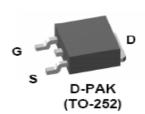
FAIRCHILD

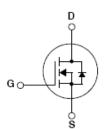
SEMICONDUCTOR®

FDD8444_F085

N-Channel PowerTrench[®] MOSFET

40V, 50A, 5.2m Ω

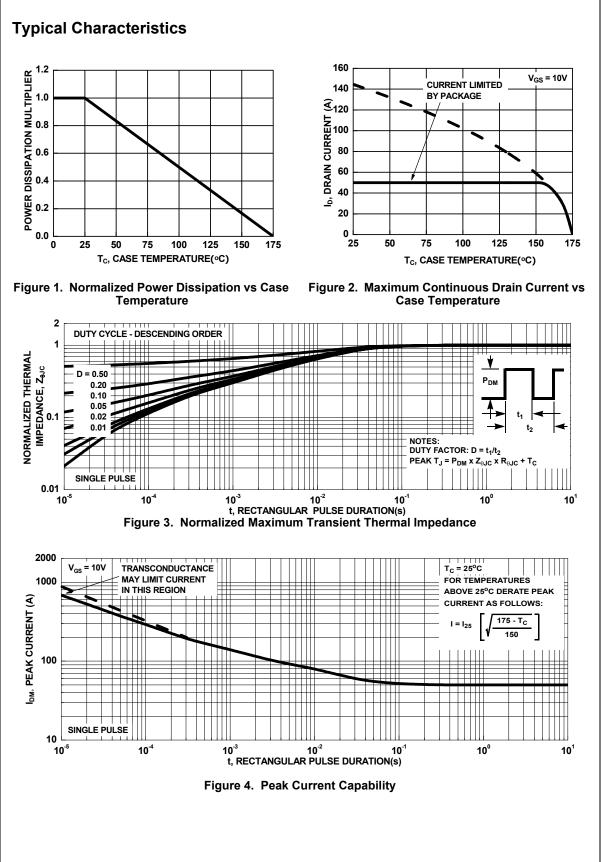

Features


- Typ $r_{DS(on)}$ = 4m Ω at V_{GS} = 10V, I_D = 50A
- Typ Q_{g(10)} = 89nC at V_{GS} = 10V
- Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse/ Repetitive Pulse)
- Qualified to AEC Q101
- RoHS Compliant

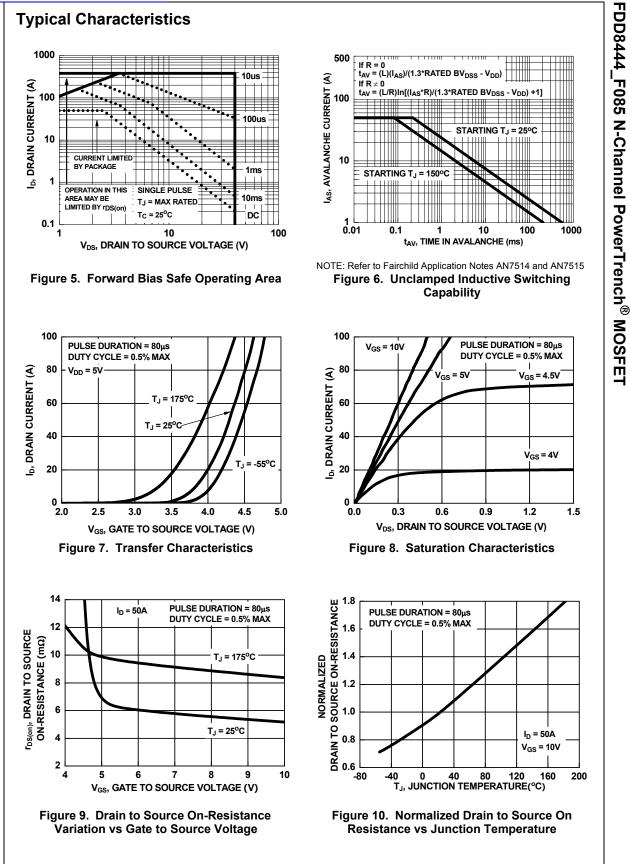
Applications

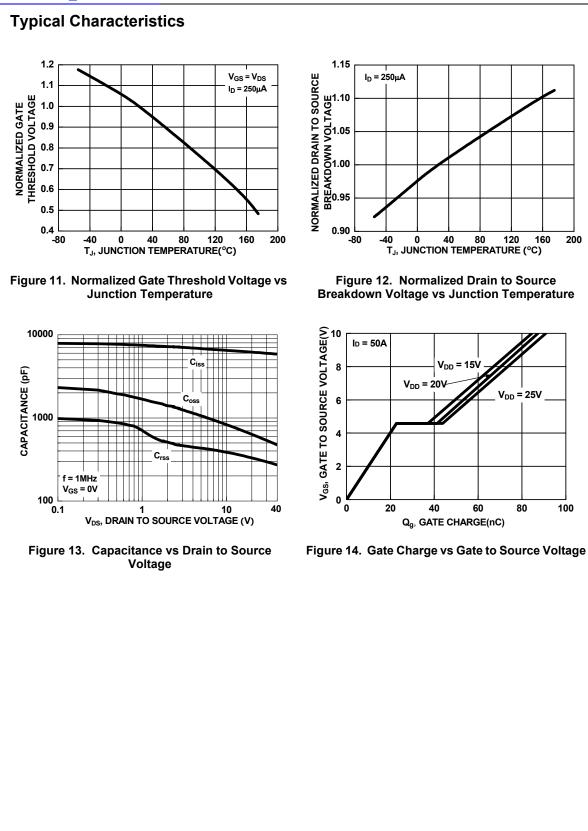
- Automotive Engine Control
- Powertrain Management
- Solenoid and Motor Drivers
- Electronic Transmission
- Distributed Power Architecture and VRMs
- Primary Switch for 12V Systems

October 2010


查询

MOSF	ET Max	imum Ratin	gs T _C = 2	25°C uni	ess otherwis	se noted					
Symbol				eter				Ratings		6	Units
V _{DSS}	Drain to Source Voltage						40 ±20		V		
V _{GS}	Gate to Source Voltage								V		
00		rent Continuous (V _d	es = 10V)			(Not	e 1)		145		
I _D				C/W)		(- /		20		А
D	Continuous (V _{GS} = 10V, with $R_{\theta JA}$ = 52 Pulsed			C/W)				Figure 4			-
E _{AS}		lse Avalanche Ener	av	(Note 2)			e 2)	535			mJ
-A3	Power Dis		57	(Note 2)			/	153			W
PD	Derate ab								1.02		W/ºC
T _J , T _{STG}	Operating	and Storage Temp	erature					-	55 to +1	75	°C
Therm	al Cha	racteristics									
$R_{ ext{ heta}JC}$	Maximum	Thermal Resistanc	e, Junction	to Case	9				0.98		°C/W
		Thermal Resistanc				. 1in ² copp	er				
$R_{ heta JA}$	pad area					, ini oopp	0.		52		°C/W
Packa	ge Mar	king and Oro	dering	Infor	mation						L
Device	Marking	Device	Packa	ge	Reel Si	ze	Таре	Width		Quant	tity
FDD	8444	FDD8444_F085	TO-252	2AA	13"		12	2mm		2500 u	nits
	ical Cha	aracteristics	T _J = 25°C	unless				Min	Tup	Max	Unite
Symbol		Parameter	T _J = 25°C	unless	otherwise n Test Cond			Min	Тур	Max	Units
Symbol Off Cha	racterist	Parameter iCS			Test Cond	litions				Max	
Symbol Off Cha	racterist	Parameter		I _D = 250	Test Cond	litions		Min 40	Тур -	-	Units V
Symbol Off Cha	racterist	Parameter iCS	/oltage	I _D = 250 V _{DS} = 3	Test Cond 0μΑ, V _{GS} = 0 32V	litions		40	-	- 1	
Symbol Off Cha B _{VDSS}	racterist	Parameter ics ource Breakdown V	/oltage rent	I _D = 250	Test Cond 0μΑ, V _{GS} = 0 32V 0V	litions	2C			-	V
Symbol Off Cha B _{VDSS} I _{DSS} I _{GSS} On Cha	racterist Drain to S Zero Gate Gate to S racterist	Parameter ics ource Breakdown V Voltage Drain Curr ource Leakage Curr ics	/oltage rent rent	$I_{D} = 250$ $V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 3$	Test Cond 0μΑ, V _{GS} = 0 32V 0V ±20V	itions V $T_J = 150^{\circ}$	2C	40 - - -	-	- 1 250 ±100	V μA nA
Symbol Off Cha B _{VDSS} DSS GSS On Cha	racterist Drain to S Zero Gate Gate to S racterist	Parameter ics ource Breakdown V Voltage Drain Curr ource Leakage Curr	/oltage rent rent	$I_{D} = 250$ $V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 3$ $V_{GS} = 3$	Test Cond 0μΑ, V _{GS} = 0 32V 0V ±20V V _{DS} , I _D = 25	itions DV T _J = 150 ^o 0μA		40 - -	- - - 2.5	- 1 250 ±100	V µA
Symbol Off Cha B _{VDSS} I _{DSS} I _{GSS}	racterist Drain to S Zero Gate Gate to S racterist Gate to S	Parameter ics ource Breakdown V Voltage Drain Curr ource Leakage Curr ics	/oltage rent rent	$I_{D} = 250$ $V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $V_{GS} = 1$ $I_{D} = 50$	Test Cond $0\mu A, V_{GS} = 0$ 32V 0V $\pm 20V$ $V_{DS}, I_D = 25$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$	litions DV $T_J = 150^{\circ}$ $0\mu A$ /		40 - - -	-	- 1 250 ±100	V μA nA
Symbol Dff Cha B _{VDSS} l _{DSS} l _{DSS} Dn Cha V _{GS(th)} r _{DS(on)} Dynami C _{iss} C _{oss}	racterist Drain to S Zero Gate Gate to S racterist Gate to S Drain to S C Charac Input Cap Output Cap	Parameter ics ource Breakdown V Voltage Drain Curr burce Leakage Curr ics ource Threshold Vo Source On Resistan cteristics acitance apacitance	/oltage rent rent oltage ce	$I_{D} = 250$ $V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $V_{GS} = 1$ $I_{D} = 50$ $I_{D} = 50$ $I_{D} = 50$	Test Cond $0\mu A, V_{GS} = 0$ 32V 0V $\pm 20V$ $V_{DS}, I_D = 25$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $5^{\circ}C$ $25V, V_{GS} = 0$	itions DV T _J = 150 ^c 0μΑ /		40 - - -	- - - 2.5 4 7.2 6195 585	- 1 250 ±100	V μA nA V mΩ pF
Symbol Off Cha B _{VDSS} I _{DSS} I _{DSS} On Cha V _{GS(th)} I ^r DS(on) Dynami C _{iss} C _{oss} C _{rss}	racterist Drain to S Zero Gate Gate to S racterist Gate to S Drain to S c Charac Input Cap Output Ca Reverse	Parameter ics ource Breakdown V Voltage Drain Curr burce Leakage Curr ics ource Threshold Vo Source On Resistan cteristics macitance apacitance Transfer Capacitance	/oltage rent rent oltage ce	$ I_{D} = 250$ $V_{DS} = 3$ $V_{GS} = 10$ $V_{GS} = 50$ $I_{D} = 50$ $T_{J} = 17$ $V_{DS} = 2$ $f = 1MH$	Test Cond $0μA, V_{GS} = (0)$ 32V 0V ±20V $V_{DS}, I_D = 25$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ 5°C $25V, V_{GS} = (0)$ 12	itions DV T _J = 150 ^c 0μΑ /		40 - - - - -	- - - 2.5 4 7.2 6195 585 332	- 1 250 ±100 4 5.2 9.4	V μA nA V mΩ pF pF
Symbol Off Cha B _{VDSS} I _{DSS} I _{DSS} On Cha V _{GS(th)} I ^r DS(on) Dynami C _{iss} C _{oss} C _{rss}	racterist Drain to S Zero Gate Gate to S racterist Gate to S Drain to S C Charac Input Cap Output Cap	Parameter ics ource Breakdown V Voltage Drain Curr burce Leakage Curr ics ource Threshold Vo Source On Resistan cteristics macitance apacitance Transfer Capacitance	/oltage rent rent oltage ce	$I_{D} = 250$ $V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $I_{D} = 50$ $I_{D} = 50$ $T_{J} = 17$ $V_{DS} = 2$ $f = 1MH$ $f = 1MH$	Test Cond $0\mu A, V_{GS} = 0$ 32V 0V $\pm 20V$ $V_{DS}, I_D = 25$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $5^{\circ}C$ $25V, V_{GS} = 0$ 1z	itions DV T _J = 150 ^c 0μΑ /		40 - - 2 - -	- - - 2.5 4 7.2 6195 585	- 1 250 ±100 4 5.2 9.4	V μA nA V mΩ pF
Symbol Dff Cha B _{VDSS} I _{DSS} I _{DSS} I _{GSS} On Cha V _{GS(th)} I ^r DS(on) Ciss C _{oss} C _{rss} R _G	racterist Drain to S Zero Gate Gate to S racterist Gate to S Drain to S C Charac Input Cap Output Ca Reverse Gate Res Total Gate	Parameter ics ource Breakdown V Voltage Drain Curr ource Leakage Curr ics ource Threshold Vo Source On Resistan cteristics macitance apacitance apacitance apacitance apacitance actance a	/oltage rent rent oltage ce	$I_{D} = 250$ $V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $I_{D} = 50$ $I_{D} = 50$ $T_{J} = 17$ $V_{DS} = 2$ $f = 1MH$ $f = 1MH$ $V_{GS} = 0$	Test Cond $0\mu A, V_{GS} = 0$ $32V$ $0V$ $\pm 20V$ $V_{DS}, I_D = 25$ $A, V_{GS} = 10V$ $A, V_{GS} = 10V$ $5^{\circ}C$ $25V, V_{GS} = 0$ $4z$ $1z$ $1z$ $1z$ 0 to $10V$	itions DV T _J = 150 ^c 0μΑ /		40 - - 2 - -	- - - 2.5 4 7.2 6195 585 332	- 1 250 ±100 4 5.2 9.4	V μA nA V mΩ pF pF
Symbol Dff Cha B _{VDSS} I _{DSS} I _{DSS} I _{GSS} Dn Cha V _{GS(th)} I ^C DS(on) Dynami C _{iss} C _{oss} C _{rss} R _G Q _{g(TOT)}	racterist Drain to S Zero Gate Gate to S racterist Gate to S Drain to S Drain to S c Charae Input Cap Output Ca Gate Res Total Gate	Parameter ics ource Breakdown V Voltage Drain Curr ource Leakage Curr ics ource Threshold Vo Source On Resistan cteristics macitance apacitance apacitance apacitance action ce apacitance action ce action	/oltage rent rent oltage ce	$\begin{split} & I_{D} = 250 \\ & V_{DS} = 3 \\ & V_{GS} = 0 \\ & V_{GS} = 0 \\ \hline & V_{GS} = 0 \\ & I_{D} = 50 \\ & I_{D} = 50 \\ & I_{J} = 17 \\ \hline & V_{DS} = 2 \\ & f = 1 \\ & MH \\ & f = 1 \\ & MH \\ & f = 1 \\ & MH \\ & V_{GS} = 0 \\ \hline & V_{GS} = 0 \\ $	Test Cond $0\mu A, V_{GS} = (1)^{-1}$ $32V$ $0V$ $\pm 20V$ $V_{DS}, I_D = 25$ $A, V_{GS} = 10^{10}$ $A, V_{GS} = 10^{10}$ $5^{\circ}C$ $25V, V_{GS} = 0^{10}$ 12 12 12 0 to $10V$ 0 to $5V$	litions DV $T_J = 150^{\circ}$ $0\mu A$ / / JV DV,		40 - - 2 - -	- - - 2.5 4 7.2 6195 585 332 1.9 89 43	- 1 250 ±100 4 5.2 9.4 - - -	V μA nA V mΩ pF pF pF
Symbol Dff Cha B _{VDSS} I _{DSS} I _{GSS} Dn Cha V _{GS(th)}	racterist Drain to S Zero Gate Gate to S racterist Gate to S Drain to S Drain to S c Charae Input Cap Output Ca Gate Res Total Gate	Parameter ics ource Breakdown V Voltage Drain Curr ource Leakage Curr ics ource Threshold Vo Source On Resistan cteristics macitance apacitance apacitance apacitance apacitance actance a	/oltage rent rent oltage ce	$I_{D} = 250$ $V_{DS} = 3$ $V_{GS} = 0$ $V_{GS} = 1$ $I_{D} = 50$ $I_{D} = 50$ $T_{J} = 17$ $V_{DS} = 2$ $f = 1MH$ $f = 1MH$ $V_{GS} = 0$	Test Cond $0\mu A, V_{GS} = (1)^{-1}$ $32V$ $0V$ $\pm 20V$ $V_{DS}, I_D = 25$ $A, V_{GS} = 10^{10}$ $A, V_{GS} = 10^{10}$ $5^{\circ}C$ $25V, V_{GS} = 0^{10}$ 12 12 12 0 to $10V$ 0 to $5V$	litions DV $T_J = 150^{\circ}$ $0\mu A$ V V DV, DV, $V_{DD} = 20$		40 - - 2 - -	- - - 2.5 4 7.2 6195 585 332 1.9 89	- 1 250 ±100 4 5.2 9.4 - - - - 116	V μA nA V mΩ pF pF pF Ω nC
Symbol Dff Cha B _{VDSS} I _{DSS} I _{GSS} Dn Cha V _{GS(th)} f ^{DS(on)} Dynami C _{iss} C _{oss} C _{rss} R _G Q _{g(TOT)} Q _{g(5)} Q _{g(TH)}	racterist Drain to S Zero Gate Gate to S racterist Gate to S Drain to S C Chara Input Cap Output Ca Gate Res Total Gate Total Gate Threshold	Parameter ics ource Breakdown V Voltage Drain Curr ource Leakage Curr ics ource Threshold Vo Source On Resistan cteristics macitance apacitance apacitance apacitance action ce apacitance action ce action	/oltage rent rent oltage ce	$\begin{split} & I_{D} = 250 \\ & V_{DS} = 3 \\ & V_{GS} = 0 \\ & V_{GS} = 0 \\ \hline & V_{GS} = 0 \\ & I_{D} = 50 \\ & I_{D} = 50 \\ & I_{J} = 17 \\ \hline & V_{DS} = 2 \\ & f = 1 \\ & MH \\ & f = 1 \\ & MH \\ & f = 1 \\ & MH \\ & V_{GS} = 0 \\ \hline & V_{GS} = 0 \\ $	Test Cond $0\mu A, V_{GS} = (1)^{-1}$ $32V$ $0V$ $\pm 20V$ $V_{DS}, I_D = 25$ $A, V_{GS} = 10^{10}$ $A, V_{GS} = 10^{10}$ $5^{\circ}C$ $25V, V_{GS} = 0^{10}$ 12 12 12 0 to $10V$ 0 to $5V$	litions DV $T_J = 150^{\circ}$ $0\mu A$ V V DV, DV, $V_{DD} = 20$ $I_D = 50A$	V	40 - - 2 - -	- - - 2.5 4 7.2 6195 585 332 1.9 89 43	- 1 250 ±100 4 5.2 9.4 - - - - 116 56	V μA nA V mΩ pF pF pF Ω nC nC
Symbol Dff Cha B _{VDSS} I _{DSS} I _{GSS} Characteristic Coss Crss R _G Q _{g(TOT)} Q _{g(5)}	racterist Drain to S Zero Gate Gate to S racterist Gate to S Drain to S C Charac Input Cap Output Ca Reverse Gate Res Total Gate Total Gate Threshold Gate to S	Parameter ics ource Breakdown V Voltage Drain Curr burce Leakage Curr ics ource Threshold Vc Source On Resistan cteristics acitance apacitance apacitance apacitance acharge at 10V Charge at 5V I Gate Charge	/oltage rent rent oltage ce	$\begin{split} & I_{D} = 250 \\ & V_{DS} = 3 \\ & V_{GS} = 0 \\ & V_{GS} = 0 \\ \hline & V_{GS} = 0 \\ & I_{D} = 50 \\ & I_{D} = 50 \\ & I_{J} = 17 \\ \hline & V_{DS} = 2 \\ & f = 1 \\ & MH \\ & f = 1 \\ & MH \\ & f = 1 \\ & MH \\ & V_{GS} = 0 \\ \hline & V_{GS} = 0 \\ $	Test Cond $0\mu A, V_{GS} = (1)^{-1}$ $32V$ $0V$ $\pm 20V$ $V_{DS}, I_D = 25$ $A, V_{GS} = 10^{10}$ $A, V_{GS} = 10^{10}$ $5^{\circ}C$ $25V, V_{GS} = 0^{10}$ 12 12 12 0 to $10V$ 0 to $5V$	litions DV $T_J = 150^{\circ}$ $0\mu A$ V V DV, DV, $V_{DD} = 20$	V	40 - - - - - - - - - - - - - - - -	- - - - 2.5 4 7.2 6195 585 332 1.9 89 43 11	- 1 250 ±100 4 5.2 9.4 - - - - 116 56	V μA nA V mΩ pF pF pF Ω nC nC


FDD8444_F085 N-Channel PowerTrench[®] MOSFET


$\frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time Turn-On Rise Time (off)VDD = 20V, ID = 50A VGS = 10V, RGS = 20-12-ns(off)Turn-Off Delay Time Turn-Off Fall Time ff-48-ns ff Turn-Off Fall Time Turn-Off Time-15-ns ff Turn-Off Time-95nsrain-Source Diode CharacteristicsSDSource to Drain Diode Voltage $I_{SD} = 50A$ $I_{SD} = 25A$ -0.81.0N fr Reverse Recovery Time rr $I_F = 50A, dI_F/dt = 100A/\mu s$ -3951nsIso Add IF/dt = 100A/µsPackage current limitation is 50A.	witcl	ning Characteristics					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time Turn-On Rise Time (off)VDD = 20V, ID = 50A VGS = 10V, RGS = 20-12-ns(off)Turn-Off Delay Time Turn-Off Fall Time ff-48-ns ff Turn-Off Fall Time Turn-Off Time-15-ns ff Turn-Off Time-95nsrain-Source Diode CharacteristicsSDSource to Drain Diode Voltage $I_{SD} = 50A$ $I_{SD} = 25A$ -0.81.0N fr Reverse Recovery Time rr $I_F = 50A, dI_F/dt = 100A/\mu s$ -3951nsIso Add IF/dt = 100A/µsPackage current limitation is 50A.	n	Turn-On Time		-	-	135	ns
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c }\hline \hline Turn-On Rise Time & V_{DD} = 20V, I_D = 50A & - & 78 & - & ns \\ \hline Turn-Off Delay Time & V_{GS} = 10V, R_{GS} = 2\Omega & - & 48 & - & ns \\ \hline - & 15 & - & ns \\ \hline - & 15 & - & ns \\ \hline - & - & 95 & ns \\ \hline \hline rain-Source Diode Characteristics & & & & & & \\ \hline SD & Source to Drain Diode Voltage & & I_{SD} = 50A & - & 0.9 & 1.25 \\ \hline Reverse Recovery Time & & I_F = 50A, dI_F/dt = 100A/\mu s & - & 45 & 59 & nC \\ \hline \hline tes: \\ Package current limitation is 50A. & & & & & \\ \hline \end{array}$				-	12		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	011)		$V_{DD} = 20V, I_D = 50A$ $V_{GS} = 10V, R_{GS} = 2\Omega$	-	78	-	ns
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ff)	Turn-Off Delay Time		-	48	-	ns
ain-Source Diode CharacteristicsDSource to Drain Diode Voltage $I_{SD} = 50A$ -0.91.25V $I_{SD} = 25A$ -0.81.0VReverse Recovery Time $I_F = 50A, dI_F/dt = 100A/\mu s$ -3951ns.Reverse Recovery Charge $I_F = 50A, dI_F/dt = 100A/\mu s$ -4559nCackage current limitation is 50A.	rain-Source Diode CharacteristicsSource to Drain Diode Voltage $I_{SD} = 50A$ -0.91.25V $I_{SD} = 25A$ -0.81.0VReverse Recovery Time $I_F = 50A, dI_F/dt = 100A/\mu s$ -3951nsrReverse Recovery Charge $I_F = 50A, dI_F/dt = 100A/\mu s$ -4559nCes:Package current limitation is 50A.	- /	Turn-Off Fall Time		-	15	-	ns
ain-Source Diode CharacteristicsDSource to Drain Diode Voltage $I_{SD} = 50A$ -0.91.25V $I_{SD} = 25A$ -0.81.0VReverse Recovery Time r $I_F = 50A, dI_F/dt = 100A/\mu s$ -3951nsReverse Recovery Charge $I_F = 50A, dI_F/dt = 100A/\mu s$ -4559nCackage current limitation is 50A.	ain-Source Diode CharacteristicsDSource to Drain Diode Voltage $I_{SD} = 50A$ - 0.9 1.25 V $I_{SD} = 25A$ - 0.8 1.0 VReverse Recovery Time $I_F = 50A, dI_F/dt = 100A/\mu s$ - 39 51 nsReverse Recovery Charge $I_F = 50A, dI_F/dt = 100A/\mu s$ - 45 59 nCackage current limitation is 50A.		Turn-Off Time		-	-	95	ns
$\frac{1}{I_{SD}} = 25A \qquad - \qquad 0.8 \qquad 1.0 \qquad \sqrt{1}$ Reverse Recovery Time Reverse Recovery Charge $I_F = 50A, \ dI_F/dt = 100A/\mu s \qquad - \qquad 39 \qquad 51 \qquad ns$ $- \qquad 45 \qquad 59 \qquad nC$ s: ackage current limitation is 50A.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ain-S	ource Diode Characteristics					
$\frac{ I_{SD} = 25A}{ I_{SD} = 25A} - \frac{0.8}{1.0}$ $\frac{ I_{SD} = 25A}{ I_{F} = 50A, dI_{F}/dt} = 100A/\mu s - \frac{39}{51} - \frac{51}{100} - \frac{51}{100} - \frac{100}{100} - \frac{100}{10$	$\frac{1}{I_{SD}} = 25A \qquad - \qquad 0.8 \qquad 1.0$ $\frac{1}{I_{SD}} = 25A \qquad - \qquad 0.8 \qquad 1.0$ $\frac{1}{I_F} = 50A, dI_F/dt = 100A/\mu s \qquad - \qquad 39 \qquad 51 \qquad ns$ $\frac{1}{I_F} = 50A, dI_F/dt = 100A/\mu s \qquad - \qquad 45 \qquad 59 \qquad nC$ $\frac{1}{I_F} = 50A, dI_F/dt = 100A/\mu s \qquad - \qquad 45 \qquad 59 \qquad nC$ $\frac{1}{I_F} = 50A, dI_F/dt = 100A/\mu s \qquad - \qquad 45 \qquad 59 \qquad nC$		Source to Drain Diode Voltage	I _{SD} = 50A	-	0.9	1.25	V
Reverse Recovery Charge $I_F = 50A$, $dI_F/dt = 100A/\mu s$ - 45 59 nC es: Package current limitation is 50A.	r Reverse Recovery Charge I _F = 50A, dI _F /dt = 100A/μs - 45 59 nC es: Package current limitation is 50A.	D	Source to Drain Diode voltage	I _{SD} = 25A	-	0.8	1.0	v
Reverse Recovery Charge - 45 59 nC	r Reverse Recovery Charge - 45 59 nC es: Package current limitation is 50A.			$l_{-} = 50A dl_{-}/dt = 100A/us$	-	39	51	ns
Package current limitation is 50A.	Package current limitation is 50A.		Reverse Recovery Charge	$h_{\rm F} = 50$ Å, $h_{\rm F}/h_{\rm c} = 100$ Å/ μ s	-	45	59	nC

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems

FDD8444_F085 N-Channel PowerTrench[®] MOSFET

FAIRCHILD

SEMICONDUCTOR®

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

AccuPower™	F-PFS™	Power-SPM™	
Auto-SPM™	FRFET®	PowerTrench [®]	SYSTEM ^{®*}
Build it Now™	Global Power Resource SM	PowerXS™	GENERAL The Power Franchise [®]
CorePLUS™	Green FPS™	Programmable Active Droop™	
CorePOWER™	Green FPS™ e-Series™	QFET®	puwer
CROSSVOLT™	Gmax™	QS™	' franchise
CTL™	GTO™	Quiet Series™	TinyBoost™ TinyBuck™
Current Transfer Logic™	IntelliMAX™	RapidConfigure™	TinyCalc™
DEUXPEED®	ISOPLANAR™		TinyLogic®
Dual Cool™	MegaBuck™		TINYOPTO™
EcoSPARK®	MICROCOUPLER™	Saving our world, 1mW/W/kW at a time™	TinyPower™
EfficentMax™	MicroFET™	SignalWise™	TinyPWM™
ESBC™	MicroPak™ MicroPak™	SmartMax™	TinyWire™
B	MicroPak2™ MillerDrive™	SMART START™ SPM [®]	TriFault Detect™
- · · · · · · · · · · · · · · · · · · ·	MotionMax™	SFM™ STEALTH™	TRUECURRENT™*
Fairchild [®]	Motion-SPM™	SuperFET™	µSerDes™
Fairchild Semiconductor®	OptiHiT™	SuperSOT™-3	\mathcal{M}
FACT Quiet Series™ FACT [®]	OPTOLOGIC®	SuperSOT™-6	Ser <mark>Des</mark> ™
FAST®	OPTOPLANAR®	SuperSOT™-8	UHC®
FastvCore™	®	SupreMOS™	Ultra FRFET™
FETBench™		SyncFET™	UniFET™
FlashWriter [®] *	PDP SPM™	Sync-Lock™	VCX™
FPS™			VisualMax [™]
			XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.