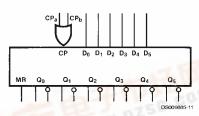
FAIRCHILD SEMICONDUCTOR IM March 1998

100351

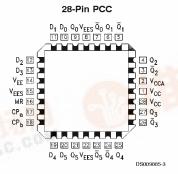
Low Power Hex D Flip-Flop

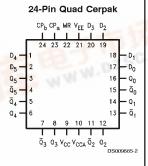

General Description

The 100351 contains six D-type edge-triggered, master/slave flip-flops with true and complement outputs, a pair of common Clock inputs ($\mathrm{CP_a}$ and $\mathrm{CP_b}$) and common Master Reset (MR) input. Data enters a master when both $\mathrm{CP_a}$ and $\mathrm{CP_b}$ are LOW and transfers to the slave when $\mathrm{CP_a}$ and $\mathrm{CP_b}$ (or both) go HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have 50 kQ pull-down resistors.

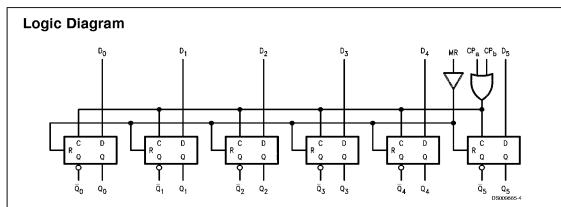
Features

- 40% power reduction of the 100151
- 2000V ESD protection
- Pin/function compatible with 100151
- Voltage compensated operating range: -4.2V to -5.7V
- Available to industrial grade temperature range


Ordering Code: Logic Symbol



Pin Names	Description
D ₀ -D ₅	Data Inputs
D ₀ –D ₅ CP _a , CP _b	Common Clock Inputs
MR	Asynchronous Master Reset Input
$\overline{Q}_0 - \overline{Q}_5$ $\overline{Q}_0 - \overline{Q}_5$	Data Outputs
$\overline{Q}_0 - \overline{Q}_5$	Complementary Data Outputs


Connection Diagrams

© 1998 Fairchild Semiconductor Corporation DS009885

Truth Tables (Each Flip-flop)

Synchronous Operation

	Inp	Inputs											
D _n	CPa	Q _n (t+1)											
L	~	L	L	L									
Н	~	L	L	Н									
L	L	~	L	L									
Н	L	~	L	Н									
Х	Н	~	L	Q _n (t)									
Х		Н	L	$Q_n(t)$									
Х	L	L	L	$Q_n(t)$									

Asynchronous Operation

Ī		Outputs			
ſ	D _n	CP _a	Q _n (t+1)		
ſ	Х	Х	Х	Н	L

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care

t = Time before CP positive transition t+1 = Time after CP positive transition ✓ = LOW-to-HIGH transition

Absolute Maximum Ratings (Note 1)

Above which the useful life may be impaired

-65°C to +150°C Storage Temperature (T_{STG})

Maximum Junction Temperature (T_J)

Ceramic +175°C Plastic +150°C V_{EE} Pin Potential to Ground Pin -7.0V to +0.5VInput Voltage (DC) V_{EE} to +0.5V Output Current (DC Output HIGH) -50 mA

ESD (Note 2) ≥2000V

Recommended Operating Conditions

Case Temperature (T_C)

Commercial 0°C to +85°C -40°C to +85°C Industrial Military -55°C to +125°C -5.7V to -4.2V Supply Voltage (V_{EE})

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = 0°C to +85°C (Note 3)

Symbol	Parameter	Min	Тур	Max	Units	Condi	tions			
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	V _{IN} =V _{IH} (Max)	Loading with			
V _{OL}	Output LOW Voltage	-1830	-1705	-1620		or V _{IL} (Min) 50Ω to -2.0V				
V _{OHC}	Output HIGH Voltage	-1035			mV	V _{IN} = V _{IH} (Min)	Loading with			
V _{OLC}	Output LOW Voltage			-1610		or V _{IL} (Max)	50Ω to –2.0V			
V _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal				
						for All Inputs				
V _{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal				
						for All Inputs				
IIL	Input LOW Current	0.50			μΑ	$V_{IN} = V_{IL} (Min)$				
I _{IH}	Input HIGH Current									
	MR			350						
	D_0 – D_5			240	μΑ	V _{IN} = V _{IH} (Max)				
	CP _a , CP _b			350						
I _{EE}	Power Supply Current	-129		-62	mA	Inputs Open				

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

 $V_{\sf EE}$ = -4.2V to -5.7V, $V_{\sf CC}$ = $V_{\sf CCA}$ = GND

Symbol	Parameter	T _c =	: 0°C	T _C =	T _C = +25°C		+85°C	Units	Conditions
		Min	Max	Min	Max	Min	Max	1	
f _{max}	Toggle Frequency	375		375		375		MHz	Figures 2, 3
t _{PLH}	Propagation Delay	0.80	2.00	0.80	2.0	0.90	2.10	ns	Figures 1, 3
t _{PHL}	CP _a , CP _b to Output								
t _{PLH}	Propagation Delay	1.10	2.30	1.10	2.30	1.20	2.40	ns	Figures 1, 4
t _{PHL}	MR to Output								
t _{TLH}	Transition Time	0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1, 3
t _{THL}	20% to 80%, 80% to 20%								
ts	Setup Time								Figure 5
	D ₀ -D ₅	0.40		0.40		0.40		ns	
	MR (Release Time)	1.60		1.60		1.60			Figure 4
t _H	Hold Time	0.80		0.80		0.80		ns	Figure 5
	D ₀ -D ₅								
t _{pw} (H)	Pulse Width HIGH	2.00		2.00		2.00		ns	Figures 3, 4
	CP _a , CP _b , MR								

SOIC, PCC and Cerpak AC Electrical Characteristics

 $V_{EE} = -4.2V \text{ to } -5.7V, V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	= 0°C	T _C =	+25°C	T _C =	+85°C	Units	Conditions
		Min	Max	Min	Max	Min	Max	1	
f _{max}	Toggle Frequency	375		375		375		MHz	Figures 2, 3
t _{PLH}	Propagation Delay	0.80	1.80	0.80	1.80	0.90	1.90	ns	Figures 1, 3
t _{PHL}	CP _a , CP _b to Output								
t _{PLH}	Propagation Delay	1.10	2.10	1.10	2.10	1.20	2.20	ns	Figures 1, 4
t _{PHL}	MR to Output								
t _{TLH}	Transition Time	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1, 3
t _{THL}	20% to 80%, 80% to 20%								
t _s	Setup Time								Figure 5
	D ₀ -D ₅	0.30		0.30		0.30		ns	
	MR (Release Time)	1.50		1.50		1.50			Figure 4
t _H	Hold Time	0.80		0.80		0.80		ns	Figure 5
	D ₀ -D ₅								
t _{pw} (H)	Pulse Width HIGH	2.00		2.00		2.00		ns	Figures 3, 4
	CP _a , CP _b , MR								
toshl	Maximum Skew Common Edge								PCC only
	Output-to-Output Variation		220		220		220	ps	(Note 4)
	Clock to Output Path								
tosch	Maximum Skew Common Edge								PCC only
	Output-to-Output Variation		210		210		210	ps	(Note 4)
	Clock to Output Path								
tost	Maximum Skew Opposite Edge								PCC only
	Output-to-Output Variation		240		240		240	ps	(Note 4)
	Clock to Output Path								
t _{PS}	Maximum Skew								PCC only
	Pin (Signal) Transition Variation		230		230		230	ps	(Note 4)
	Clock to Output Path								

Note 4: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (toshL), or LOW to HIGH (tostH), or in opposite directions both HL and LH (tost). Parameters tost and the guaranteed by design.

Industrial Version

PCC DC Electrical Characteristics

 $\rm V_{EE}{=}{-}4.2V$ to ${-}5.7V,~V_{CC}{=}V_{CCA}{=}$ GND, $\rm T_{C}{=}~0^{\circ}C$ to ${+}85^{\circ}C$ (Note 5)

Symbol	Parameter	T _C =	-40°C	$T_C = 0^\circ \text{ to } +85^\circ \text{C}$		Units	Conditions		
		Min	Max	Min	Max	1			
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} =V _{IH} (Max)	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620		or V _{IL} (Min)	50Ω to -2.0V	
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	$V_{IN} = V_{IH} (Min)$	Loading with	
V _{OLC}	Output LOW Voltage		-1565		-1610	1	or V _{IL} (Max)	50Ω to -2.0V	
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal		
							for All Inputs		
V _{IL}	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW	Signal	
							for All Inputs		
I _{IL}	Input LOW Current	0.50		0.50		μА	$V_{IN} = V_{IL} (Min)$		
I _{IH}	Input HIGH Current								
	MR		350		350				
	D ₀ -D ₅		240		240	μΑ	V _{IN} = V _{IH} (Max)		
	CP _a , CP _b		350		350				

PCC DC Electrical Characteristics (Continued)

 V_{EE} =-4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = 0°C to +85°C (Note 5)

Symbol	Parameter	T _C =	-40°C	T _C = 0°	to +85°C	Units	Conditions
		Min	Max	Min	Max		
I _{EE}	Power Supply Current	-129	-62	-129	-62	mA	Inputs Open

Note 5: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PCC AC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND

Symbol	Parameter	T _c =	$T_C = -40^{\circ}C$ T_C		+25°C	T _C =	+85°C	Units	Conditions
		Min	Max	Min	Max	Min	Max		
f _{max}	Toggle Frequency	375		375		375		MHz	Figures 2, 3
t _{PLH}	Propagation Delay	0.80	1.80	0.80	1.80	0.90	1.90	ns	Figures 1, 3
t _{PHL}	CP _a , CP _b to Output								
t _{PLH}	Propagation Delay	1.10	2.10	1.10	2.10	1.20	2.20	ns	Figures 1, 4
t _{PHL}	MR to Output								
t _{TLH}	Transition Time	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1, 3
t_{THL}	20% to 80%, 80% to 20%								
ts	Setup Time								Figure 5
	D ₀ -D ₅	0.60		0.30		0.30		ns	
	MR (Release Time)	2.20		1.50		1.50			Figure 4
t _H	Hold Time	0.60		0.90		0.90		ns	Figure 5
	D ₀ -D ₅								
t _{pw} (H)	Pulse Width HIGH	2.00		2.00		2.00		ns	Figures 3, 4
	CP _a , CP _b , MR								

Military Version—Preliminary DC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = -55°C to +125°C

Symbol	Parameter	Min	Max	Units	T _C	Condit	ions	Notes
V _{OH}	Output HIGH Voltage	-1025	-870	mV	0°C to	V _{IN} = V _{IH} (Max)	Loading with	(Notes 6, 7, 8)
					+125°C	or V _{IL} (Min)	50Ω to -2.0V	
		-1085	-870	mV	−55°C	1		
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to	1		
					+125°C			
		-1830	-1555	mV	−55°C	1		
V _{OHC}	Output HIGH Voltage	-1035		mV	0°C to	$V_{IN} = V_{IH} (Min)$	Loading with	(Notes 6, 7, 8)
					+125°C	or V _{IL} (Max)	50Ω to -2.0V	
		-1085		mV	–55°C	1		
Volc	Output LOW Voltage		-1610	mV	0°C to	1		
					+125°C			
			-1555	mV	−55°C	1		
V _{IH}	Input HIGH Voltage	-1165	-870	mV	–55°C to	Guaranteed HIGH	Signal	(Notes 6, 7, 8, 9)
					+125°C	for All Inputs		
V _{IL}	Input LOW Voltage	-1830	-1475	mV	–55°C to	Guaranteed LOW	Signal	(Notes 6, 7, 8, 9)
					+125°C	for All Inputs		
I _{IL}	Input LOW Current	0.50		μΑ	–55°C to	$V_{EE} = -4.2V$		(Notes 6, 7, 8)
					+125°C	$V_{IN} = V_{IL} (Min)$		

DC Electrical Characteristics (Continued)

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = -55°C to +125°C

Symbol	Parameter	Min	Max	Units	T _c	Conditions	Notes
I _{IH}	Input HIGH Current					V _{EE} = -5.7V	(Notes 6, 7, 8)
	CP, MR		350	μΑ	0°C to	V _{IN} = V _{IH} (Max)	
	D_0-D_5		240		+125°C		
	CP, MR		500	μΑ	−55°C		
	D_0-D_5		340				
I _{EE}	Power Supply Current	-135	-50	mA	–55°C to	Inputs Open	(Notes 6, 7, 8)
					+125°C		

Note 6: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals –55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 7: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

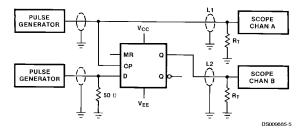
Note 8: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 9: Guaranteed by applying specified input condition and testing V_{OH}/V_{OL}

AC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND

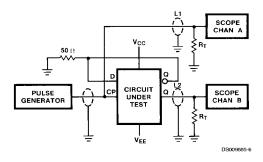
Symbol	Parameter	T _C =	–55°C	T _C =	+25°C	T _C = 4	-125°C	Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max	1		
f _{max}	Toggle Frequency	375		375		375		MHz	Figures 2, 3	(Note 13)
t _{PLH}	Propagation Delay	0.50	2.40	0.60	2.20	0.60	2.60	ns	Figures 1, 3	
t _{PHL}	CP _a , CP _b to Output									(Notes 10, 11, 12)
t _{PLH}	Propagation Delay	0.70	2.70	0.80	2.60	0.80	2.90	ns	Figures 1, 4	
t _{PHL}	MR to Output									
t _{TLH}	Transition Time	0.20	1.60	0.20	1.60	0.20	1.60	ns	Figures 1, 3	(Note 13)
t _{THL}	20% to 80%, 80% to 20%									
t _s	Setup Time									
	D ₀ -D ₅	0.90		0.80		0.90		ns	Figure 5	
	MR (Release Time)	1.60		1.80		2.60			Figure 4	
t _h	Hold Time	1.50		1.40		1.60		ns	Figure 5	
	D ₀ -D ₅									
t _{pw} (H)	Pulse Width HIGH	2.00		2.00		2.00		ns	Figures 3, 4	
	CP _a , CP _b , MR									


Note 10: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at told temperatures.

Note 11: Screen tested 100% on each device at +25°C, Temperature only, Subgroup A9.

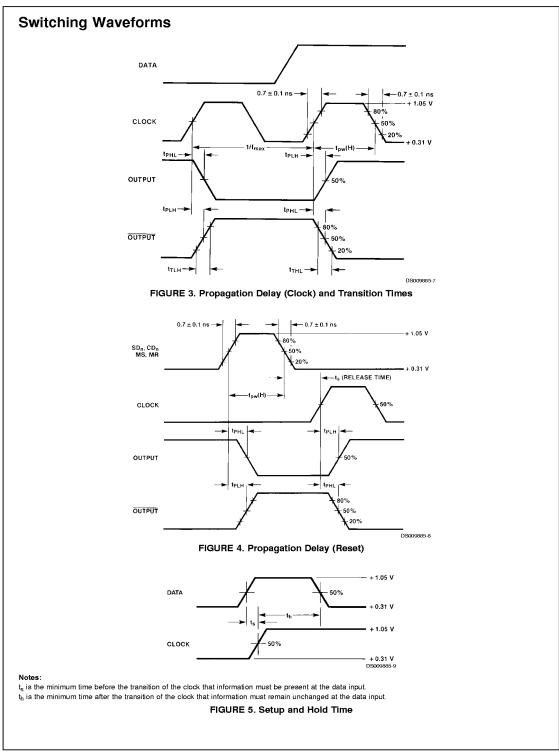
Note 12: Sample tested (Method 5005, Table I) on each Mfg. lot at +25°C, Subgroup A9, and at +125°C, and -55°C Temperature, Subgroups A10 and A11.

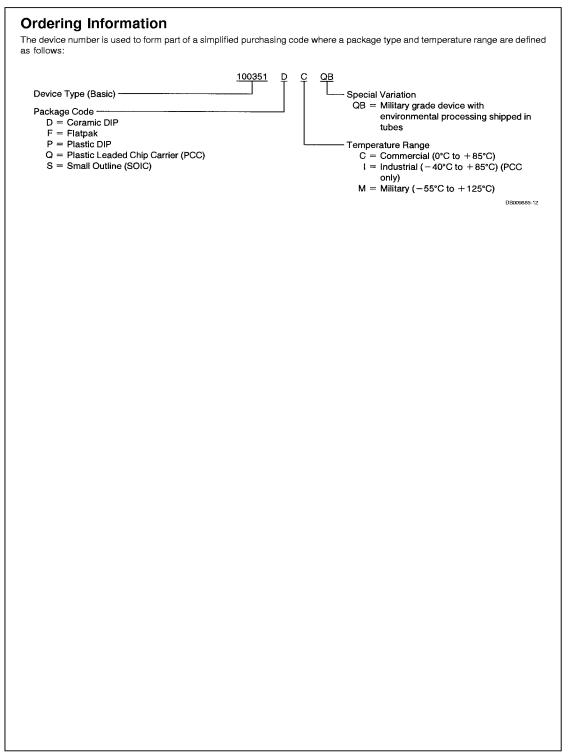
Note 13: Not tested at +25°C, +125°C and -55°C Temperature (design characterization data).


Test Circuitry

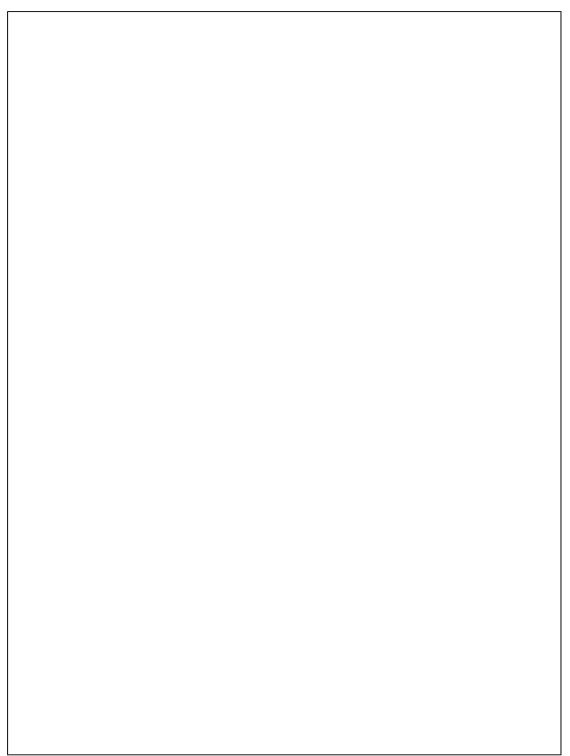
Notes:

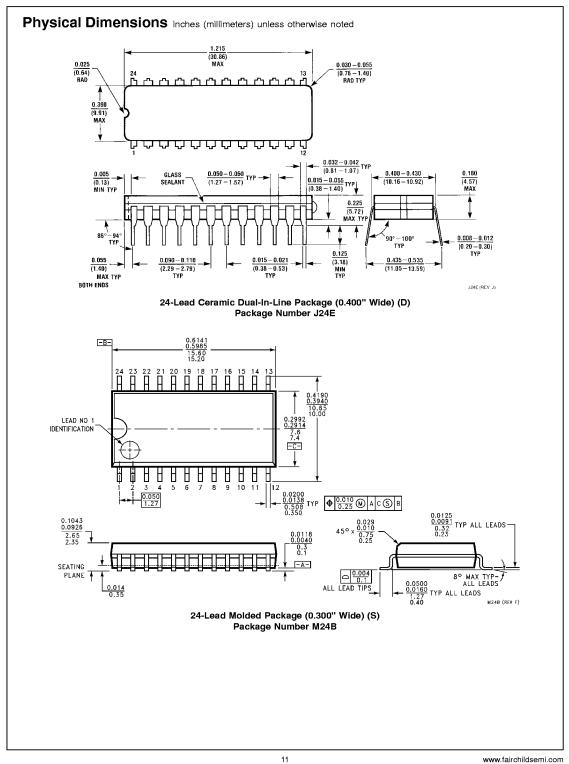
Notes: $V_{CC}, V_{CCA} = +2V, V_{EE} = -2.5V$ L1 and L2 = equal length 50Ω impedance lines $R_T = 50\Omega$ terminator internal to scope Decoupling 0.1 μF from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND C_L = Fixture and stray capacitance \leq 3 pF

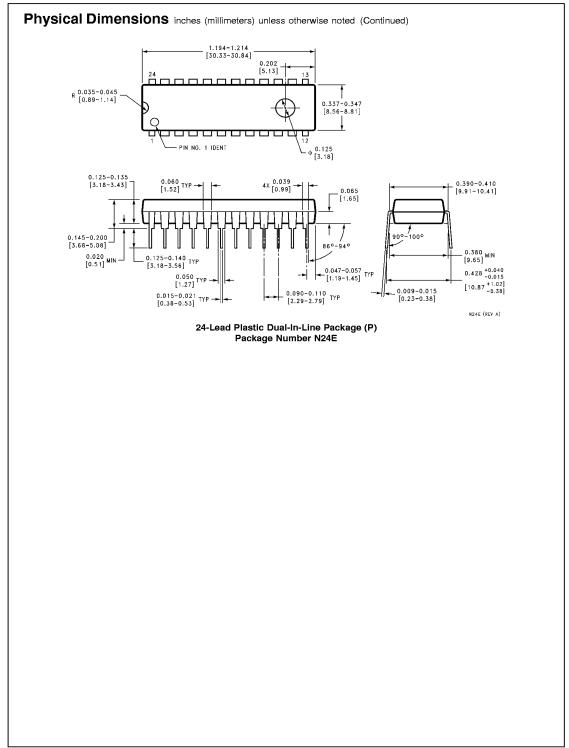

FIGURE 1. AC Test Circuit

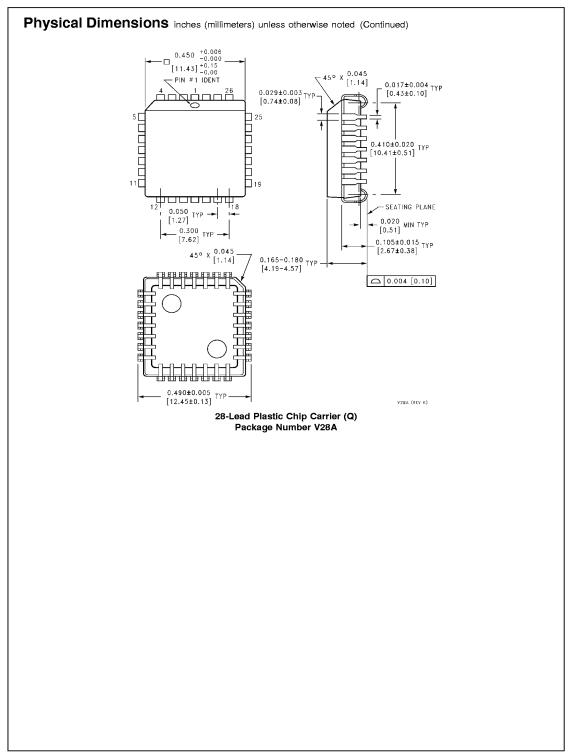


Notes:

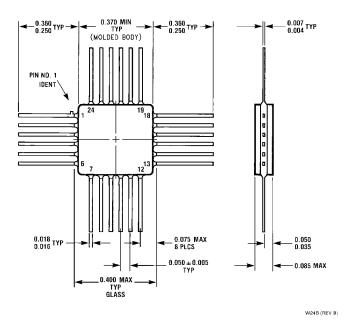

Notes: V_{CC} , V_{CCA} = +2V, V_{EE} = -2.5V L1 and L2 = equal length 50Ω impedance lines R_T = 50Ω terminator internal to scope Decoupling 0.1 μ F from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND C_L = Jig and stray capacitance \leq 3 pF


FIGURE 2. Toggle Frequency Test Circuit





查询"100351DC"供应商



Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

24-Lead Quad Cerpak (F) Package Number W24B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation
Americas
Customer Response Center
Tel: 1-888-522-5372

www.fairchildsemi.com

Fairchild Semiconductor

Fairchia Semicoruaciós

Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.supponle.os.com

Deutsch Tel: +49 (0) 81-13-5-0
English Tel: +44 (0) 1 793-85-68-56
Italy Tel: +39 (0) 2 57 5631

Tsimshatsui, Kowloon Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. National Semiconductor

Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.