查问"5962-8 9	959801	М	X"·	供应	商				RE	VISK	ONS	-												
LTR			-		-	ESC	RIPT	10N									DATI	YR-	MO-D	A)	Al	PPRO	WED	
REV		1					<u> </u>				П				Γ								<u> </u>	Γ
SHEET		┢	-	}	-	H	-				H		T	_	┪			┪	┢					
REV	-	┢			Н	_			┢	┣┈	H		╅				_			1	Г			
SHEET		\vdash	1			┢			Н	┪	$ \cdot $	_	T	_			Т	Т						
	٦-	EV L	<u> </u>	╂─			\vdash	┢	┢	\vdash	H		1	_			H				1		Г	
OF SHEETS		HEET		7	,	<u> </u>		5	6	7	8	9	10	11	12	13	14	T	Г					Г
PMIC N/A STANDA				PRE	PREPARED BY DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444																			
MILIT DRAV	ARY VING			AB	MICROCIRCUITS, DIGITAL ADVANCED CMOS, 8-INPUT MULTIPLEXER, TTL COMPATIBLE INPUT THREE-STATE, MONOLITHIC SILICON						TS,													
THIS DRAWING FOR USE BY AL AND AGENO DEPARTMEN	L DEPAR CIES OF 1	MEN HE	TS			APR.	IL 1	989	AFE		. =		SIZE			672				59	962	- 8	959	99
AMSC N/A				RE\	/ISIOI	N LE	veL.							SHE	ET		1		OF	7	14			

+ U.S. GOVERNMENT PRINTING OFFICE: 1987 — 748-129/60911

5962-E1302

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

1. SCOPE 1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices". 1.2 Part number. The complete part number shall be as shown in the following example: 5962-89599 Device type Case outline Lead finish per Drawing number MIL-M-38510 (1.2.2)1.2.1 Device type. The device type shall identify the circuit function as follows: Generic number Circuit function Device type 8-input multiplexer with three state outputs. 01 54ACT251 TTL compatible inputs 1.2.2 Case outlines. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows: Case outline Outline letter D-2 (16-lead, .840" x .310" x .200"), dual-in-line package F-5 (16-lead, .440" x .285" x .085"), flat package C-2 (20-terminal, .358" x .358" x .100"), square chip carrier package Ε F 2 1.3 Absolute maximum ratings. -0.5 V dc to +6.0 V dc -0.5 V dc to V_{CC} + 0.5 V dc -0.5 V dc to V_{CC} + 0.5 V dc ±20 mA ±50 mA ±100 mA -65°C to +150°C Maximum power dissipation (PD) - - - - - - - -500 mW Lead temperature (soldering, 10 seconds) - - - - - Thermal resistance, junction-to-case (θ_{JC}) - - - -+300°C See MIL-M-38510, appendix C Junction temperature (T_J) $\underline{2}/$ -----+175°C 1.4 Recommended operating conditions. 4.5 V dc to 5.5 V dc Input voltage - - - - - - - - - - - - 0.0 V dc to V_{CC} Output voltage - - - - - - - - - - - - - 0.0 V dc to V_{CC} Case operating temperature range (T_{CC}) - - - - - - - - - - - - 55°C to +125°C Input rise or fall times: 0.0 to 24 ns (10-90%, 10ns/V) 0.0 to 20 ns (10-90%, 8ns/V) Unless otherwise specified, all voltages are referenced to GND. Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with method 5004 of MIL-STD-883. SIZE STANDARDIZED Α 5962-89599 **MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER REVISION LEVEL** SHEET DAYTON, OHIO 45444 DESC FORM 193A **☆ U. S. GOVERNMENT PRINTING OFFICE: 1988**—549-904 **SEP 87**

Powered by ICminer.com Electronic-Library Service CopyRight 2003

直面。2962-89298011V1大"拱应商

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
- 3.2.3 Test circuits and switching waveforms. The test circuits and switching waveforms shall be as specified on figure 3.
 - 3.2.4 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A
5962-89599

REVISION LEVEL
SHEET
3

DESC FORM 193A SEP 87

☆ U. S. GOVERNMENT PRINTING OFFICE: 1988—549-904

Test	 Symbol	-5	Conditi 5.°C <u><</u> T _C <	+125°	Ç .	Group A			Unit
	1,,		s otherwise				Min	Max	
High level output voltage	I V _{OH}	V _{IN} = 2.0 V I _{OH} = -50 μ		<u>*</u> C	C = 4.5 V	1, 2, 3	4.4		V
į				٧c	C = 5.5 V		5.4		
		V _{IN} = 2.0 V I _{OH} = -24 m	or 0.8 V, A <u>1</u> /	VC	C = 4.5 V		3.7	- 1	
		 		ν _C	C = 5.5 V		4.7		<u> </u>
		V _{IN} = 2.0 V I _{OH} = -50 m/	or 0.8 V,	VC	c = 5.5 V		3.85		
Low level output voltage	V _{OL}	V _{IN} = 2.0 V I _{OL} = 50 μA	or 0.8 V,	VC	c = 4.5 V	1, 2, 3] 	0.1	٧
		 	_	I V _C (c = 5.5 V			0.1	
	!	V _{IN} = 2.0 V I _{OL} = 24 mA		VC	; = 4.5 V		ļ	0.5	•
		 		VCI	; = 5.5 V		 	0.5	
	! ! !	 V _{IN} = 2.0 V I _{OL} = 50 mA	or 0.8 V,	VC	; = 5.5 ¥			1.65	
High level input voltage	V _{IH}	2/	, , , , , , , , , , , , , , , , , , , ,	ν _C c	= 4.5 V	1, 2, 3	2.0	İ	٧
		 		VCC	; = 5.5 Y		2.0		
ow level input voltage	۸ ^{IΓ}	<u>2</u> /		VCC	; = 4.5 Y	1, 2, 3		0.8	٧
]]]			VCC	= 5.5 V	- 	 	0.8	
nput leakage current	IIL	V _{IN} = 0.0 V		Vcc	= 5.5 V	1, 2, 3		-1.0	μА
	IIH	V _{IN} = 5.5 V						1.0	
ee footnotes at end	l of table.						<u>-</u>	·	
STANDA			SIZE A				E062 00		
MILITARY I				—	REVISION LEV		5962-89! SHEE		

★ U. S. GOVERNMENT PRINTING OFFICE: 1988--549-904

Test	Symbol	 _55	Conditi C < Tc <	ons +125°C	Group A subgroups	Lim	Unit	
	<u> </u>	unless	otherwis	specified	<u> </u>	Min	Max	
Maximum I _{CC} /TTL inputs High	ΔICC	V _{CC} = 5.5 V,	1, 2, 3		1.6 	mA		
Quiescent current	ICCH	V _{IN} = V _{CC} or V _{CC} = 5.5 V	GND,		1, 2, 3		160	μА
	ICCL						160	
	ICCZ						160	
Off state output leakage current	IOZH	V _{IN} = V _{CC} or V _{CC} = 5.5 V			1, 2, 3	 	10.0	μА
	IOZL	V _{OUT} = 5.5 \	/ or 0.0 V			 	 -10.0	
Input capacitance	CIN	See 4.3.1c			4		8.0	pF
Power dissipation capacitance	I C _{PD}	See 4.3.1c	4		110	pF		
Functional tests		Tested at Volume Tested at Vo	CC = 4.5 V 5 V,	and repeated	7, 8	 		
Propagation delay time, In to Z	t _{PHL1}	C _L = 50 pF, R _L = 500Ω,			9 10, 11	1.0		ns
	t _{PLH1}	VCC = 4.5 V See figure :	3 4/		9 10, 11	1.0	11.5 13.5	i
Propagation delay time, In to Z	tPHL2	- <u> </u> - <u> </u>	-		9 10, 11	1.0	12.5 15.0	l ns
	tpLH2				9 10, 11	1.0 1.0	12.0 14.0	İ
Propagation delay time, Sn to Z	tpHL3	- - -			9 10, 11	1.0	14.5 18.0	l ns
	t _{PLH3}	! !			9 10,11		14.5	
See footnotes at end	of table	•						
STANDA			SIZE A			5962-8	89599	
MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER			. ~]					

☆ U. S. GOVERNMENT PRINTING OFFICE: 1988---549-904

Test	 Symbol	Conditions	Group A	Lim	ts	Unit
	ļ 	-55°C < T _C < +125°C unless otherwise specified	subgroups	Min	Max	[]
Propagation delay time, Sn to Z	t _{PHL4}	C _L = 50 pF, R _L = 500Ω,	9 10, 11	1.0 1.0	15.5 19.5	ns
	 tpLH4 	V _{CC} = 4.5 V See figure 3 <u>4</u> /	9 10, 11	1.0 1.0	14.5 18.5	
Output enable time, OE to Z	t _{PZH1}	 	9 10, 11	1.0 1.0	8.5 10.0	ns
	t _{PZL1}		9 10, 11	1.0	8.0 9.5	<u> </u>
Output disable time, OE to Z	t _{PHZ1}		9	1.0	11.0 12.5	l ns
	t _{PLZ1}		9 10, 11	1.0	8.5 9.5	
Output enable time, \overline{OE} to \overline{Z}	t _{PZH2}	<u> </u>	9 10, 11	1.0 1.0	8.5 10.0	ns
	t _{PZL2}		9 10, 11	1.0 1.0	8.5 10.0	
Output disable time, \overline{OE} to \overline{Z}	t _{PHZ2}		9 10, 11	1.0 1.0	12.0 13.5	l ns
	t _{PLZ2}] 	9 10, 11	1.0	7.5 8.5	!

- $^{1/}$ V_{OH} and V_{OL} tests shall be tested at V_{CC} = 4.5 V. V_{OH} and V_{OL} are guaranteed, if not tested, for V_{CC} = 5.5 V. Limits shown apply to operation at V_{CC} = 5.0 V ±0.5 V. Transmission driving tests are performed at V_{CC} = 5.5 V with a 2 ms duration maximum.
- $^{2/}$ V $_{IH}$ and V $_{IL}$ tests are not required, and shall be applied as forcing functions for V $_{OH}$ and V $_{OL}$ tests.
- $\frac{3}{2}$ Power dissipation capacitance (CpD), determines the dynamic power consumption, $P_D = (CpD + C_L) (V_{CC} \times V_{CC})f + I_{CC} (V_{CC})$, and the dynamic current consumption (Is) is, Is = (CpD + CL) V_{CC} f + I_{CC}.
- 4/ AC limits at V_{CC} = 5.5 V are equal to limits at V_{CC} = 4.5 V and guaranteed by testing at V_{CC} = 4.5 V. Minimum ac guaranteed for V_{CC} = 5.5 V by guardbanding V_{CC} = 4.5 V limits to 1.5 ns (minimum).

STANDARDIZED MILITARY DRAWING	·SIZE A		5962-89599
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 6

± U. S. GOVERNMENT PRINTING OFFICE: 1988--549-904

重询"5962-8959801ⅣIIX"供应商

Case outlines	E and F	2				
Terminal number	Terminal symbol					
1 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	13 12 11 10 Z V OE SS2 SS1 SO 17 16 15 14 VCC	NC 13 12 11 10 10 7 7 7 7 7 7 7 7 7				

NC = No connection

FIGURE 1. Terminal connections.

STANDARDIZED

MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

DESC FORM 193A SEP 87

★ U. S. GOVERNMENT PRINTING OFFICE: 1988--549-904

	Inj	Out	puts		
<u>OE</u>	S2	S1	l SO	Z	Z
H L L L L L L L L L	X L L L H H	X L H H L H	X L H L H L	Z 10 11 12 13 14 15 16	Z IO I1 I2 I3 I4 I5 I6

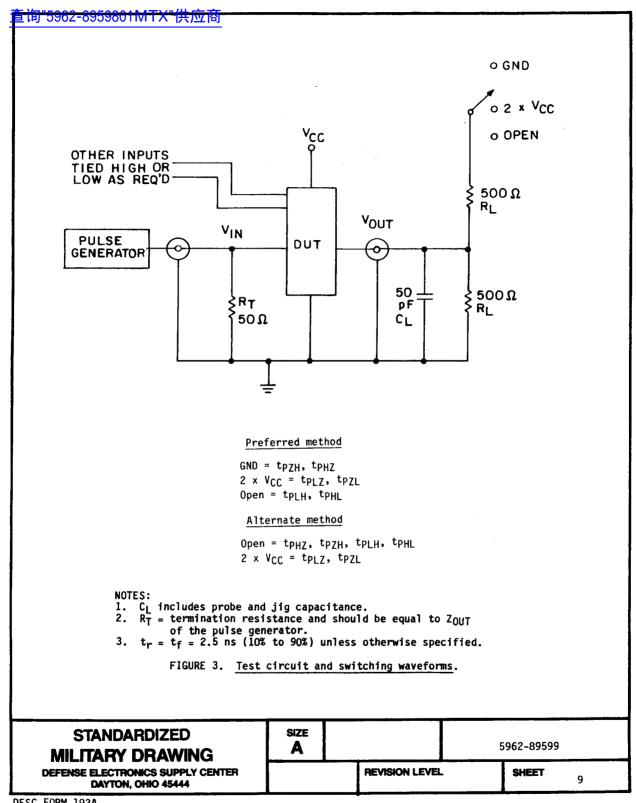
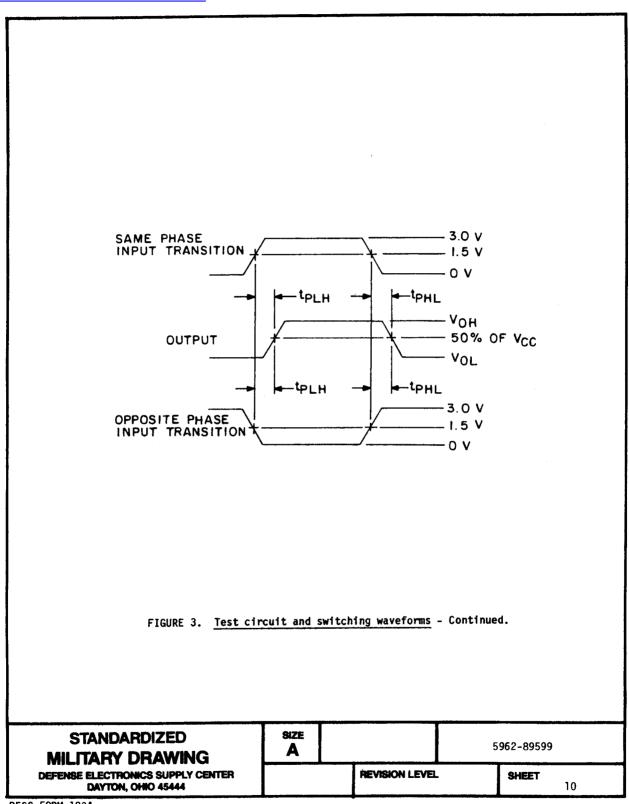
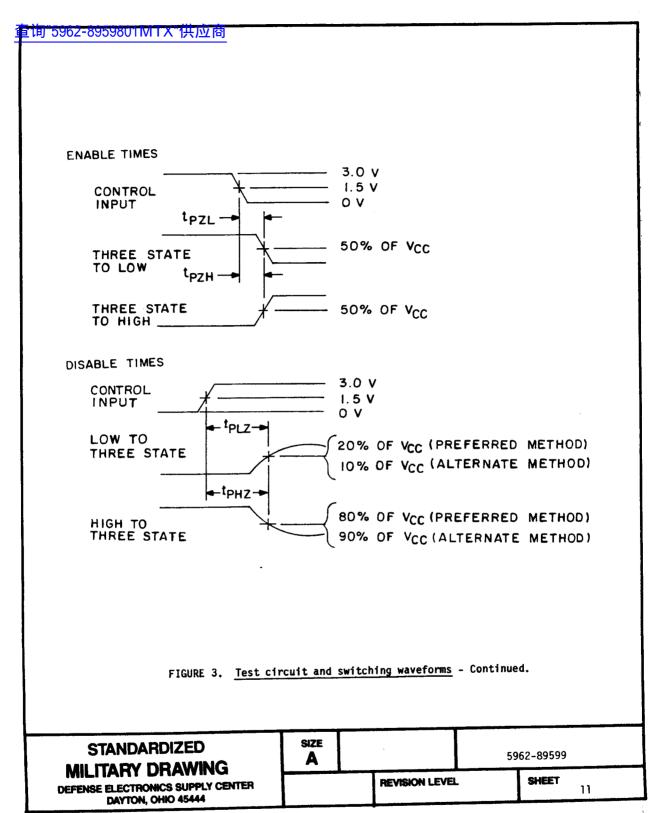

H = High voltage level
L = Low voltage level
X = Irrelevant
Z = High impedance state

FIGURE 2. Truth table.


STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 SIZE A 5962-89599 REVISION LEVEL SHEET 8

DESC FORM 193A SEP 87


★ U. S. GOVERNMENT PRINTING OFFICE: 1988—549-904

± U. S. GOVERNMENT PRINTING OFFICE: 1988—549-904

± U. S. GOVERNMENT PRINTING OFFICE: 1988-549-904

☆ U. S. GOVERNMENT PRINTING OFFICE: 1988--549-90

- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 <u>Verification and review.</u> DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. OUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125$ °C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-SID-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883, shall be omitted.
 - c. Subgroup 4 ($C_{\rm IN}$ and $C_{\rm PD}$ measurements) shall be measured only for the initial test and after process or design changes which may affect capacitance. Test all applicable pins on 5 devices with zero failures.
 - d. Subgroups 7 and 8 tests shall verify the truth table as specified on figure 2 herein.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test condition, method 1005 of MIL-STD-883.
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_{\Delta} = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-89599				
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444			REVISION LEVEL	•	SHEET	12	

查询"5962-8959801MTX"供应商

TABLE II. Electrical test requirements.

 MIL-STD-883 test requirements 	Subgroups (per method 5005, table I)
 Interim electrical parameters (method 5004)	
 Final electrical test parameters (method 5004)	 1*,2,3,7,8,9, 10,11
 Group A test requirements (method 5005)	1,2,3,4,7,8, 9,10,11
 Groups C and D end-point electrical parameters (method 5005)	1,2,3

^{*} PDA applies to subgroup 1.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

STANDARDIZED

MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A

REVISION LEVEL

DESC FORM 193A SEP 87

☆ U. S. GOVERNMENT PRINTING OFFICE: 1988--549-904

5962-89599

SHEET

6.4 Approved sources of supply. Approved sources of supply are listed herein. Additional sources will be added as they become available. The vendors listed herein have agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

 Military drawing part number 	Vendor CAGE number	Vendor similar part number <u>1</u> /
5962-8959901EX	27014	54ACT251DMQB
5962-8959901FX	27014	54ACT251FMQB
5962-89599012X	27014	 54ACT251LMQB

1/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number

27014

Vendor name and address

National Semiconductor 333 Western Avenue South Portland, ME 04106

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE A 5962-89599

REVISION LEVEL SHEET 14

DESC FORM 193A SEP 87

★ U. S. GOVERNMENT PRINTING OFFICE: 1988--549-904

012553 _ _ _