
											RE	VISI	ONS	3												
LTR					-			DESC	RIP	ΠΟN									DATE	(YR-	MO-E) (A	AP	PRO	VED	
Α	Editorial changes throughout. Table I changes inc change, regrouped devices to different limits. Tal subgroups changed. Figures have been combined, sor Quality Assurance and Quality conformance inspection changed. Vendor CAGE number 34335 removed as a sor supply. The 01XX, 02XX, and the 05XX devices are for new design.										Tab som tio sou	le l e de n pa rce	II, elet arag of	ed. raph		1989	JAI	N 10		M		No Contraction of the Contractio	/ *			
		, , -	,	-				-																	-	
										,																
CU	IRRE	EN'	T C	A	GE	E C	00	ÞΕ	67	'26	8															
CU	IRRE	EN'	T C	A	GE	E C	OE	ÞΕ	67	'26 	8															
REV		EN'	т с	A	GE	C	OE	E	67	26	8															
REV SHEET		EN'	T C		GE A	C	OE A)E	67 			A	A	A	A			1								
REV SHEET REV	r	Α		A	А	Α	Α		A	A		-	├	A 34	A 35											
REV SHEET REV SHEET		Α	A	A 24	А	Α	Α	A 28	A	A	A 31	-	33	34		A	A	A	A	A	A	A	A	A	A	
REV SHEET REV SHEET	TATUS	Α	A 23	A 24	А	A 26	A 27	A 28	A 29	A 30	A 31	32 A	33	34 A	35 A	A 11		_	A 14		-	A 17	A 18		A 20	2
REV SHEET REV SHEET	TATUS	Α	A 23	A 24	А	A 26 A 1	A 27 A 2	A 28 A 3	A 29 A	A 30 A 5	A 31 A 6	32 A	33 A	34 A	35 A 10	11	12	13	14	15	16	17	18	19	20	1-
REV SHEET REV SHEET REV S' OF SH	TATUS IEETS	A 22	A 23 RE	A 24	А	A 26 A 1	A 27 A 2	A 28 A 3	A 29 A	A 30 A	A 31 A 6	32 A	33 A	34 A	35 A 10	11	12 NSE	13 ELE (14	15	16 S SU	17	18	19	20	1-
REV SHEET REV SHEET REV S' OF SH	TATUS IEETS N/A	A 22	A 23 REY SHE	A 24	А	A 26 A 1	A 27 A 2 PARE	A 28 A 3	A 29 A 4	30 A 5	A 31 A 6	32 A 7	33 A	34 A	35 A 10	11	12 NSE	13 ELE (14	15	16 S SU	17	18	19	20	1-
REV SHEET REV SHEET REV STOF SH	TATUS IEETS N/A ANDA MILI	A 22 L TAF	A 23 REY	A 24	А	A 26 A 1 PRE	A 27 A 2 PARE	A 28 A 3	A 29 A 4	A 30 A 5	A 31 A 6	32 A 7	33 A	34 A 9	35 A 10	DEFE OCIR	12 NSE	13 ELECTORY	14 CTROTON,	15 NICS OHI	16 S SU O 45	17	18	19	20	2
REV SHEET REV SHEET REV STOF SH	TATUS IEETS N/A	A 22 L TAF	A 23 REY	A 24	А	A 26 A 1	A 27 A 2 PARE	A 28 A 3	A 29 A 4	30 A 5	A 31 A 6	32 A 7	33 A	34 A 9	35 A 10	DEFE OCIR	12	13 ELECTORY	14 CTROTON,	15 NICS OHI	16 S SU O 45	17 PPLY	18	19	20	2
REV SHEET REV STOF SH	TATUS IEETS N/A ANDA MILI' DRA'	A 222 LARE	A 23 RE SHE	A 24	A 25	A 26 A 1 PREE	A 27 A 2 PARE	A 28 A 3 D BY	A 4	A 300 A 5	A 31 A 6	32 A 7	33 A	34 A 9	35 A 10	DEFE OCIR	12 NSE	ELEC DAY	14 CTROTON,	NICS OHIO	16 S SU O 45	17 PPLY 444 MOS	18 ' CEN	19 ITER	20 EEPR	2 OM
REV SHEET REV SHEET REV ST OF SH PMIC I	TATUS IEETS N/A MILI' DRA'	A 22 LARE	A 23 RE SHE	A 24	A 25	A 26 A 1 PREE	A 27 A 2 PARE	A 28 A 3 D BY	A 29 A 4	A 300	A 31 A 6	32 A 7	33 A	34 A 9	35 A 10 IICRO	DEFE OCIR	12 NSE	ELECTORY SILI	14 CTROTON, DIGICON CODE	15 OHK	16 S SU O 45	17 PPLY	18 ' CEN	19 ITER	20 EEPR	2 .0M
REV SHEET REV S' OF SH PMIC I THIS C- OR US	TATUS IEETS N/A ANDA MILI' DRA'	A 22 TAI WILL DE CIES	A 23 RE SHE	A 24	A 25	A 26 A 1 PREE	A 27 A 2 PARE	A 28 A 3 D BY	A 29 A 4 198	A 300	A 31 A 6	32 A 7	33 A	34 A 9	35 A 10	DEFE OCIR	12 NSE	ELECTORY SILI	14 TON, DIGI	15 OHK	16 S SU O 45	17 PPLY 444 MOS	18 ' CEN	19 ITER	20 EEPR	2 OM

• U.S. GOVERNMENT PRINTING OFFICE: 1987 — 748-129/60912 5962-E882

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

查询**%50%**2-8683001XX"供应商

- 1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".
 - 1.2 Part number. The complete part number shall be as shown in the following example:

1.2.1 Device types. The device types shall identify the circuit function as follows:

Device type	Generic number	Circuit function	Acess time	Write speed	Write mode	End of Write Indicator	Endurance
01 02 03 04 05 06 07 08 09	(see 6.4)	(8K X 8 EEPROM)	250 ns 350 ns 300 ns 250 ns 250 ns 250 ns 350 ns 350 ns 350 ns	10 ms 10 ms 10 ms 1 ms 2 ms 10 ms 10 ms 10 ms 10 ms	byte byte byte byte byte/page byte/page byte/page byte/page byte/page byte/page	Rdy/Busy Rdy/Busy Rdy/Busy DATA Polling DATA Polling DATA Polling DATA Polling DATA Polling	10,000 cycles 10,000 cycles 10,000 cycles 10,000 cycles 10,000 cycles 10,000 cycles 10,000 cycles 10,000 cycles 10,000 cycles

1.2.2 <u>Case outlines</u>. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter	<u>Case outline</u>						
X Y	D-10 (28-lead, 1.490" x .610" x .232"), dual-in-line package C-12 (32-terminal, .560" x .458" x .120"), rectangular chip carrier						
7	F-12 (28-lead 740" x 420" x 130") flat package						

1.3 Absolute maximum ratings. 1/

Supply voltage range (V _{CC}) Storage temperature range	-0.3 V dc to +6.0 V dc -65°C to +150°C
Maximum power dissipation (PD)	1.0 W
Lead temperature (soldering, 10 seconds)	+300 C
Junction temperature (T _J) $2/$ Thermal resistance, junction-to-case (θ_{JC})	+175° C
Thermal resistance, junction-to-case (θ_{10})	See MIL-M-38510, appendix C
Input voltage range	$-0.3 \text{ V dc to } +6.25 \text{ V dc } \frac{3}{}$
Data retention	10 years (minimum)
Endurance	10,000 cycles/byte (minimum) all devices

All voltages are referenced to V_{SS} (ground).

Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with method 5004 of MIL-STD-883.

3/ Does not apply to V_H.

STANDARDIZED MILITARY DRAWING	SIZE A		5	5962-86830	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL		SHEET 2	

DESC FORM 193A **SEP 87**

真神Recommended operating committions. 4/

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
- 3.2.2.1 Unprogrammed or erased devices. The truth table for unprogrammed devices shall be as specified on figure 2.
- 3.2.2.2 <u>Programmed devices</u>. The requirements for supplying programmed devices are not part of this drawing.
 - 3.2.3 Block diagrams. The block diagrams shall be as specified on figure 3.
 - 3.2.4 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 4/ All voltages are referenced to V_{SS} (ground).

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A
5962-86830

REVISION LEVEL
A
3

DESC FORM 193A SEP 87

★ U. S. GOVERNMENT PRINTING OFFICE: 1988--549-904

Test	 Symbol	Conditions		Group A	Lir	nits	Unit
•		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	types 	subgroups 	Min	Max	
Supply current	Icc	CE = OE = VIL All I/O's = open, other inputs = VCC	A11 	1, 2, 3		 140 	mA
Supply current (standby)	I ISB		All	1, 2, 3		70 70 	mA
Input leakage current	IIL	 V _{IN} = 0.1 to 5.5 V	A11	1, 2, 3		10	μА
Output leakage current	I ₀₇ /	V _{OUT} = 0.1 to 5.5 V ICE = OE = V _{IH}	Á11	1, 2, 3		10	μА
Low level input voltage	V _I L		A11	1, 2, 3	-0.1	0.8	٧
High level input voltage	V _{IH}		A11	1, 2, 3	2.0	V _{CC} +0.5	٧
Low level output voltage	V _{OL}	I _{OL} = 2.1 mA; V _{CC} = 4.5 V	A11	1, 2, 3		0.45	٧
High level output voltage	V _{OH}	I _{OH=} -400 μA; V _{CC=} 4.5 V	A11	1, 2, 3	2.4		٧
Input capacitance	c _I <u>2</u> /	V _{IN} = 0 V, V _{CC} = 5 V f = 1.0 MHz T _A = +25°C	A11	4		10	pF
Output capacitance	c ₀ 2/	V _{OUT} = 0 V, V _{CC} = 5 V f = 1.0 MHz T _A = +25°C	All	4 4 		12	pF
Read cycle time	tavav	See figure 4, as applicable 3/	03,09 01,04, 05,06, 08	<u> </u> 	300 250 350		l ns
	İ	1	10	<u> </u>		1	

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A
5962-86830

REVISION LEVEL
A
4

DESC FORM 193A SEP 87

☆ U. S. GOVERNMENT PRINTING OFFICE: 1988--550-547

Test	Symbol		Conditio		!	Device	Group A		ni ts	Unit
	 	l V _e	C < T _C < V _S S = 0 V CC = +5.0 ss otherwi	dc Vdc ±	10%	types	subgroups	Min	Max	
Address access time	 tavqv 	CE = 0 See fig 	E = V _{IL} gure 4, as	appli	cable	03,09 01,04, 05,06, 08 02,07,		 	300 250 350	ns
Output enable access time	t _{OLQ} V	CE = V See fi	IL gure 4, as	appli	cable	01,04, 05,08 03,09 02,10 06,07			100 110 120 150	ns
Chip enable access time	t _{ELQ} y	OE = V See fi	IL gure 4, as	appli	cable	03,09 01,04, 05,06, 08 02, 07,10			300 250 350	ns
Chip disable to output in high Z	 teHOZ <u>2</u> /	 See fig 	gure 4, as	appli	cable	01,02, 103,04, 105,08, 109,10		10 10	100 60 80	ns ns
Output enable to output in low Z	toL0V] 				04,05, 01,02, 106,07	9,10,11	1 10	 	l ns l
Output disable to output in high Z	toHOZ					 01,02, 03,04, 05,08, 09,10 06		10 10	100	 ns
Output hold from address change	 taxqx	 CE = 0 See fig	E = V _{IL} gure 4, as	appli	cable	 A11 	9,10,11	0		ns
Write cycle time	twc	 See fig 	gure 4, as	appli	cable	101, 102,03, 106,07, 108,09 110 104	9,10,11	10 12 1 2		ms
ee footnotes at end of tab	le.							······································		<u> </u>
STANDARDIZE MILITARY DRAV			SIZE A				594	62-868:	30	

せ U. S. GOVERNMENT PRINTING OFFICE: 1988-550-547

Test	 Symbol		Conditio	ns <u>3</u> /	Device	Group A		nits	Unit
		, V	°C < TC < VSS = 0 \ CC = +5.0 ss otherwi	+125°C / dc / dc +10%	types	subgroup		Max	
Address set-up time	tavwl	 CE = 0 See fi 	E = V _{IL} gure 4, as	applicab	1e 03,04, 108,09, 10 101,02,	1	50		l ns
					05,06,		10	<u> </u>	<u> </u>
Address hold time	twLAX	See fi	gure 4, as	applicab	02,10 01,03, 08	- - - - -	50 100 80	! !	 ns
		<u> </u>			06,07,	1	200		1
Write set-up time	tELWL	 			01-03 05-10 04	9,10,11	50		ns
Write hold time	twheh	 			01-04. 05-10	9,10,11	0	 	l ns
Output enable set-up time	toHWL	 			01,02, 03,04, 05,08,	, [50	 	 ns
	1	-			06,07		10		<u> </u>
Output enable hold time	twHOL	 			09,10 01,02	, 9,10,11 -	50	1	l ns
	 				05, 06,07	 	10	l 	1
Chip enable hold time	twLEL	 			04	9,10,11	50	T 	l l ns
Output enable hold time	twLOH	<u> </u>			04	9,10,11	50	 	ns
Page write window	t _{WW} 4/				03,08 06,07,		100	 	 μs
Time to device busy	t _{DB}	- 			01,02	9,10,11		100	l ns
ee footnotes at end of ta	ble.								
STANDARDIZ			SIZE A			E-	962-868	30	
MILITARY DRA		rer		RF	VISION LEVEL	<u> </u>	SHEET		r
DAYTON, OHIO 4				1			J	6	

± U. S. GOVERNMENT PRINTING OFFICE: 1988--550-54

DEFENSE ELECTRONICS SU DAYTON, OHIO 45	PPLY CENT	TER		REVISION	LEVEL A		SHEET	7	
STANDARDIZI MILITARY DRAV			SIZE A			5	962-88	630	
See footnote at end of tal	ole.								
CC set-up time	tCCLWL	1			04	9,10,11	50	 	ns
Write enable pulse width	tCWLWH	! ! !			04	9,10,11	10		ms
Write recovery time from R/B	t _{RE} 	! 			01,02, 05 03	<u>5</u> /	0	10	μs ns
Write recovery 2/	twR	 			04	9,10,11		10	μS
Data valid time	twLDV	 			06,07	9,10,11	<u>i</u> !	300	ns
	 	1 1 1			08 10		250 300		
Write pulse width high	t _{WPH}	 		I	03, 06,09 07	9,10,11	50 1 100	 	l ns
Byte load cycle	tBLC	 			06,07, 09	9,10,11	3	20 	μS
	tWLDX	 			09 04		20 50		
Data hold time	twHDX	 		!	01,02 03,07,0 08,10 05,06,	9,10,11	30		ns
		 		!	06,09, 10 02,07	 	70 1 20		
Data set-up time	†DVWH	 		! !	04,05, 08 01,03,		50 1 100		ns
	 	 - -		I	08 04		300 100 1		ms
Write pulse width	t _{WLWH}	 See figure 	e 4, as appli	! !	03,05, 06,07, 09	9,10,11	 150 		l I ns
		-55°C	CTC < +125°C SS = 0 V dc +5.0 V dc ± otherwise spe	: 	types	subgroups	Min	Max	
Test		l Cc	onditions 3	/	Device	Group A	i I Lir	nits	Unit

☆ U. S. GOVERNMENT PRINTING OFFICE: 1968--550-547

Test	 Symbol	Conditions 3/	Device	Group A	lin	nits	Unit
iest	Symbol	Conditions $\frac{3}{}$ $-55^{\circ}C < T_C < +125^{\circ}C$ $V_{SS} = 0 \text{ V dc}$ $V_{CC} = +5.0 \text{ V dc} \pm 10\%$ unless otherwise specified	1	subgroups	Min	Max	
CC hold time	tWLCCL	 See figure 4, as applicable 	04	9,10,11	50	! !	ns
Write set-up time	tELWH		01,02, 05	9,10,11	1		μS
Output set-up time	t _{OHWH}] -	01,02,	9,10,11	1	 	μS
Output enable hold time	tWLOL	 	01,02,	9,10,11	1	 	μS
Erase recovery time	t _{OLEX}		01,02,	9,10,11	10		 μs
Write enable pulse width	tWHWL	 	01,02,	9,10,11	10	 	ms

Connect all address inputs and $\overline{\text{OE}}$ to VIH and measure ILO with the output under test connected

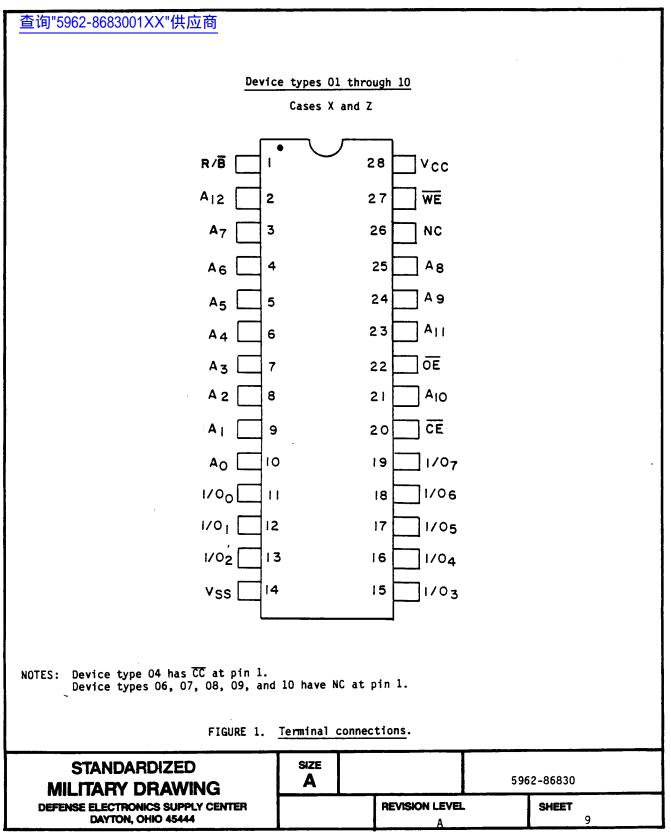
to V_{OUT} . Tested initially and after any design or process changes that affect that parameter,

and therefore shall be guaranteed to the limits specified in table I.

Tested by application of specified signals and conditions:

WE = VIH Output load: 1 TTL gate and C₁ = 100 pF (minimum). Input rise and fall times: < 20 ns. Input pulse levels: Device types 01-10: 0.4 V to 2.4 V

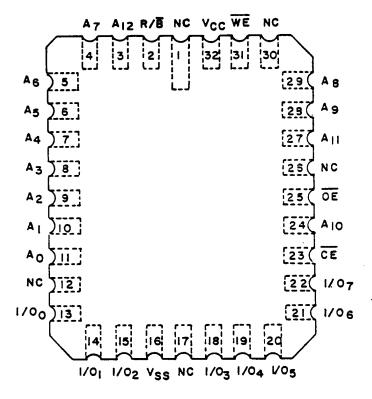
Timing measurement reference level:
Device types 01-10:
Inputs: 0.8 V and 2 V


Outputs: 0.8 V and 2 V A timer of tyw duration starts at every low to high transition of $\overline{\text{WE}}$. If it is allowed to time out, a page load will start. A transition of $\overline{\text{WE}}$ from high to low will stop the timer.

This parameter for information only.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-86830
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 8

DESC FORM 193A SEP 87


☆ U. S. GOVERNMENT PRINTING OFFICE: 1988-550-547

查询"5962-8683001XX"供应商

Device types 01 through 10

Case Y

NOTES: Device type 04 has $\overline{\text{CC}}$ at pin 1. Device types 06, 07, 08, 09, and 10 have NC at pin 1.

FIGURE 1. Terminal connections - Continued.

STANDARDIZED MILITARY DRAWING	SIZE A				
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		 REVISION LEVEL		SHEET	10

DESC FORM 193A SEP 87

查询"5962-8683001XX"供应商

Device types 06 and 07

Programming procedure D

ICE	OE	I WE	Mode	1/0	 Power
L	L	H	Read	D _{OUT}	Active
L	l H	L I	Write	DIN	 Active
H 	X		 Standby and write inhibit 	 Hi Z -	 Standby
X	l L	I X	 Write inhibit 	 - 	 -
i X	i X	l H	 Write inhibit 	-	 -
 L 	V _{OE}	L	 Chip erase 	 D _{IN} = H	 Active

FIGURE 2. Truth table.

STANDARDIZED
MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE A 5962-86830

REVISION LEVEL SHEET 11

DESC FORM 193A SEP 87

鱼间 5902-8083001 XX 供应商

Device types 01. 02, and 03

Programming procedure A

Mode select table

 	Inputs Outputs					
CE	UE I	WE	R/B	I/0	A _g	Mode
L L H L X	L H X H L	H X H L H	Hi Z Hi Z Hi Z Hi Z Hi Z	Data out Data in Hi Z Hi Z Code DIN	X X X X X Y _H	Read Write Standby Read inhibit Write inhibit Auto select Data polling

 $V_H = 12.0 V \pm .5 V$ H = High

L = Low X = Don't care

T__ Pulse

Device types 08. 09, and 010

Mode select table

 	Inputs				
CE	E DE WE		I/0 A		Mode
L L H L X L L L L L L L L	L	H X H X H	Data out Data in Hi Z Hi Z C Code DIN	X X X X X YH	Read Write Standby Read inhibit Write inhibit Auto select Data polling

 $V_{H} = 12.0 V \pm .5 V$

H = High L = Low

X = Don't care

T_C= Pulse

FIGURE 2. Truth table - Continued

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE Α 5962-86830 **REVISION LEVEL** SHEET 12

DESC FORM 193A SEP 87

Device types 01, 02, 04, and 05

Programming procedure C

(see note 1)

 Mode	I I I I	I OE	 WE 	I I/0	I/O Pin 1 (see notes) 2 and 3	
Read 	AIL	V _{IL}	V _{IH}	I DOUT	N/A V _{IH}	01, 02, and 05 04
 Standby 	VIH	X	X	Hi Z	l X	01, 02, 04 and 05
Chip clear	AIT AIT	Λ ^{I H} Λ ^H	V _{FL}	D _{IN} = FF D _{IN} = FF	N/A VIL	01, 02, and 05 04
 Byte write 	۷ _{IL}	۷ _{IH}	V _{IL}	DIN	V _{IH}	01, 02, and 05 04
 Write or	۷ _{IL}	٧ _{IH}	Λ ^{IH}	Hi Z	X	01, 02, 04 and 05

NOTES:

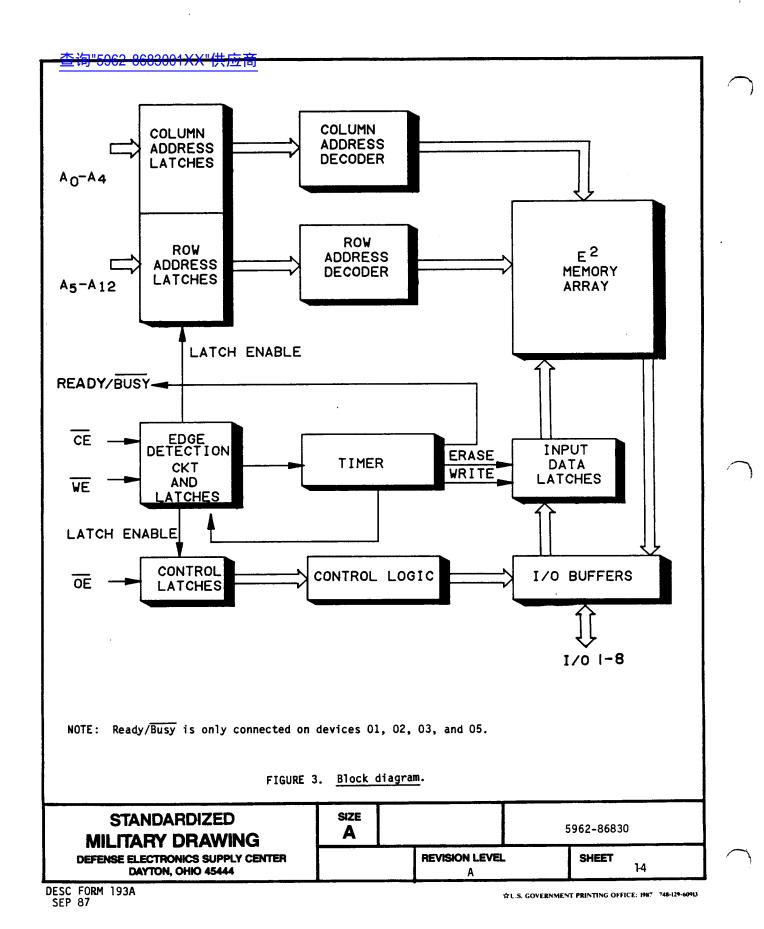
1. Table definitions:

 V_{IH} = High logic level V_{IL} = Low logic level V_{H} = Chip clear high voltage (15 V)

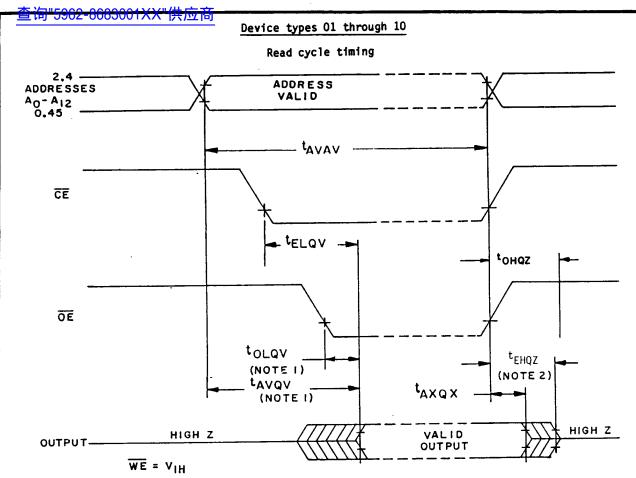
X' = Don't care

H Z = High impedance state

D_{IN} = Data input


D_{OUT} = Data output

- 2. Applied to device types 01, 02, and 05 with the Ready/Busy function. Pin 1 has an open drain output and requires an external 3 kilohms resistor to V_{CC} . This resistor value is dependent on the number of or-tied Ready/Busy pins.
- 3. Applies to device type 04 with the TTL chip clear function.


FIGURE 2. Truth table - Continued.

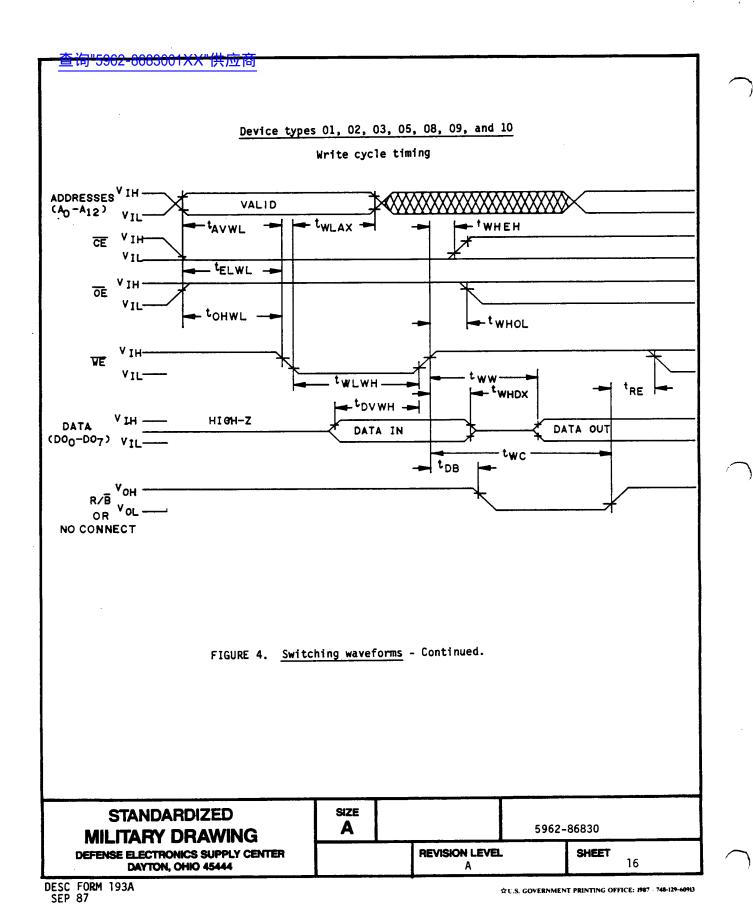
SIZE **STANDARDIZED** Α 5962-86830 **MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER REVISION LEVEL** SHEET DAYTON, OHIO 45444 13

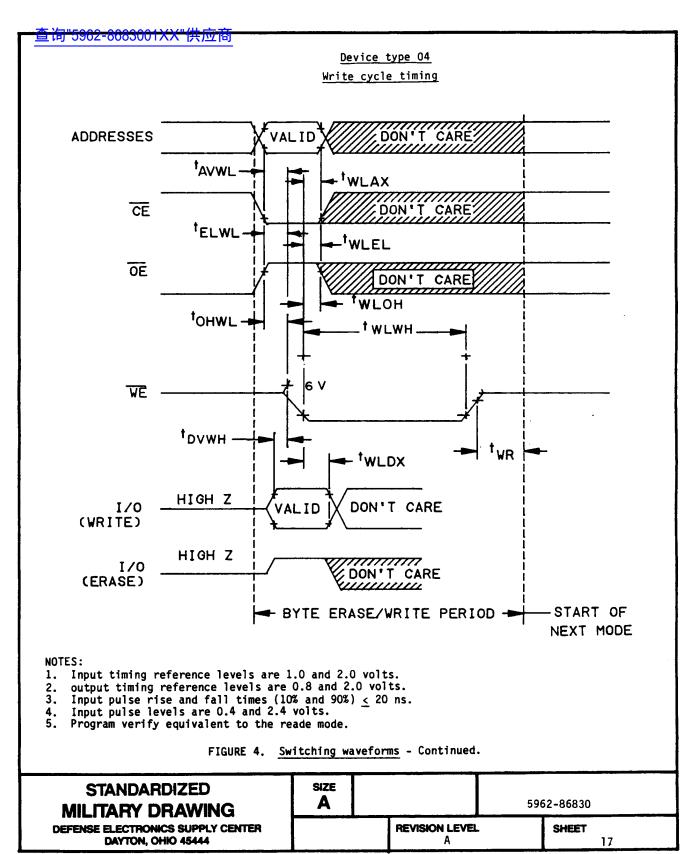
DESC FORM 193A SEP 87

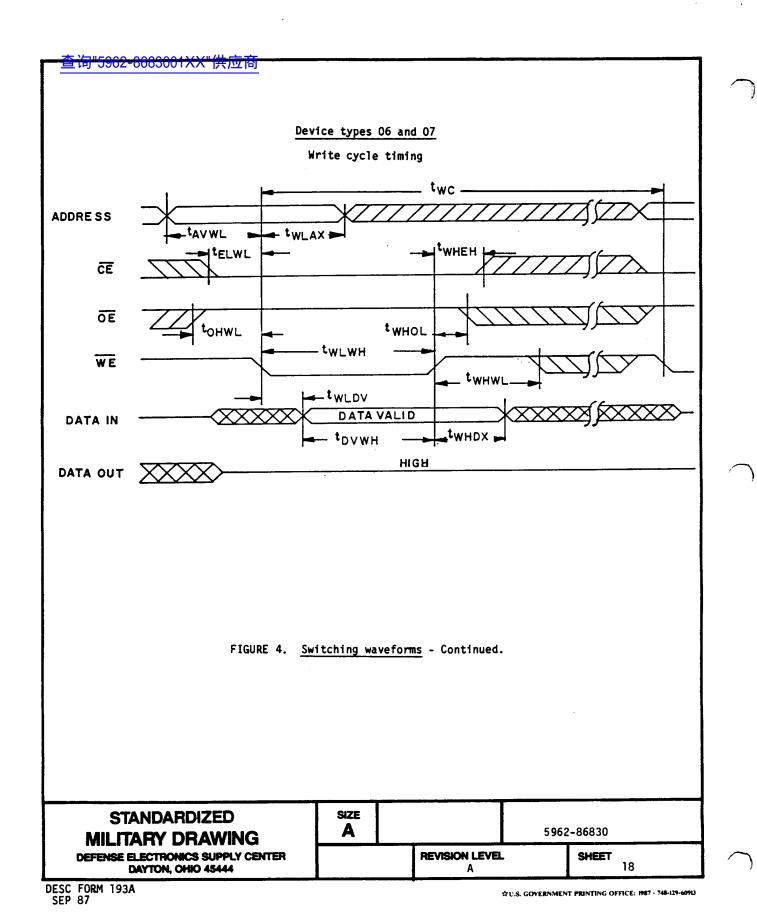
Powered by ICminer.com Electronic-Library Service CopyRight 2003

NOTES:

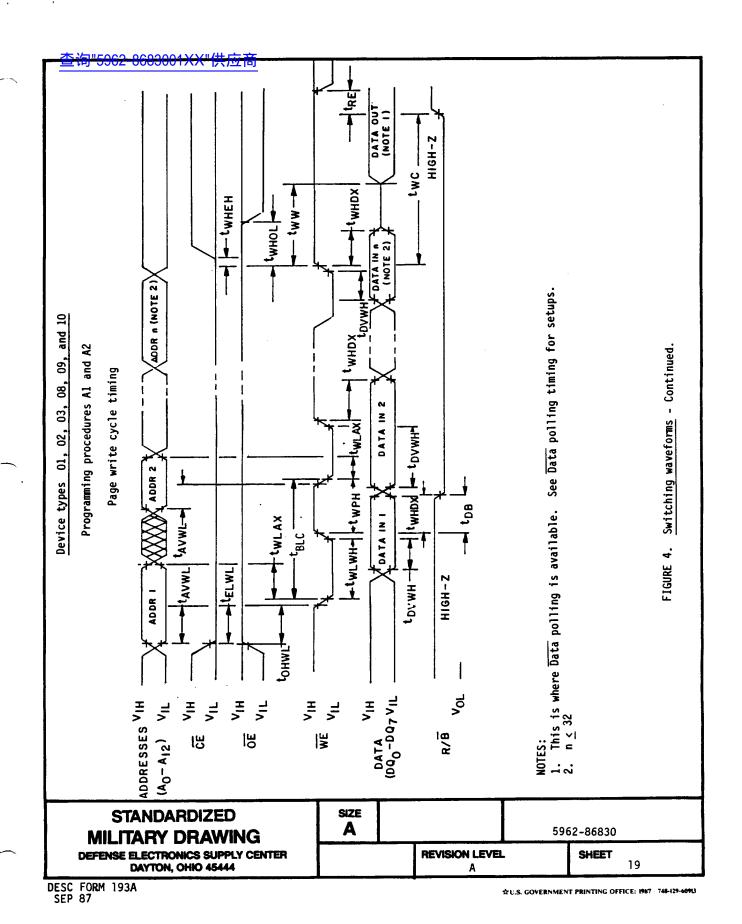
- 1. $\overline{\text{OE}}$ may be delayed up to tacc toE after the falling edge of $\overline{\text{CE}}$ without impact on tacc.
- 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first. $t_{DF} = t_{EHQZ}$ or t_{OHQZ} .
- 3. V_{CC} shall be applied simultaneously or after \overline{WE} and removed simultaneously or before \overline{WE} .
- 4. Output load is TTL gate and 100 pF including jig or probe capacitance.
- 5. Input rise and fall time < 20 ns.
- 6. Input pulse levels of 0.4 and 2.4 Volts.
- 7. Timing measurement reference levels:

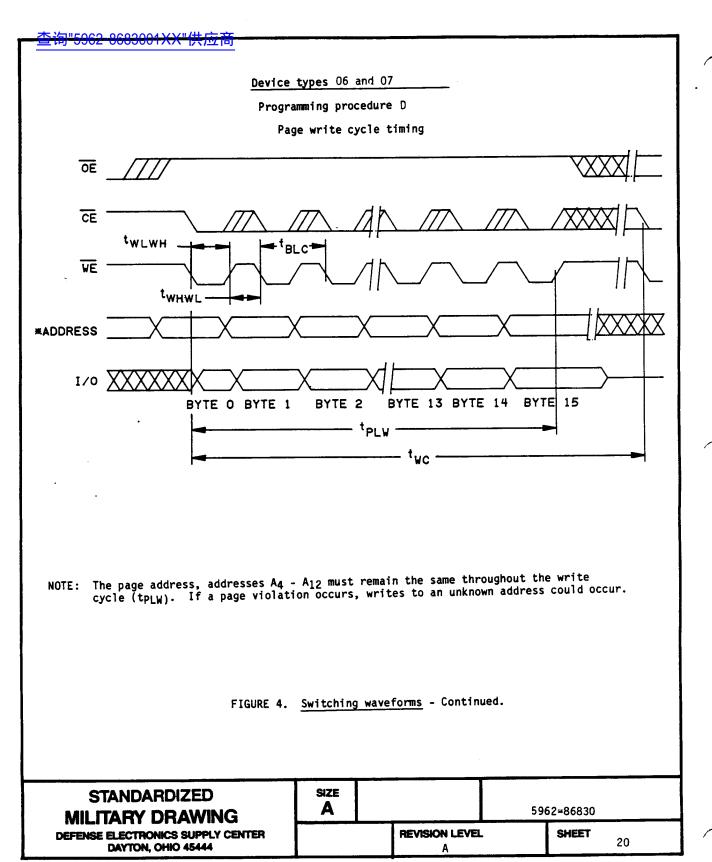

Inputs 0.8 and 2.0 volts.

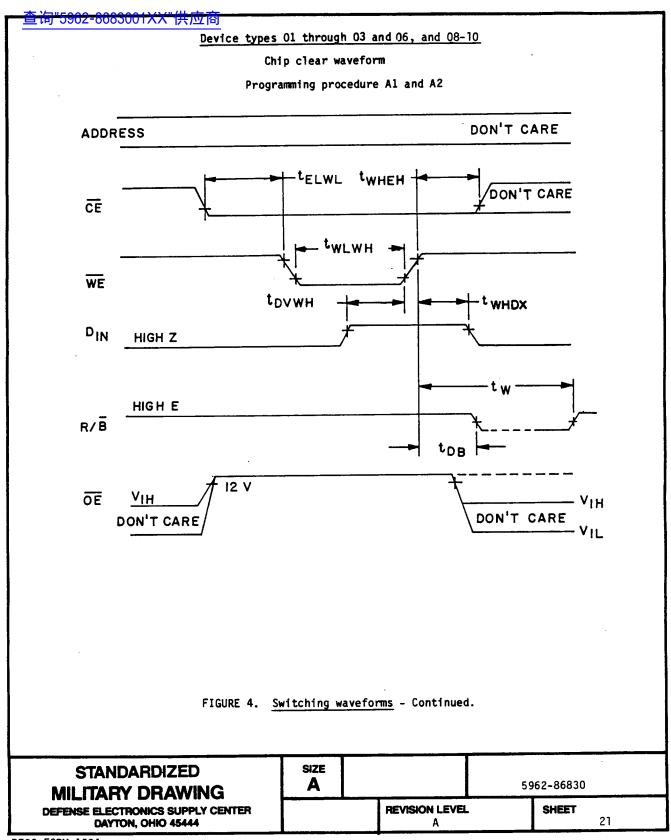

Outputs 0.8 and 2.0 volts.

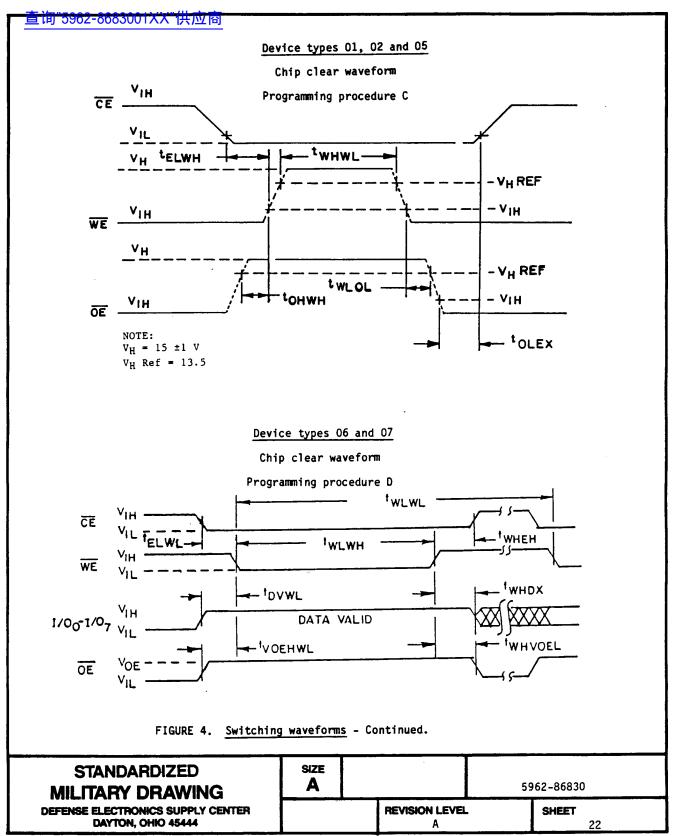

FIGURE 4. Switching waveforms.

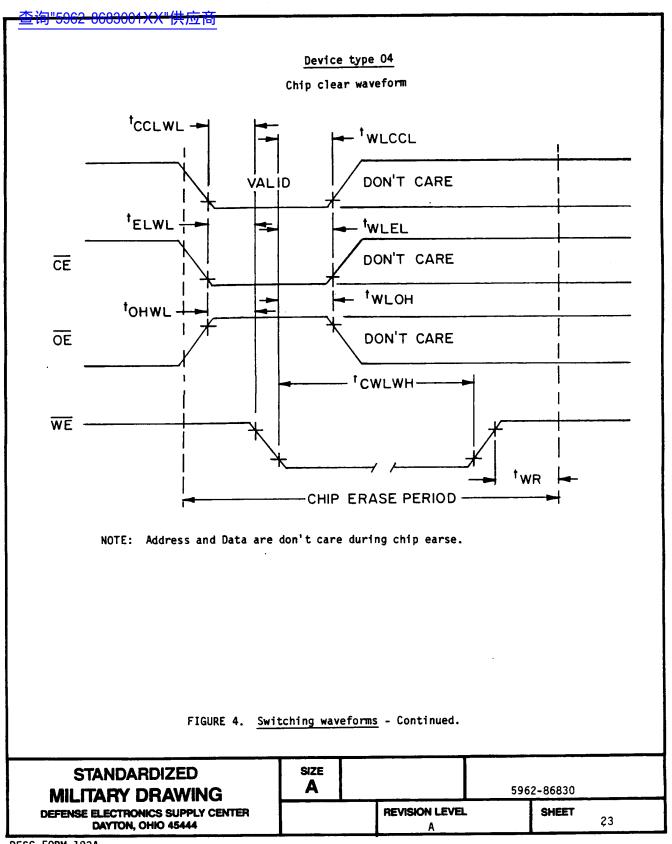
STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 SIZE A 5962-86830 REVISION LEVEL A 15

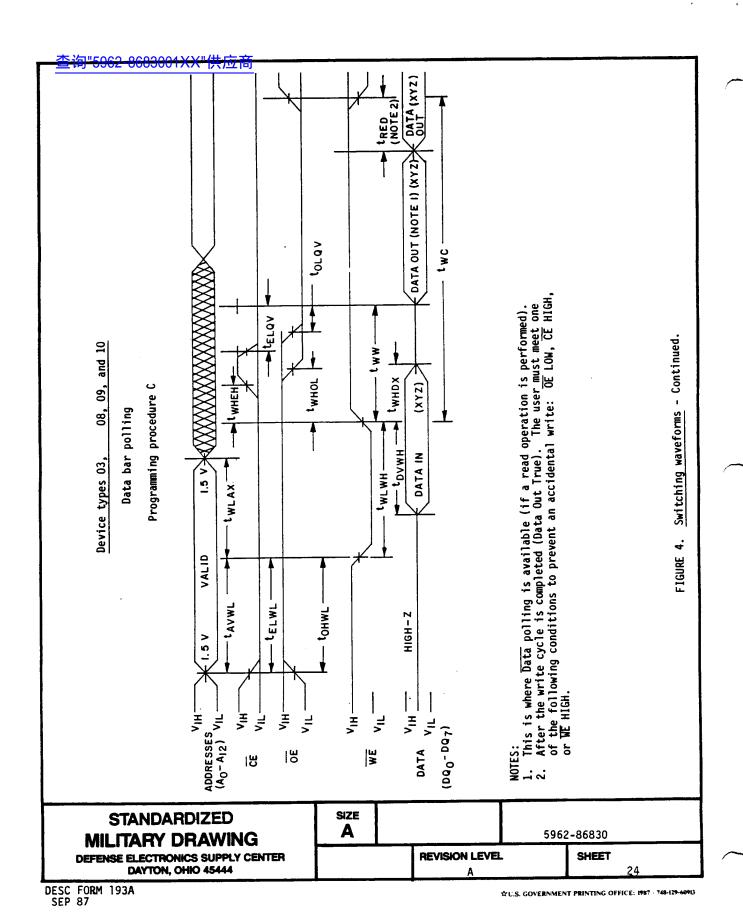

DESC FORM 193A SEP 87

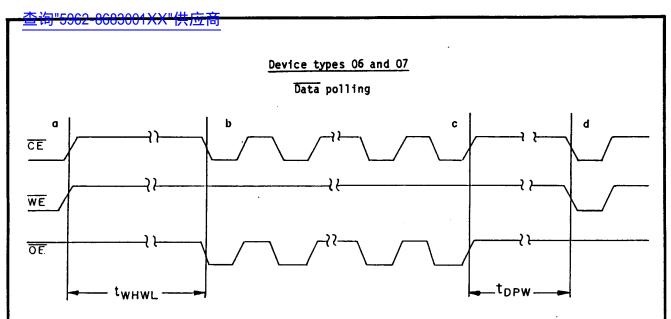





Powered by ICminer.com Electronic-Library Service CopyRight 2003




Powered by ICminer.com Electronic-Library Service CopyRight 2003



Powered by ICminer.com Electronic-Library Service CopyRight 2003

- a. Last write (byte or page mode) before polling.
- b. First attempt to poll.
- c. First true data response.
- d. Initiate new write operation.

Symbol	 Parameter	Min	Max
twpH	Delay from WE CE to OE CE	50 ns	
tDPW	Delay from polling true to WE CE	500 μs	; ;

Data polling:

The 2864 features Data polling as a method to indicate to the host system that the byte write or page write cycle has completed. Data polling allows a simple bit test operation to determine the status of the 2864, eliminating additional interrupt inputs or external hardware. during the internal programming cycle, any complement of that data on I/O7 (i.e., write data = 0xxx xxxx, read data = 1xxx xxxx). Once the programming cycle is complete, I/O7 will reflect true data.

FIGURE 4. Switching waveforms - Continued.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 SIZE A 5962-86830 REVISION LEVEL A 25

DESC FORM 193A SEP 87

Column	address	see	notes:)
--------	---------	-----	--------	---

	,	0	1	2	3	4	5	6	•	•	•	25	26	27	28	29	30	31
	0	AA	I AA	AA	AA I	AA	AA	AA		•	•	AA	AA	AA	AA	AA	AA	AA
	1	55	55	55	55	55	55	55		•		55	55	55	55	55	55	55
 	2	I I AA	AA	I I AA I	AA	AA	AA	AA			•	AA I	AA	AA	AA	AA	AA	AA
	3	55	 55	55	55	55	55	55				55	55	55	55	55	55	55
l I R	•	 										1		! !				
0] }	 							•	I				 		
 W	•	 			,				•			1						
	124	I AA	i I AA	I I AA I	I I AA I	AA	AA	AA				AA	AA	AA	AA	AA	AA	AA
l A	125	 55	 55	 55	 55	55	55	55				55	 55	55	55	55	 55	55
 D	126	l AA	l I AA	 AA	I AA	AA	l AA	I I AA				AA	AA '	AA	AA	I AA	AA	AA
 D	127	 55	55	 55	 55	 55	55	55				55	 55	55	55	55	55	55
 R	•	 	 	 	 	 		 		٠.			[]	 			 	
E		 		!	 	i 	 	 				ł	 		[[
S	•	<u> </u>	1	 	 	 	 	 		•			 	 !] 	ļ !	 	
 S	252	i I AA	l AA	I I AA	I I AA	I I AA I	AA	i aa		•		AA	l AA	I I AA	AA	I I AA	I I AA	AA
<u> </u>	253	 55	 55	 55	 55	 55	 55	! 55		•		55	55	 55	55	 55	 55	55
See	note 1 254	i I AA	I I AA	I AA	l I AA	I I AA I	AA.	l I AA				AA	 AA	l ! AA	I AA	AA	l AA	I AA I
See	note 2 255	j 55	 55	 55	55	55	55	 55	•			55	 55 	 55 	 55	 55	 55	 55
1		l		1	I	l	l	l					<u> </u>	<u> </u>	1	i	1	<u> </u>

NOTES:

1. All address numbers shown in decimal.

 Each column/row address location corresponds to 1 byte.
 Manufacturers at their option may employ an equivalent pattern provided it is a topologically true alternating bit pattern.

4. All data numbers shown in hexadecimal. A = 10101010 55 = 01

55 = 01010101

FIGURE 5. Array data pattern.

STANDARDIZED SIZE A 5962-86830 **MILITARY DRAWING** REVISION LEVEL **DEFENSE ELECTRONICS SUPPLY CENTER** SHEET DAYTON, OHIO 45444

DESC FORM 193A SEP 87

<u>本治"5062_0602004.Y.Y.I.供应答</u>

- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
- 3.9 Processing EEPROMS. All testing requirements and quality assurance provisions herein shall be satisfied by the manufacturer prior to delivery.
- 3.9.1 Erasure of EEPROMS. When specified, devices shall be erased in accordance with the procedures and characteristics specified in section 6 as applicable. Devices shall be shipped in the erased (logic "1's") and verified state unless otherwise specified.
- 3.9.2 Programmability of EEPROMS. When specified, devices shall be programmed to the specified pattern using the procedures and characteristics specified in 6.3, 6.4, 6.5, and 6.6 as applicable.
- 3.9.3 <u>Verification of erasure or programmability of EEPROMS</u>. When specified, devices shall be verified as either programmed to the specified pattern or erased. As a minimum, verification shall consist of reading the device per the procedures and characteristics specified in 6.3 through 6.6 as applicable. Any bit that does not verify to be in the proper state shall constitute a device failure, and shall be removed from the lot.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition D or F using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Devices shall be burned-in containing a checkerboard pattern or equivalent.

STANDARDIZED MILITARY DRAWING	SIZE A			5962-86830	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL A	•	SHEET	27

DESC FORM 193A SEP 87

± U. S. GOVERNMENT PRINTING OFFICE: 1968--550-547

- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
 - c. An endurance/data retention test prior to burn-in, in accordance with method 1033 of MIL-STD-883, shall be included as part of the screening procedure with the following conditions:
 - (1) Cycling may be block, byte, or page at equipment room ambient temperature and shall cycle all bytes for a minimum of 10,000 cycles for all device types.
 - (2) After cycling, perform a high temperature unbiased bake for 2.5 hours at 250°C minimum (unassembled devices only), or 24 hours at 170°C minimum, or 72 hours at 150°C minimum. All devices shall be programmed with a charge on all memory cells in each device, such that the cell will read opposite the state that the cell would read in its equilibrium state (e.g. worst case pattern).
 - (3) Read the data retention pattern and test using subgroups 1, 7, and 9 (minimum, e.g. high temperature equivalent subgroups 2, 8A, and 10 may be used) after cycling and bake, prior to burn-in. Devices having bits not in the proper state after storage shall constitute a device failure.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
- 4.3.1 Group A inspection. Group A inspection shall be in accordance with table I of method 5005 of MIL-STD-883 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 ($C_{\rm I}$ and $C_{\rm O}$ measurement) shall be measured only for the initial test and after process or design changes which may affect capacitance. Sample size is fifteen devices, all input and output terminals tested, and no failures.
- 4.3.2 Groups C inspections. Group C inspection shall be in accordance with table III of method 5005 of MIL-STD-883 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. All devices requiring endpoint electrical testing shall be programmed with a checkerboard or equivalent alternating bit pattern.
 - c. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition D or F using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
 - d. An endurance test, per method 1033 of MIL-STD-883, shall be added to group C1 inspection prior to performing the steady state life test (see 4.3.3c) and extended data retention (see 4.3.3e). Cycling may be block, byte, or page from devices passing group A after the completion of the requirements of 4.2 herein. Initially, two groups of devices shall be formed, cell 1 and cell 2. The following conditions shall be met:

STANDARDIZED MILITARY DRAWING	SIZE A		5962-86830	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 28	

★ U. S. GOVERNMENT PRINTING OFFICE: 1968-550-54

- Gell 1 shall be eyeled at -55° C and cell 2 shall be cycled at +125° C for a minmum of 10,000 cycles for all devices.
- (2) Perform group A subgroups 1, 7, and 9 after cycling. Form two new cells (cell 3 and 4) for steady-state life and extended data retention. Cell 3 for steady-state life test consists of 1/2 of the devices from cell 1 and 1/2 of the devices from cell 2. Cell 4 for extended data retention consists of the remaining devices from cell 1 and 2.
- (3) The sample plans for cell 1, cell 2, cell 3, and cell 4 shall individually be the same as for group C1, as specified in method 5005 of MIL-STD-883.
- e. Extended data retention shall consist of:
 - (1) All devices shall be programmed with a charge on all memory cells in each device, such that the cell will read opposite the state that the cell would read in its equilibrium state (e.g. worst case pattern, see 4.2c 2).
 - (2) Unbiased bake for 1000 hours (minimum) at +150°C (minimum). The unbiased bake time may be accelerated by using higher temperature in accordance with the Arrhenius Relationship.

$$-\frac{EA}{K}\left[\frac{1}{T_1} - \frac{1}{T_2}\right]$$

AF = acceleration factor (unitless quantity) = t_1/t_2 . T = temperature in Kelvin (i.e. $t_1 + 273 = K$).

T = temperature in Kelvin (i.e. t_1 + 273 = t_1 = time (hrs) at temperature T_1 .

 t_2^2 = time (hrs) at temperature T_2^2 . $K = Boltzmanns constant = 8.62 \times 10^{-5} \text{ eV/}^{\circ} \text{K}$ using an apparent activation energy (E_{Δ}) of 0.6 V.

The maximum storage temperature shall not exceed 200°C for packaged devices or 300°C for unassembled devices.

- (3) Read the pattern after bake and perform endpoint electrical tests for table II herein
- 4.3.3 Groups D inspections. Group D inspection shall be in accordance with table IV of method 5005 of MIL-SID-883 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. All devices requiring endpoint electrical testing shall be programmed with a checkerboard or equivalent alternating bit pattern.
- 4.4 Methods of inspection. Methods of inspection shall be as specified in the appropriate tables of method 5005 of MIL-STD-883 and as follows:
- 4.4.1 Voltage and current. All voltages given are referenced to the microcircuit V_{SS} terminal. Currents given are conventional current and positive when flowing into the referenced terminal.

STANDARDIZED MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE A

5962-86830

REVISION LEVEL A

SHEET

29

DESC FORM 193A SEP 87

★ U. S. GOVERNMENT PRINTING OFFICE: 1988-550-547

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 7*, 8, 9, 10, 11
Group A test requirements (method 5005)	1, 2, 3, 4**, 7, 8, 9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3, 7, 8, 9, 10, 11

- 1/ (*) Indicates PDA applies to subgroups 1 and 7
- 2/ Any or all subgroups may be combined when using multifunction testers.
- 3/ Subgroup 7 and 8 shall consist of writing and reading the data pattern specified in accordance with the limits of table I, subgroups 9, 10, and 11.
- limits of table I, subgroups 9, 10, and 11.

 4/ For all electrical tests, the device shall be
- programmed to the data pattern specified.

 5/ (**) Indicates that subgroup 4 will only be performed during initial qualification and after design or process changes (see 4.3.1c).

5. PACKAGING

- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
 - 6. NOTES
- 6.1 <u>Intended use.</u> Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
 - 6.2 Replaceability. Replaceability is determined as follows:
 - a. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
 - b. When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/228XXBXX.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-86830
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 30

DESC FORM 193A SEP 87

U. S. GOVERNMENT PRINTING OFFICE: 1988—550-547

6.3 Programming procedures for method A1.

- 6.3.1 Byte write programming procedure. The programming characteristics in table I and the following procedures shall be used for programming the device.
 - a. Connect the device in the electrical configuration for programming the waveforms on figure 4 and programming characteristics of table I shall apply.
 - b. As delivered, all bits are in the high "H" state. Information is introduced by selectively programming "L" or "H" into the desired bit locations. A programmed "L" can be changed to an "H" or vice versa.
 - c. The word address is selected in the same manner as in the read mode. Data to be programmed, 8-bits in parallel, are presented to the data lines (DQ₀-DQ₇). Logic levels for address and data lines, and the supply voltages are the same as for the read mode. The write cycle is completely self timed, and initiated by a low going pulse on the WE pin. On the falling edge of WE the address information is latched. On the rising edge, the data and the control pins (CE and OE) are latched. WE must be held high for at least tww maximum in order to remain in the byte write mode. The Ready/Busy pin goes to a logic low level indicating the EEPROM is in a write cycle which signals the microprocessor host that the system bus is free for other activity. When Ready/Busy goes back to a high the EEPROM has completed writing, and is ready to accept another cycle. The Ready/Busy pin is an open-drain output which allows two or more Ready/Busy pins to be OR-tied together. A pullup resistor can be attached to the Ready/Busy pin. The value of this resistor shall be calculated as follows.

$$RpU = \frac{4.6 \text{ volts}}{2.1 \text{ mA-III}}$$

Where I_{IL} = total V_{IL} input current of all devices connected to Ready/Busy.

- d. The $\overline{\text{WE}}$ can be toggled during the time period after tww until tww +4.0 ms. $\overline{\text{WE}}$ has to be held high during the balance of write cycle. Applies to device types 08 and 10 only.
- 6.3.2 Page write programming procedure.
 - a. Connect the device in the electrical configuration for programming the waveforms on figure 4 and programming characteristics of table I shall apply.
 - b. As delivered, all bits are in the high "H" state. Information is introduced by selectively programming "L" or "H" into the desired bit locations. A programmed "L" can be changed to an "H" or vice versa.
 - c. The page write mode allows 1 to 32 bytes of data to be written in a single cycle. The page write mode consists of a load sequence followed by an automatic write sequence. The word address is selected in the same manner as in the read mode. Data to be programmed, 32 bytes in parallel (256 bits) is presented to the data lines (D_0 - D_7), with the logic levels and supply voltages set to the same values as in read mode. Addresses are latched on each falling edge of WE, while data is latched on each rising edge of WE. The page address is latched on the falling edge of the last WE.

The automatic write sequence is initiated when \overline{WE} goes from low to high and stays high for t_{WW} maximum. It consists of an erase cycle, which erases any data that existed in each addressed cell and a write cycle, which puts data back into erased cells.

The Ready/ \overline{Busy} pin (R/ \overline{B}) goes to a logic low level indicating a write mode which signals a microprocessor host that the system bus is free for other activity.

STANDARDIZED MILITARY DRAWING	SIZE A	A			5962-86830	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		RE	VISION LEVEL	ı	SHEET	31

DESC FORM 193A SEP 87

★ U. S. GOVERNMENT PRINTING OFFICE: 1968-550-547

6.3.3 Erasing procedure. Chip erase is performed in accordance with the waveforms and timing relationships shown on figure 4 (per appropriate device type) and the manufacturers applicable data.

6.3.4 DATA polling procedure.

- a. Use the $\overline{\text{DATA}}$ polling timing set-up as shown on figure 4, and the characteristics shown in table I.
- b. DATA polling requires a simple software routine that performs a read operation when the chip is in automatic write mode. The data that becomes valid during this DATA polling read is the inverse of all 8 bits last written to the outputs. This inverse data can be read after WE has been high for tww maximum. The true data (DQ0-DQ7) will become valid when the automatic write has been completed.

6.4 Programming procedures for method A2.

- 6.4.1 Byte write programming procedure. The programming characteristics in table I and the following procedures shall be used for programming the device.
 - a. Connect the device in the electrical configuration for programming the waveforms on figure 4 and programming characteristics of table I shall apply.
 - b. As delivered, all bits are in the high "H" state. Information is introduced by selectively programming "L" or "H" into the desired bit locations. A programmed "L" can be changed to an "H" or vice versa.
 - c. The word address is selected in the same manner as in the read mode. Data to be programmed, 8-bits in parallel, are presented to the data lines (DQ₀-DQ₇). Logic levels for address and data lines, and the supply voltages are the same as for the read mode. The write cycle is completely self timed, and initiated by a low going pulse on the WE pin. On the falling edge of WE the address information is latched. On the rising edge, the data and the control pins (CE and OE) are latched. WE must be held high for at least two maximum in order to remain in the byte write mode.
 - d. The $\overline{\rm WE}$ can be toggled during the time period after tww until tww +4.0 ms. $\overline{\rm WE}$ has to be held high during the balance of write cycle. Applies to devices 08 and 10 only.

6.4.2 Page write programming procedure.

- a. Connect the device in the electrical configuration for programming the waveforms on figure 4 and programming characteristics of table I shall apply.
- b. As delivered, all bits are in the high "H" state. Information is introduced by selectively programming "L" or "H" into the desired bit locations. A programmed "L" can be changed to an "H" or vice versa.
- c. The page write mode allows 1 to 32 bytes of data to be written in a single cycle. The page write mode consists of a load sequence followed by an automatic write sequence. The word address is selected in the same manner as in the read mode. Data to be programmed, 32 bytes in parallel (256 bits) is presented to the data lines (D_0 - D_7), with the logic levels and supply voltages set to the same values as in read mode. Addresses are latched on each falling edge of WE, while data is latched on each rising edge of WE. The page address is latched on the falling edge of the last WE.

The automatic write sequence is initiated when $\overline{\text{WE}}$ goes from low to high and stays high for two maximum. It consists of an erase cycle, which erases any data that existed in each addressed cell and a write cycle, which puts data back into erased cells.

STANDARDIZED MILITARY DRAWING	SIZE A			59	5962-86830	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444			REVISION LEVEL	•	SHEET 32	

DESC FORM 193A SEP 87

± U. S. GOVERNMENT PRINTING OFFICE: 1988—550-547

本句"5062_0602004VV"供应方

6.4.3 Erasing procedure. Chip erase is performed in accordance with the waveforms and timing relationships shown on figure 4 (per appropriate device type) and the conditions specified in table I.

6.4.4 DATA polling procedure.

- a. Use the $\overline{\text{DATA}}$ polling timing set-up as shown on figure 4, and the characteristics shown in table I.
- b. DATA polling requires a simple software routine that performs a read operation when the chip is in automatic write mode. The data that becomes valid during this DATA polling read is the inverse of all 8 bits last written to the outputs. This inverse data can be read after WE has been high for two maximum. The true data (DQ0-DQ7) will become valid when the automatic write has been completed.

6.5 Programming procedures for method C.

- 6.5.1 Programming procedure. The following procedure shall be followed when programming (write) is performed. The waveforms and timing relationship shown on figure 4 (per appropriate device type) and the conditions specified: Table I shall be adhered to. Information is introduced by selectively programming a TTL low or TTL high on each I/O of the address desired. For device type 04, each byte must be erased (TTL high) prior to programming. Functionality shall be verified at all temperatures (group A, subgroups 7 and 8) by programming all bytes of each device and verifying the pattern used.
- 6.5.2 <u>Erasing procedure</u>. There are two forms of erasure, chip and byte, whereby all bits or the address selected will be erased to a TTL high.
 - a. Chip erase is performed per the waveforms and timing relationships shown on figure 4 (per appropriate device type) and the conditions specified in table I.
 - b. Byte erase is performed per the waveforms and timing relationships shown on figure 4 (per appropriate device type) and the conditions specified in table I.
- 6.5.3 Read mode operation. The waveforms and timing relationships shown on figure 4 and the conditions specified in table I shall be applied when reading the device. Pattern verification utilizes the read mode.

6.6 Programming procedures for method D.

6.6.1 Programming procedure. The following procedure shall be followed when programming (write) is performed. The waveforms and timing relationships shown on figure 4 and the conditions specified in table I shall be adhered to, initially, and after each chip erasure (see 4.8.2), all bits are in the "H" state (output high). Information is introduced by selectively programming "L" and "H" into the desired bit locations. A programmed "L" can be changed to an "H" by programming an "H". No erasure is necessary (see 4.8.2).

6.6.2 Erasing procedure.

- a. Chip erase. The device is erased by setting the output enable (\overline{OE}) pin to 18-22 volts, while all inputs are set in the normal byte program mode. After the chip erasure, all bits are in the "H" state. The test conditions and limits specified in table IV shall be applied. To assure erasure of all bits in the array, the chip erase cycle must have been performed three times.
- b. Byte erase. The byte is erased by simultaneously programming an "H" state into each bit at the selected address.

STANDARDIZED MILITARY DRAWING	SIZE A	Δ		5962-86830		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444			REVISION LEVEL A		SHEET 33	

DESC FORM 193A SEP 87

- 6.5.3 Read mode operation. The device is in the read mode whenever the CE and OE pins are at a logic "L" (low level), and the WE pin is at $V_{\rm IH}$. The waveforms and timing relationships shown on figure 4 and the test conditions and limits specified in table I shall be applied.
- 6.7 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.
- 6.8 Approved sources of supply. Approved sources of supply are listed herein. Additional sources will be added as they become available. The vendors listed herein have agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part 1/ number	Replacement military specification part number	Programming procedure method
5962-8683001XX	2/	AM2864BE-250/BXA	M38510/22808BXX	A1
5962-8683001YX	<u>3/</u> 61394	AM2864BE-250/BUA	M38510/228 M38510/228	A1 C
5962-8683001ZX	<u>3/</u> 61394	AM2864BE-250/BYC FM2864-250/B		A1 C
5962-8683002XX	2/	AM2864BE-350/BXA	M38510/22807BXX	A1 C
5962-8683002YX	<u>3/</u>	AM2864BE-350/BUA	M38510/228 M38510/228	A1 C
5962-8683002ZX	<u>3/</u> 61394	AM2864BB-350/BYC FM2864-350/B	 	A1 C
5962-8683003XX	3/	AM2864BE-300/BXA		A1
5962-8683003YX	3/	AM2864BE-300/BUA		A1
5962-8683003ZX	3/	AM2864BE-300/BYC		A1
5962-8683004XX	61394	DM52B33H-250/B	İ	С
5962-8683004YX	i 61394 i	LM52B33H-250/B	1	С
5962-8683004ZX	61394	FM52B33H-250/B		<u>с</u> с
5962-8683005XX 5962-8683005YX	61394	DM2864H-250/B LM2864H-250/B	M38510/22809XX	c
5962-8683005ZX	61394	FM2864H-250/B	M38510/228	С

See footnotes at end of table.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A
5962-86830

REVISION LEVEL
A
34

DESC FORM 193A SEP 87

± U. S. GOVERNMENT PRINTING OFFICE: 1988—550-547

运问"5902-8083001XX"洪应向

Military drawing part number	Yendor CAGE number	Yendor similar part <u>1/</u> number	Replacement military specification part number	Programming procedure method
5962-8683006XX	60395	X2864ADMB-25	M38510/228	D
5962-8683006YX	60395	X2864AEMB-25	M38510/228	D
5962-8683006ZX	60395	X2864AFMB-25	M38510/228	ם
5962-8683007XX	60395	X2864ADMB-35	M38510/228	D
5962-8683007YX	l l 60395	X2864AEMB-35		D I
5962-8683007ZX	60395	X2864AFMB-35	M38510/228	D
5962-8683008XX	3/	AM2864A-25/BXA	M38510/228	A2
5962-8683008YX	3/	AM2864A-25/BUA	M38510/228	A2
5962-8683008ZX	3/	AM2864A-25/BYC	M38510/228	A2
5962-8683009XX	3/	AM2864AE-300/BXA	M38510/228	A2
5962-8683009YX	3/	AM2864AE-300/BUA	M38510/228	A2
5962-8683009ZX	3/	AM2864AE-300/BYC	M38510/228	A2
5962-8683010XX	3/			A2
5962-8683010YX	3/	<i>;</i>		A2
5962-8683010ZY	3/			A2

Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

2/ Inactive for new design, use M38510/228XXBXX.

3/ Not available from an approved source.

Vendor CAGE number		
61394	SEEQ Technology, Incorporated 1849 Fortune Drive San Jose, CA 95131	С
60395	XICOR, Incorporated 851 Buckeye Court Milpitas, CA 95035	D

STANDARDIZED MILITARY DRAWING	SIZE A		5962-86830	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET	35

DESC FORM 193A SEP 87

± U. S. GOVERNMENT PRINTING OFFICE: 1988—550-547