

Product Description

Sirenza Microdevices' SGA-9089Z is a high performance Silicon Germanium Heterostructure Bipolar Transistor (SiGe HBT) designed for operation from DC to 4.0 GHz. The SGA-9089Z is optimized for 3.0V operation. The device provides excellent linearity at a low cost. It can be operated over a wide range of currents depending on the power and linearity requirements.

The matte tin finish on Sirenza's lead-free "Z" package is applied using a post annealing process to mitigate tin whisker formation and is RoHS compliant per EU Directive 2002/95. The package body is manufactured with green molding compounds that contain no antimony trioxide or halogenated fire retardants.

Preliminary

SGA-9089Z

High IP3, Medium Power Discrete SiGe Transistor

RoHS Compliant & Green Package

Product Features

- DC-4 GHz Operation
- Lead Free, RoHS Compliant & Green Package
- 15.0 dB Gmax @ 2.44 GHz
- P_{1dB} = +23.8 dBm @ 2.44 GHz
- OIP₃ = +37.5 dBm @ 2.44 GHz
- 3.1 dB NF @ 2.44 GHz
- Low Cost, High Performance, Versatility

Applications

- Analog and Digital Wireless Systems
- 3G, Cellular, PCS, RFID
- Fixed Wireless, Pager Systems
- PA stage for Medium Power Applications

Symbol	Parameters	Units	Frequency	Min.	Тур.	Max.		
	Maximum Available Gain		880 MHz		23.2			
G_{MAX}	$Z_S = Z_S^*$, $Z_L = Z_L^*$	dB	1960 MHz		16.4			
			2440 MHz		15.0			
G	Power Gain	dB	880 MHz ^[1]		18.0			
	Z _S =Z _{SOPT} , Z _L =Z _{LOPT}		1960 MHz ^[2]		13.0			
	-S -SOP1, -L -LOP1		2440 MHz ^[2]		11.0			
P _{1dB}	Output Power at 1dB Compression [2]		880 MHz		23.7			
	$Z_{\rm S} = Z_{\rm SOPT}$, $Z_{\rm L} = Z_{\rm LOPT}$	dBm	1960 MHz	880 MHz 23.7 1960 MHz 23.7 2440 MHz 23.8 880 MHz 37.4				
			2440 MHz		23.8			
	Output Third Order Intercept Point [2]		880 MHz		37.4			
OIP ₃	$Z_{\rm S} = Z_{\rm SOPT}$, $Z_{\rm L} = Z_{\rm LOPT}$	dBm	1960 MHz					
			2440 MHz		37.5			
	Noise Figure [2]		880 MHz		3.2			
NF	$Z_{S}=Z_{SOPT}, Z_{L}=Z_{LOPT}$	dB	1960 MHz					
			2440 MHz		3.1			
h _{FE}	DC Current Gain			100	180	300		
BV _{CEO}	SV _{CEO} Collector - Emitter Breakdown Voltage			5.7	6			
Rth, j-l	Thermal Resistance (Junction - lead)	°C/W			48			
V_{CE}	Device Operating Voltage (collector- emitter)	V				3.8		
I _{CE}	Device Operating Current (collector - emitter)	mA				220		

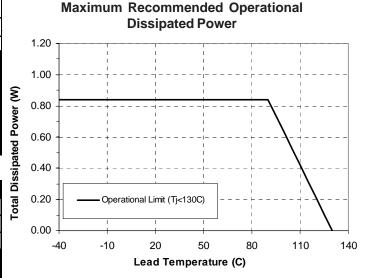
Test Conditions: $V_{CE} = 3.0V$, $I_{CE} = 170$ mA Typ. (unless noted otherwise), $T_L = 25$ °C OIP₃ Tone Spacing = 1MHz, Pout per tone = 10 dBm [1] 100% production tested with Application Circuit [2] Data with Application Circuit

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2005 Sirenza Microdevices, Inc.. All worldwide rights reserved.

Absolute Maximum Ratings

Parameter	Absolute Limit
Max Device Current (I _{CE})	235 mA
Max Base Current (I _B)	2.5 mA
Max Device Voltage (V _{CE})	4.5 V
Max Collector - Base Voltage (V _{CB})	12 V
Max Emitter - Base Voltage (V _{EB})	4.5 V
Max. RF Input Power* (See Note)	+24 dBm
Max. Junction Temp. (T _J)	+150°C
Operating Temp. Range (T _L)	See Graph
Max. Storage Temp.	+150°C

Note: Load condition, $Z_L = 50$ Ohms

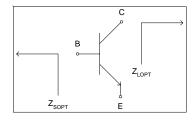

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias Conditions should also satisfy the following expression:

 $I_D \overline{V}_D < (\overline{T}_J - \overline{T}_L) / R_{TH}, j-1$ $T_{L}=T_{LEAD}$

Reliability & Qualification Information				
Parameter	Rating			
ESD Rating - Human Body Model (HBM)	Class 1C			
Moisture Sensitivity Level	MSL 1			

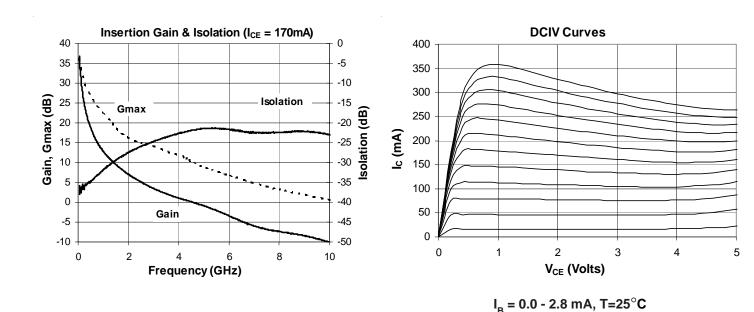
This product qualification report can be downloaded at www.sirenza.com


Caution: ESD sensitive

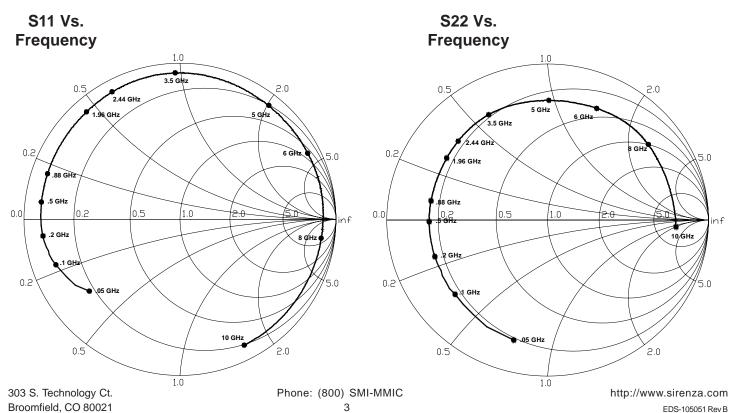
Appropriate precautions in handling, packaging and testing devices must be observed.

Typical performance - Engineering Application Circuits

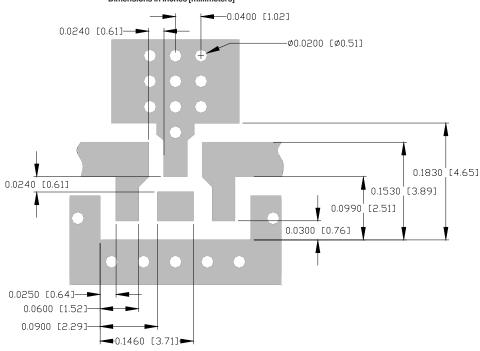
Freq	V_{CE}	I _{CE}	P_{1dB}	OIP_3	Gain	S11	S22	NF	Z_{SOPT}	Z_{LOPT}
(MHz)	(V)	(mA)	(dBm)	(dBm)	(dB)	(dB)	(dB)	(dB)	(Ω)	(Ω)
880	3	170	23.7	37.4	18.0	-18.6	-18.7	3.2	14.8 - j5.6	16.7 - j0.105
2440	3	170	23.8	37.5	11.0	-18.7	-23.9	3.1	11.1 - j23.5	16.4 - j14.2
Test Conditions: $V_S = 5V$ $I_S = 180 \text{mA Typ.}$ OIP ₃ Tone Spacing = 1MHz, Pout per tone = 10 dBm $TL = 25^{\circ}\text{C}$										

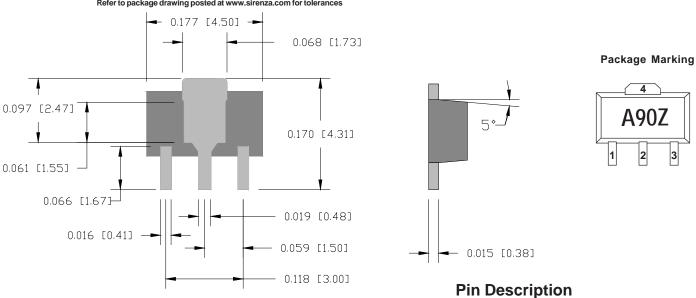

Data above represents typical performance of the application circuits. Refer to the application note for additional RF data, PCB layouts, and BOMs for each application circuit. The application note also includes biasing instructions and other key issues to be considered. For the latest application notes please visit our site at www.sirenza.com or call your local sales representative.

303 S. Technology Ct. Broomfield, CO 80021 Phone: (800) SMI-MMIC 2


http://www.sirenza.com

Typical Performance - De-embedded S-parameters


Note: S-parameters are de-embedded to the device leads with $Z_s = Z_L = 50\Omega$. The device was mounted on Sirenza's recommended evaluation board. De-embedded S-parameters can be downloaded from our website (www.sirenza.com)


Suggested PCB Pad Layout

Dimensions in inches [millimeters]

Nominal Package Dimensions

Dimensions in inches (millimeters)
Refer to package drawing posted at www.sirenza.com for tolerances

Part Number Ordering Information

Part Number	Reel Size	Devices / Reel
SGA-9089Z	7"	1000

Pin#	Function	Description		
1	RF IN	RF input / Base Bias. External DC blocking capacitor required		
2, 4 GND		Connection to ground. Use via holes to reduce lead inductance. Place via holes as close to lead as possible		
3	RF OUT	RF Out / Collector bias. External DC blocking capacitor required		

303 S. Technology Ct. Broomfield, CO 80021

Phone: (800) SMI-MMIC

http://www.sirenza.com