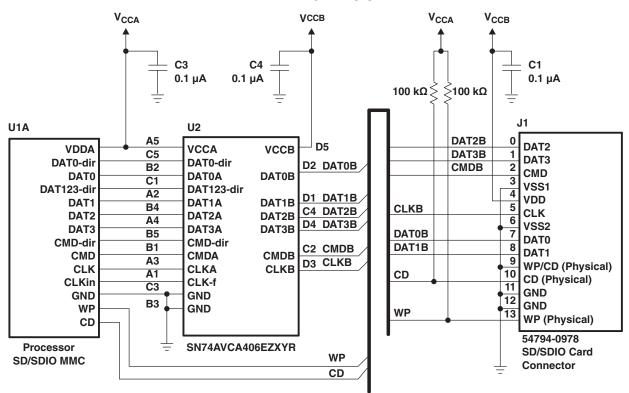


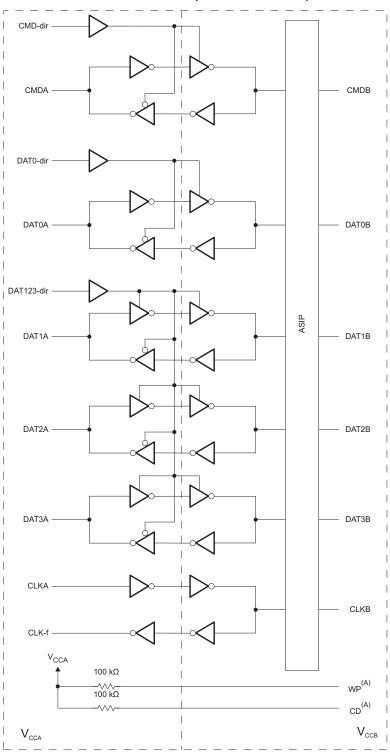
Figure 1. Interfacing With SD/SDIO Card

<u>™豐铈♥N74∧∨C∧406E"供应商</u>

PIN DESCRIPTION

ZQS BALL NO.	ZXY BALL NO.	NAME	FUNCTION	TYPE
A1	B4	DAT2A	Data bit 3 connected to host. Referenced to V _{CCA} .	I/O
A2	B5	CMD-dir	Direction control for command bit (CMDA/CMDB)	Input
А3	C5	DAT0-dir	Direction control for DAT0A/DAT0B	Input
A4, C2	_	RSV	Reserved (for possible future functionality). Leave unconnected.	
A5	C5	DAT2B	Data bit 3 connected to memory card. Includes a 70-kΩ pullup resistor to V _{CCB} .	I/O
B1	A4	DAT3A	Data bit 4 connected to host. Referenced to V _{CCA} .	I/O
B2	_	_	Depopulated ball	
В3	A5	V _{CCA}	A-port supply voltage. V _{CCA} powers all A-port I/Os and control inputs.	Power
B4	D5	V _{CCB}	B-port supply voltage. V _{CCB} powers all B-port I/Os.	Power
B5	D4	DAT3B	Data bit 4 connected to memory card. Includes a 470-k Ω pulldown resistor to V_{CCB} .	I/O
C1	А3	CLKA	Clock signal connected to host. Referenced to V _{CCA} .	Input
C3	В3	GND	Ground	
C4	C3	GND	Ground	
C5	D3	CLKB	Clock signal connected to memory card. Referenced to V _{CCB} .	Output
D1	B2	DAT0A	Data bit 1 connected to host. Referenced to V _{CCA} .	I/O
D2	B1	CMDA	Command bit connected to host. Referenced to V _{CCA} .	I/O
D3	_	CD	Connected to card detect on the mechanical connector. CD has an internal 100-k Ω pullup resistor to V _{CCA} and this pin has ±10-kV Air-Gap Discharge and ±8-kV Contact Discharge ESD protection.	Output
D4	C2	CMDB	Command bit connected to memory card. Includes a 15-k Ω pullup resistor to V_{CCB} .	I/O
D5	D2	DAT0B	Data bit 1 connected to memory card. Includes a 70-kΩ pullup resistor to V _{CCB} .	I/O
E1	A2	DAT1A	Data bit 2 connected to host. Referenced to V _{CCA} .	I/O
E2	A1	CLK-f	Clock feedback to host for resynchronizing data. Used in OMAP processors. Leave unconnected if not used.	Output
E3	C1	DAT123-dir	Direction control for DAT1A/B, DAT2A/B, and DAT3A/B	Input
E4	_	WP	Connected to write protect on the mechanical connector. WP has an internal 100-k Ω pullup resistor to V _{CCA} and this pin has ±10-kV Air-Gap Discharge and ±8-kV Contact Discharge ESD protection.	Output
E5	D1	DAT1B	Data bit 2 connected to memory card. Includes a 70-kΩ pullup resistor to V _{CCB} .	I/O

FUNCTION TABLES


CONTROL INPUT	OUTPUT	OPERATION	
CMD-dir	CMDA	CMDB	OPERATION
High	Hi-Z	Enabled	CMDA to CMDB
Low	Enabled	Hi-Z	CMDB to CMDA

CONTROL INPUT	OUTPUT	FUNCTION	
DAT0-dir	DAT0A	DAT0B	FUNCTION
High	Hi-Z	Enabled	DAT0A to DAT0B
Low	Enabled	Hi-Z	DAT0B to DAT0A

	OUTPUT		
CONTROL INPUT DAT123-dir	DAT1A, DAT2A, DAT3A	DAT1B, DAT2B, DAT3B	FUNCTION
	Hi-Z	Enabled	DAT1A to DAT1B
High			DAT2A to DAT2B
			DAT3A to DAT3B
			DAT1B to DAT1A
Low	Enabled	Hi-Z	DAT2B to DAT2A
			DAT3B to DAT3A

LOGIC DIAGRAM (POSITIVE LOGIC)

A. WP and CD pullup resistors are for the ZQS package only.

Figure 2. Logic Diagram

BLOCK DIAGRAM

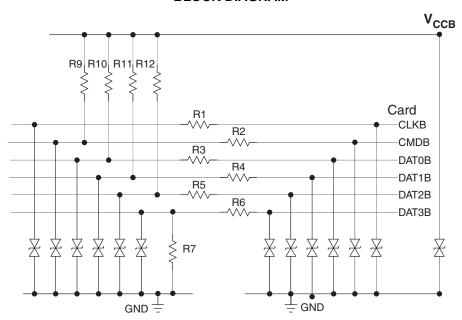
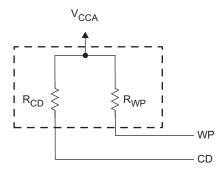



Figure 3. ASIP Block Diagram

RESISTORS		BIDIRECTIONAL	ZENER DIODES
R1, R2, R3, R4, R5, R6	40.0	Vbr min.	14 V at 1 mA
	40 Ω	Line capacitance	<20 pF
Tolerance	±20%		
R10, R11, R12	70 kΩ		
R9	15 kΩ		
R7	470 kΩ		
Tolerance	±30%		

Resistors		
R _{WP} , R _{CD}	100 kΩ	
Tolerance	±30%	

Figure 4. WP, CD Pullup Resistors (for ZQS Package Only)

SCES659E-OCTOBER 2007-REVISED JUNE 2009

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CCA}	Supply voltage range		-0.5	4.6	V
		I/O ports (A port)	-0.5	4.6	
V_{I}	Input voltage range (2)	I/O ports (B port)	-0.5	4.6	V
		Control inputs	-0.5	.5 4.6 .5 4.6 .5 4.6 .5 4.6 .5 4.6 .5 4.6 .5 V _{CCA} + 0.5 .5 V _{CCB} + 0.5 -50 -50 ±50	
1/	Voltage range applied to any output	A port	-0.5	4.6	V
Vo	in the high-impedance or power-off state (2)	B port	-0.5	5 4.6 5 4.6 5 4.6 5 4.6 5 4.6 5 4.6 5 V _{CCA} + 0.5 5 V _{CCB} + 0.5 -50 ±50 ±100	V
.,	Valtage representation to the bink on law state (2)(3)	A port	-0.5	V _{CCA} + 0.5	V
Vo	oltage range applied to any output in the high or low state (2)(3)	B port	-0.5	V _{CCB} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through V _{CCA} , V _{CCB} , or GND			±100	mA
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

PACKAGE THERMAL IMPEDANCE

			UNIT
0	Package thermal impedance ⁽¹⁾	ZQS package 171.	°C/W
Θ_{JA}	Fackage mermai impedance	ZXY package 193	3

(1) The package thermal impedance is calculated in accordance with JESD 51-7.

The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

RECOMMENDED OPERATING CONDITIONS(1)(2)(3)

			V _{CCI}	V _{cco}	MIN	MAX	UNIT
V_{CCA}	Supply voltage				1.2	3.6	V
V_{CCB}	Supply voltage				1.2	3.6	V
			1.2 V to 1.95 V		V _{CCI} x 0.65		V
V_{IH}	High-level input voltage	All inputs (4)	1.95 V to 2.7 V		1.7		
			2.7 V to 3.6 V		2		
			1.2 V to 1.95 V			V _{CCI} x 0.35	
V_{IL}	Low-level input voltage	All inputs ⁽⁴⁾	1.95 V to 2.7 V			0.7	V
			2.7 V to 3.6 V			0.8	
VI	Input voltage	Control inputs			0	3.6	V
.,		Active state			0	V _{CCO}	
$V_{I/O}$	Input/output voltage	3-state			0	3.6	V
				1.2 V		-1	
	High-level output current (A port)			1.4 V to 1.6 V		-1	
I_{OH}				1.65 V to 1.95 V		-2	mA
				2.3 V to 2.7 V		-4	
				3 V to 3.6 V		-8	
				1.2 V		1	
				1.4 V to 1.6 V		1	
I_{OL}	Low-level output current ((A port)		1.65 V to 1.95 V		2	mA
				2.3 V to 2.7 V		4	
				3 V to 3.6 V		8	
				1.2 V		-1	
				1.4 V to 1.6 V		-2	
I_{OH}	High-level output current	(B port)		1.65 V to 1.95 V		-4	mA
				2.3 V to 2.7 V		-8	
				3 V to 3.6 V		-16	
				1.2 V		1	
				1.4 V to 1.6 V		2	
I_{OL}	Low-level output current ((B port)		1.65 V to 1.95 V		4	mA
				2.3 V to 2.7 V		8	
				3 V to 3.6 V		16	
Δt/Δν	Input transition rise or fall	rate				5	ns/V
T _A	Operating free-air temper	ature			-40	85	°C

⁽¹⁾

 V_{CCI} is the V_{CC} associated with the input port. V_{CCO} is the V_{CC} associated with the output port. (2)

All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004. CMD-dir, DAT0-dir, and DAT123-dir are referenced to V_{CCA}.

****室特%N74AVCA406E"供应商**

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (1)(2)

PA	RAMETER	TEST CON	DITIONS	V _{CCA}	V _{CCB}	MIN	TYP ⁽³⁾	MAX	UNIT
		$I_{OH} = -100 \mu A$		1.2 V to 3.6 V	1.2 V to 3.6 V	V _{CCO} - 0.2			
		$I_{OH} = -1 \text{ mA}$		1.2 V	1.2 V		0.9		
	A nort	$I_{OH} = -1 \text{ mA}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.4 V	1.4 V	1.05			V
V _{OH}	A port	$I_{OH} = -2 \text{ mA}$	$V_I = V_{IH}$	1.65 V	1.65 V	1.2			V
		$I_{OH} = -4 \text{ mA}$		2.3 V	2.3 V	1.75			
		$I_{OH} = -8 \text{ mA}$		3 V	3 V	2.3			
		I _{OL} = 100 μA		1.2 V to 3.6 V	1.2 V to 3.6 V			0.2	
		I _{OL} = 1 mA		1.2 V	1.2 V		0.1		
. /	A nort	I _{OL} = 1 mA	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.4 V	1.4 V			0.35	V
V _{OL}	A port	I _{OL} = 2 mA	$V_I = V_{IL}$	1.65 V	1.65 V			0.45	V
		I _{OL} = 4 mA		2.3 V	2.3 V			0.55	
		I _{OL} = 8 mA		3 V	3 V			0.7	
		$I_{OH} = -100 \mu A$		1.2 V to 3.6 V	1.2 V to 3.6 V	V _{CCO} - 0.2			
		$I_{OH} = -1 \text{ mA}$		1.2 V	1.2 V		1.1		
,	Dt	$I_{OH} = -2 \text{ mA}$., .,	1.4 V	1.4 V	1.05			
V _{OH}	B port	$I_{OH} = -4 \text{ mA}$	$V_I = V_{IH}$	1.65 V	1.65 V	1.2			V
		$I_{OH} = -8 \text{ mA}$		2.3 V	2.3 V	1.75			
		$I_{OH} = -16 \text{ mA}$		3 V	3 V	2.1			
		I _{OL} = 100 μA		1.2 V to 3.6 V	1.2 V to 3.6 V			0.2	
		I _{OL} = 1 mA		1.2 V	1.2 V		0.07		
,	5 .	I _{OL} = 2 mA	., .,	1.4 V	1.4 V			0.35	
V_{OL}	B port	I _{OL} = 4 mA	$V_I = V_{IL}$	1.65 V	1.65 V			0.45	V
		$I_{OL} = 8 \text{ mA}$		2.3 V	2.3 V			0.55	
		I _{OL} = 16 mA		3 V	3 V			0.79	
l _l	Control inputs	$V_I = V_{CCA}$ or GND		1.2 V to 3.6 V	1.2 V to 3.6 V			±1	μΑ
I _{OZ} ⁽⁴⁾	A or B port	$V_O = V_{CCO}$ or GND, $V_I = V_{CCI}$ or GND	See function table for input states when outputs are Hi Z	3.6 V	3.6 V			±5	μΑ
			I.	1.2 V to 3.6 V	1.2 V to 3.6 V			10	
CCA		$V_I = V_{CCI}$ or GND,	I _O = 0	3.6 V	0 V			10	μΑ
				0 V	3.6 V			-1	
				1.2 V to 3.6 V	1.2 V to 3.6 V			10	
ССВ		$V_I = V_{CCI}$ or GND,	$I_{O} = 0$	3.6 V	0 V			-1	μΑ
002				0 V	3.6 V			10	•
CCA +	I _{CCB}	$V_I = V_{CCI}$ or GND,	I _O = 0	1.2 V to 3.6 V	1.2 V to 3.6 V			15	μΑ
C _i	Control inputs	$V_{I} = V_{CCA}$ or GND	-	1.8 V	3 V		1.5	2	pF
	Clock input						1.5	2	
~.	A port	$V_O = V_{CCA}$ or GND		1.8 V	3 V		2.5	3.5	nE
C_{io}	B port	$V_O = V_{CCB}$ or GND		1.0 V	S V		12	14	pF

⁽²⁾ (3) (4)

 V_{CCO} is the V_{CC} associated with the output port. V_{CCI} is the V_{CC} associated with the data input port. All typical values are at $T_A = 25^{\circ}C$. For I/O ports, the parameter I_{OZ} includes the input leakage current.

OUTPUT SLEW RATES

over recommended operating free-air temperature range (unless otherwise noted)(1)

PARAMETER	FROM	то	V _{CCA} = 1.8 V ± V _{CCB} = 3 V ±	0.15 V, 0.3 V	UNIT
			MIN	MAX	
t _r	20%	80%		2.7 ⁽²⁾	ns
t _f	80%	20%		2.5 ⁽²⁾	ns

- (1) Values are characterized, but not production tested.
- (2) Using $C_L = 30$ pF on the B side and $C_L = 7$ pF on the A side

TYPICAL SWITCHING CHARACTERISTICS

 $T_A = 25$ °C, $V_{CCA} = 1.2$ V (see Figure 6)

PARAMETER	FROM	TO (OUTPUT)	V _{CCB} = 1.2 V	V _{CCB} = 1.5 V	V _{CCB} = 1.8 V	V _{CCB} = 2.5 V	V _{CCB} = 3 V	UNIT
	(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP	TYP	
	Α	В	4.9	4	3.5	3.2	3.2	
	В	А	5.3	4.3	4.1	3.9	3.9	
	CLKA	CLKB	5.1	4	3.5	3.1	3.1	
t _{pd}	CLKA	CLK-f	10.3	8.9	7.7	7.7	7.7	ns
	CMDA	CMDB	4.9	4	3.5	3.2	3.2	
	CMDB	CMDA	4.8	4.4	4.2	4	4	
t _{en} ⁽¹⁾	DIR	A	5.3	5.4	5.2	6	5.9	ns
t _{dis} ⁽¹⁾	DIR	A	5.5	5.4	5.5	5.6	5.5	ns

⁽¹⁾ DIR refers to CMD-dir, DAT0-dir, and DAT123-dir.

SWITCHING CHARACTERISTICS V_{CCA} = 1.5 V ± 0.1 V

over recommended operating free-air temperature range (see Figure 6)

PARAMETER	FROM	TO	V _{CCB} = ± 0.1		V _{CCB} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		V _{CCB} = ± 0.3		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX									
	Α	В	1.2	7.2	0.8	6.3	0.8	5.4	0.9	5.1	0.9	5.1	
	В	Α	1.1	6.2	1	7.2	0.93	6.6	0.45	7	0.45	7	
	CLKA	CLKB	1.4	7.1	1.1	6.2	0.8	5.3	0.7	5.1	0.7	5.1	20
t _{pd}	CLKA	CLK-f	1.1	12.7	1.3	13.3	1.3	10.6	1.9	10.9	1.9	10.9	ns
	CMDA	CMDB	1.1	6	0.9	5.6	0.7	4.7	0.6	4.1	0.6	4.1	
	CMDB	CMDA	0.8	5.9	0.8	6.8	0.8	6.4	0.1	6.7	0.1	6.7	
t _{en} ⁽¹⁾	DIR	Α	1.0	9.1	1.1	10.3	1.1	8.7	1.1	11	1.1	11	ns
t _{dis} ⁽¹⁾	DIR	А	1.1	8.1	1.1	8.3	1.1	8.3	1.1	8.3	1.1	8.3	ns

(1) DIR refers to CMD-dir, DAT0-dir, and DAT123-dir.

Submit Documentation Feedback

****室街®N74AVCA406E**"供应商

SWITCHING CHARACTERISTICS $V_{CCA} = 1.8 \ V \pm 0.15 \ V$

over recommended operating free-air temperature range (see Figure 6)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1 ± 0.15		V _{CCB} = : ± 0.2		V _{CCB} = ± 0.3		V _{CCB} = 3 ± 0.3		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	А	В	0.7	5.8	0.6	4.9	0.5	4.7	0.5	4.7	
	В	Α	0.7	4.9	0.7	4.5	0.2	5.2	0.2	5.2	
	CLKA	CLKB	0.9	5.8	0.6	4.9	0.6	4.7	0.6	4.7	
t _{pd}	CLKA	CLK-f	0.9	11	0.9	9.2	0.8	8.8	0.8	8.8	ns
	CMDA	CMDB	0.7	4.3	0.5	4.1	0.5	3.4	0.5	3.4	
	CMDB	CMDA	0.7	4.6	0.8	4.2	0.1	5	0.1	5	
t _{en} ⁽¹⁾	DIR	А	0.7	7.2	0.7	6.6	0.7	7.8	0.7	7.8	ns
t _{dis} ⁽¹⁾	DIR	Α	1.0	7.9	1	7.7	1	8.2	1	8.2	ns

⁽¹⁾ DIR refers to CMD-dir, DAT0-dir, and DAT123-dir.

SWITCHING CHARACTERISTICS

 $V_{CCA} = 2.5 V \pm 0.2 V$

over recommended operating free-air temperature range(see Figure 6)

PARAMETER	FROM	TO (OUTPUT)	V _{CCB} = 2 ± 0.2		V _{CCB} = ± 0.3	3 V V	V _{CCB} = 3 ± 0.3		UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	
	А	В	0.5	4.3	0.4	4.1	0.4	4.1	
	В	Α	0.5	3.5	0.2	3.7	0.2	3.7	
	OLIKA	CLKB	0.5	4.3	0.4	4.1	0.4	4.1	
t _{pd}	CLKA	CLK-f	0.4	7.8	0.3	7.3	0.3	7.3	ns
	CMDA	CMDB	0.3	3	0.3	2.7	0.3	2.7	
	CMDB	CMDA	0.7	3	0.2	3.4	0.2	3.4	
t _{en} ⁽¹⁾	DIR	А	0.5	5.1	0.5	5.6	0.5	5.6	ns
t _{dis} (1)	DIR	Α	0.7	5.7	0.7	6.7	0.7	6.7	ns

⁽¹⁾ DIR refers to CMD-dir, DAT0-dir, and DAT123-dir.

SWITCHING CHARACTERISTICS $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range (see Figure 6)

PARAMETER	FROM	TO (OUTPUT)	V _{CCB} = 3 ± 0.3 V		V _{CCB} = 3.3 ± 0.3 V	V	UNIT
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	
	Α	В	0.3	3.8	0.3	3.8	
	В	Α	0.3	3	0.3	3	
	CLKA	CLKB	0.3	3.8	0.3	3.8	
t _{pd}	CLKA	CLK-f	0.1	6.7	0.1	6.7	ns
	CMDA	CMDB	0.2	2.5	0.2	2.5	
	CMDB	CMDA	0.4	2.6	0.4	2.6	
t _{en} ⁽¹⁾	DIR	Α	0.3	4.5	0.3	4.5	ns
t _{dis} (1)	DIR	Α	0.9	7.9	0.9	7.9	ns

⁽¹⁾ DIR refers to CMD-dir, DAT0-dir, and DAT123-dir.

TYPICAL FREQUENCY AND OUTPUT SKEW

 $T_A = 25$ °C, $V_{CCA} = 1.2 \text{ V (see Figure 6)}$

PAI	RAMETER	FROM (INPUT	TO (OUTPUT)	V _{CCB} = 1.2 V	V _{CCB} = 1.5 V	V _{CCB} = 1.8 V	V _{CCB} = 2.5 V	V _{CCB} = 3 V	V _{CCB} = 3.3	UNIT
)	(OUTPUT)	TYP	TYP	TYP	TYP	TYP	TYP	
	Clock	CLKA	CLKB	95	95	95	95	95	95	
	Clock	CLKA	CLK-f	95	95	95	95	95	95	MHz
lmax	Data	Α	В	95	95	95	95	95	95	IVI⊓∠
	Dala	В	Α	95	95	95	95	95	95	
t _{sk(o)}	Channel-to- channel	А	В	0.1	0.1	0.1	0.3	0.2		ns

MAXIMUM FREQUENCY AND OUTPUT SKEW V_{CCA} = 1.5 V ± 0.1 V

over recommended operating free-air temperature range (see Figure 6)

PA	PARAMETER FRO		TO (OUTPUT)	V _{CCB} = ± 0.1		V _{CCB} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		V _{CCB} = ± 0.3		UNIT
		(INFUT)	(OUTPUT)	MIN	MAX									
	Clock	CLKA	CLKB	95		95		95		95		95		
	Clock	CLKA	CLK-f	95		95		95		95		95		MHz
f _{max}	Doto	Α	В	95		95		95		95		95		IVI⊓∠
	Data	В	А	95		95		95		95		95		
t _{sk(o)}	Channel-to- channel	Α	В		0.1		0.1		0.1		0.1			ns

MAXIMUM FREQUENCY AND OUTPUT SKEW $V_{CCA} = 1.8~V \pm 0.15~V$

over recommended operating free-air temperature range (see Figure 6)

PA	ARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1 ± 0.15		V _{CCB} = 2 ± 0.2		V _{CCB} = ± 0.3	3 V V	V _{CCB} = 3 ± 0.3		UNIT
		(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Clock	CLKA	CLKB	95		95		95		95		
	Clock	CLKA	CLK-f	95		95		95		95		NAL 1-
f _{max}	Data	А	В	95		95		95		95		MHz
	Data	В	А	95		95		95		95		
t _{sk(o)}	Channel-to- channel	Α	В		0.1		0.2		0.2			ns

<u>₩豐街♥N74∧∀C∧406E"供应商</u>

MAXIMUM FREQUENCY AND OUTPUT SKEW $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$

over recommended operating free-air temperature range (see Figure 6)

	PARAMETER	FROM	TO	V _{CCB} = 2 ± 0.2		V _{CCB} = ± 0.3		V _{CCB} = 3 ± 0.3		UNIT
		(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	
	Clock	CLKA	CLKB	95		95		95		
	Clock	CLKA	CLK-f	95		95		95		MHz
I _{max}	Data	Α	В	95		95		95		IVI□Z
	Data	В	Α	95		95		95		
t _{sk(o)}	Channel-to- channel	А	В		0.1		0.3		0.3	ns

MAXIMUM FREQUENCY AND OUTPUT SKEW

 $V_{CCA} = 3.3 V \pm 0.3 V$

over recommended operating free-air temperature range (see Figure 6)

PA	RAMETER	FROM	TO (OUTPUT)	V _{CCB} = 3 V ± 0.3 V	1	V _{CCB} = 3.3 ± 0.3 V	V	UNIT
		(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	
	Clock	CLKA	CLKB	95		95		
	Clock	CLKA	CLK-f	95		95		MHz
t _{max}	Data	Α	В	95		95		IVITZ
	Data	В	Α	95		95		
t _{sk(o)}	Channel-to- channel	А	В		0.3			ns

OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	V _{CCA} = V _{CCB} = 1.2 V	V _{CCA} = V _{CCB} = 1.5 V	V _{CCA} = V _{CCB} = 1.8 V	$V_{CCA} = V_{CCB} = 2.5 V$	$V_{CCA} = V_{CCB} = 3 V$	V _{CCA} = V _{CCB} = 3.3 V	UNIT	
C _{pdA} ⁽¹⁾	A-port input, B-port output	C _L = 0, f = 10 MHz,	4.5	4.7	4.9	5.5	6	6.4	~F	
C _{pdA} ('')	B-port input, A-port output	$t_r = t_f = 1 \text{ ns}$	8	8.3	8.5	9.1	9.5	9.7	pF	
C (1)	A-port input, B-port output	$C_L = 0$,	27.9	27.8	27.7	27.6	27.6	27.5	٥٤	
C _{pdB} ⁽¹⁾	B-port input, A-port output	$f = 10 \text{ MHz},$ $t_r = t_f = 1 \text{ ns}$	2.6	2.5	2.4	2.3	1.8	1.8	pF	

(1) Power dissipation capacitance per transceiver

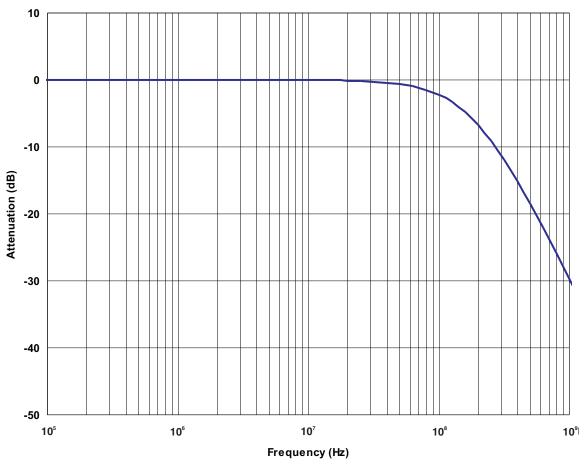
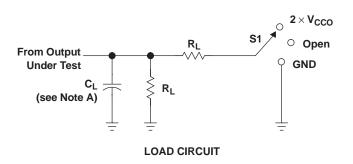
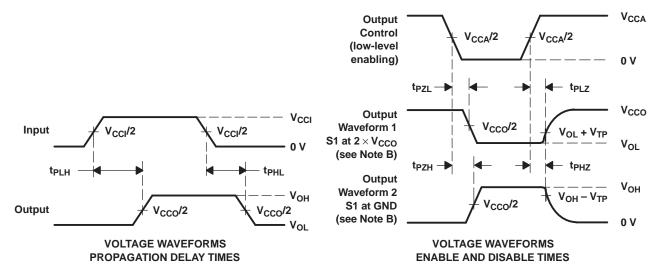



Figure 5. Typical ASIP EMI Filter Frequency Response


NSTRUMENTS

PARAMETER MEASUREMENT INFORMATION

TEST	S1
t _{pd}	Open
t _{PLZ} /t _{PZL}	2×V _{CCO}
t _{PHZ} /t _{PZH}	GND

V _{cco}	CL	R _L	V _{TP}
1.5 V \pm 0.1 V	15 pF	2 k Ω	0.1 V
1.8 V \pm 0.15 V	15 pF	2 k Ω	0.15 V
2.5 V \pm 0.2 V	15 pF	2 k Ω	0.15 V
3.3 V \pm 0.3 V	15 pF	2 k Ω	0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $dv/dt \geq 1 V/ns$.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - t_{PLZ} and t_{PHZ} are the same as t_{dis}.
 - t_{PZL} and t_{PZH} are the same as t_{en}.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd}.
 - H. V_{CCI} is the V_{CC} associated with the input port.
 - I. V_{CCO} is the V_{CC} associated with the output port.

Figure 6. Load Circuit and Voltage Waveforms

24-Jun-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74AVCA406EZQSR	ACTIVE	BGA MI CROSTA R JUNI OR	ZQS	24	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM
SN74AVCA406EZXYR	ACTIVE	BGA MI CROSTA R JUNI OR	ZXY	20	2500	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

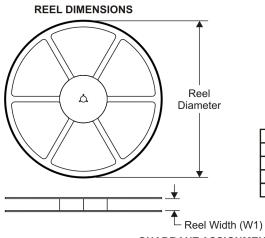
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

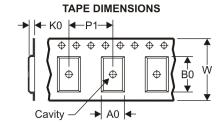
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

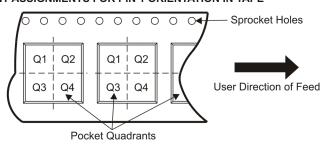
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



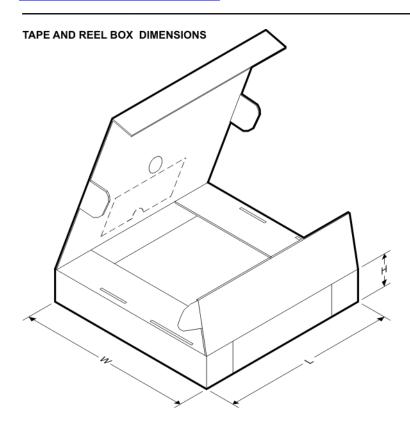
查询"\$N74AVCA406E"供应商

24-Jun-2009


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

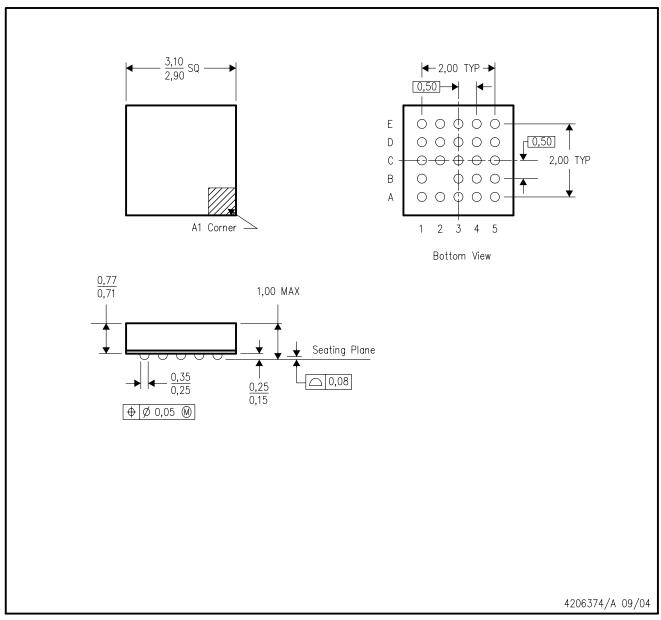


*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AVCA406EZQSR	BGA MI CROSTA R JUNI OR	ZQS	24	2500	330.0	12.4	3.3	3.3	1.6	8.0	12.0	Q1
SN74AVCA406EZXYR	BGA MI CROSTA R JUNI OR	ZXY	20	2500	330.0	12.4	2.8	3.3	1.0	4.0	12.0	Q2

查询"SN74AVCA406E"供应商

24-Jun-2009

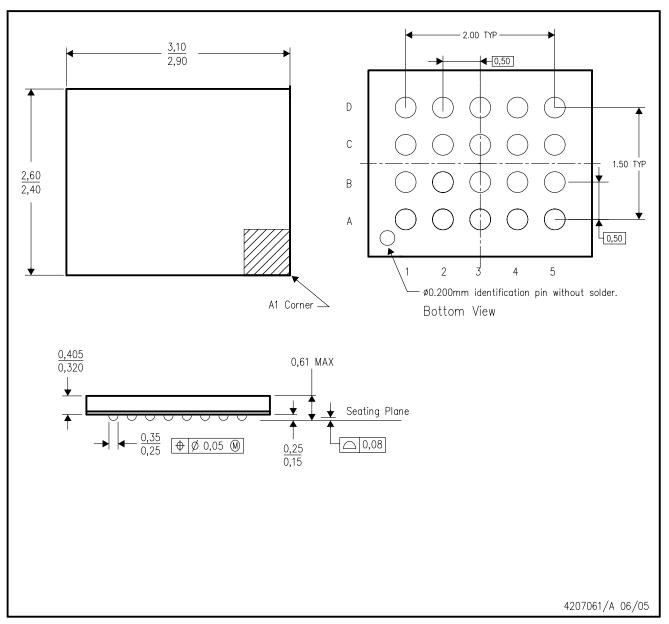


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AVCA406EZQSR	BGA MICROSTAR JUNIOR	ZQS	24	2500	340.5	338.1	20.6
SN74AVCA406EZXYR	BGA MICROSTAR JUNIOR	ZXY	20	2500	340.5	338.1	20.6

ZQS (S-PBGA-N24)

PLASTIC BALL GRID ARRAY


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225
- D. This package is lead-free.

ZXY (S-PBGA-N20)

PLASTIC BALL GRID ARRAY

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. This package is a lead-free solder ball design.

查询"SN74AVCA406E"供应商

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps