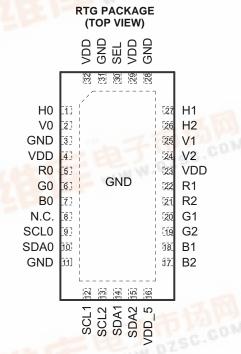


SCDS303A – AUGUST 2010 – REVISED SEPTEMBER 2010

TS3V712EL

7-CHANNEL VIDEO SWITCH WITH INTEGRATED LEVEL SHIFTERS


Check for Samples: TS3V712EL

FEATURES

- Supports 7-Channel VGA Signals (R, G, B, H_{SYNC}, V_{SYNC}, DDC CLK, and DDC DAT)
- Integrated Level-Shifting Buffers for H_{SYNC} and V_{SYNC} Channels
- Operating Voltage
 - V_{DD} = 3.3 V ±10%
 - $-V_{DD 5} = 5 V \pm 10\%$
- High Bandwidth of 1.3 GHz (-3 dB)
- Low ON-State Resistance and Input/Output
 Capacitance
 - $r_{ON} = 4 \Omega (Typ)$
 - C_{ON} = 8 pF (Typ)
- Voltage Clamping NMOS Switches for SCL and SDA Channels
- ESD Performance (Pins 12–15, 17–22, 24–27)
 - ±2-kV Contact Discharge (IEC61000-4-2)
 - 7-kV Human Body Model (to GND)
- ESD Performance (All Pins)
 - 3-kV Human Body Model (JESD22-A114E)
- 32-Pin Quad Flat Pack No-Lead [QFN (RTG)]
 Package

APPLICATIONS

- Notebook Computers
- Docking Stations
- KVM Switches

The exposed center pad must be connected to GND.

DESCRIPTION/ORDERING INFORMATION

The TS3V712EL is a high bandwidth, 7-channel video demultiplexer for switching between a single VGA source and one of two end points. The device is designed for ensuring video signal integrity and minimizing video signal attenuation by providing high bandwidth of 1.3 GHz.

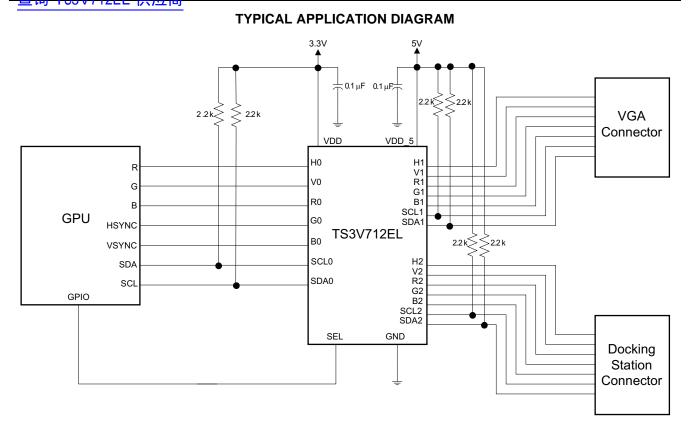
The TS3V712EL has integrated level shifting buffers for the H_{SYNC} and V_{SYNC} signals which provide voltage level translation between 3.3 V and 5 V logic. The SCL and SDA lines use NMOS switches which clamp the output voltage to 1 V below V_{DD} .

The video signals are protected against ESD with integrated diodes to V_{DD} and GND that support levels up to ±2-kV Contact Discharge (IEC61000-4-2) and 7-kV Human Body Model (JESD22-A114E).

T _A	PA	ACKAGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING				
–40°C to 85°C	QFN – RTG	Tape and reel	TS3V712ELRTGR	TF712EL				
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TL								

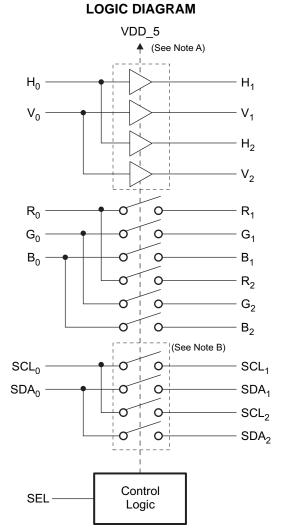
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

df.dzsc.com

TEXAS INSTRUMENTS


www.ti.com

SCDS303A - AUGUST 2010 - REVISED SEPTEMBER 2010

<u>₩窗前和S3\712EL"供应商</u>

- A. Supply for H_{SYNC} and V_{SYNC} translators
- B. Output clamped to $V_{DD} 1 V$

FUNCTION TABLE

	FUNCTION						
SEL	R ₀ , G ₀ , B ₀ , H ₀ , V ₀ , SCL ₀ , SDA ₀	Hi-Z					
L	R ₁ , G ₁ , B ₁ , H ₁ , V ₁ , SCL ₁ , SDA ₁	R ₂ , G ₂ , B ₂ , H ₂ , V ₂ , SCL ₂ , SDA ₂					
Н	R ₂ , G ₂ , B ₂ , H ₂ , V ₂ , SCL ₂ , SDA ₂	R ₁ , G ₁ , B ₁ , H ₁ , V ₁ , SCL ₁ , SDA ₁					

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

	· · · · · · · · · · · · · · · · · · ·	ż	MIN	MAX	UNIT
V _{DD}			-0.5	4.6	V
V_{DD_5}	Supply voltage range			6.5	v
V _{I/O}	Analog voltage range ⁽²⁾⁽³⁾	R, G, B, SCL, SDA	-0.5	V _{DD} + 0.5	V
V _{IN}	Digital input voltage range ⁽²⁾⁽³⁾	SEL, H, V	-0.5	6.5	V
I _{I/OK}	Analog port diode current	V _{I/O} < 0 V		-50	mA
I _{IK}	Digital input clamp current	V _{IN} < 0 V		-50	mA
I _{I/O}	ON-state switch current	R, G, B, SCL, SDA	-128	128	mA
I _{DD}	Continuous current through V _{DD} or GND		-100	100	mA
I _{GND}			-100	100	ШA
θ_{JA}	Package thermal impedance ⁽⁴⁾	RTG package ⁽⁴⁾		39.2	°C/W
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to ground, unless otherwise specified.

(3) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(4) The package thermal impedance is calculated in accordance with JESD 51-1.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

				MIN	MAX	UNIT
V _{DD}	Supply voltage			3	3.6	V
V_{DD_5}	Supply voltage for H and V channels			4.5	5.5	V
V _{IN}	Digital control input voltage	SEL, H, V		0	5.5	V
VIH	High-level control input voltage	SEL, H, V		2		V
V _{IL}	Low-level control input voltage	SEL, H, V			0.8	V
I _{OH}	High-level output current	H, V			-8	mA
I _{OL}	Low-level output current	H, V			8	mA
T _A	Operating free-air temperature			-40	85	°C

 All unused control inputs of the device must be held at V_{DD} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCDS303A - AUGUST 2010 - REVISED SEPTEMBER 2010

<u>₩營销♥₩S3\/712EL"供应商</u> ELECTRICAL CHARACTERISTICS⁽¹⁾

over recommended operating free-air temperature range, V_{DD} = 3.3 V ±0.3 V, V_{DD 5} = 5 V ±0.5 V (unless otherwise noted)

	PARAMETER	Ū		TEST CONDITION			MIN	TYP ⁽²⁾	MAX	UNIT
V _{IK}	Digital input clamp voltage	SEL, H, V	V _{DD} = 3.6 V, V _{DD_5} = 5.5 V,	I _{IN} = -18 mA				-0.8	-1.2	V
r _{ON}	ON-state resistance	R, G, B SCL, SDA	V _{DD} = 3.6 V, V _{DD_5} = 5.5 V,	$\begin{array}{l} 0 \hspace{0.1cm} V \leq V_{I/O} \leq \\ V_{DD}, \end{array}$	$I_{I/O} = -40$	0 mA		3	6 9	Ω
r _{ON(fl} at)	ON-state resistance flatness ⁽³⁾	R, G, B	$V_{DD} = 3.6 V,$ $V_{DD_5} = 5.5 V,$	$V_{I/O}$ = 1.5 V and V_{DD} ,	$I_{I/O} = -40$	0 mA		0.2	1	Ω
∆r _{ON}	ON-state resistance match between channels ⁽⁴⁾	R, G, B	V _{DD} = 3.6 V, V _{DD_5} = 5.5 V,	$\begin{array}{l} 0 \hspace{0.1cm} V \leq V_{I/O} \leq \\ V_{DD}, \end{array}$	$I_{I/O} = -40$	0 mA		0.2	1	Ω
I _{IH}	Digital input high leakage current	SEL, H, V	V _{DD} = 3.6 V, V _{DD_5} = 5.5 V,	$V_{IN} = V_{DD}$					±1	μA
IIL	Digital input low leakage current	SEL, H, V	V _{DD} = 3.6 V, V _{DD_5} = 5.5 V,	V _{IN} = GND					±1	μA
I _{OFF}	Leakage under power off conditions	All outputs	$V_{DD} = 0 V,$ $V_{DD_5} = 0 V,$	$V_{I/O} = 0$ to 3.6 V,	V _{IN} = 0 t	o 5.5 V			±1	μA
C _{IN}	Digital input capacitance	SEL, H, V	f = 10 MHz	$V_{IN} = 0,$				4		pF
C _{OFF}	Switch OFF capacitance	R, G, B SCL, SDA	f = 10 MHz	V _{I/O} = 0 V,	Output open,	Switch OFF		3		pF
C _{ON}	Switch ON capacitance	R, G, B SCL, SDA	f = 10 MHz	V _{I/O} = 0 V,	Output open,	Switch ON		8		pF
V _{OH}	High-level output voltage	H, V	$V_{IN} = V_{IH},$	I _{OH} = -8 mA			3.8			V
V _{OL}	Low-level output voltage	H, V	$V_{IN} = V_{IH},$	I _{OL} = 8 mA					0.5	V
V _{HYS} T	Voltage hysteresis	H, V						200	300	mV
I _{DD}	V _{DD} supply current		$V_{DD} = 3.6 V,$ $V_{DD_5} = 5.5 V,$	$V_{IN} = V_{DD}$ or GND,	$I_{I/O} = 0$ mA,			200	500	μA
I _{DD_5}	V_{DD_5} supply current		V _{DD} = 3.6 V, V _{DD_5} = 5.5 V,	$V_{IN} = V_{DD}$ or GND,	l _{I/O} = 0 mA,				50	μΑ

(1) V_I, V_O, I_I, and I_O refer to I/O pins. V_{IN} refers to the control inputs. (2) All typical values are at V_{DD} = 3.3V, V_{DD_5} = 5V (unless otherwise noted), T_A = 25°C. (3) $r_{ON(flat)}$ is the difference of r_{ON} in a given channel at specified voltages. (4) Δr_{ON} is the difference of r_{ON} from center port to any other ports.

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, V_{DD} = 3.3 V ±0.3 V, V_{DD 5} = 5 V ±0.5 V (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	TYP	МАХ	UNIT
	R0,G0,B0	R1, G1, B1 or R2, G2, B2		0.25		
t _{pd} ⁽¹⁾	SCL0, SDA0	SCL1, SDA1 or SCL2, SDA2		0.25		ns
	H0,V0	H1, V1 or H2, V2		3	7	
t _{PHZ} , t _{PLZ} ⁽²⁾	SEL	R1, G1, B1, SCL1, SDA1 or R2, G2, B2, SCL2, SDA2	0.5		11	ns
	SEL	H1, V1 or H2, V2	0.5		13	

⁽¹⁾ The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).

Line disable time: SEL to input, output; also called SEL to switch turn off time. (2)

SWITCHING CHARACTERISTICS (continued)

over recommended operating free-air temperature range, V_{DD} = 3.3 V ±0.3 V, $V_{DD 5}$ = 5 V ±0.5 V (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	ТҮР	MAX	UNIT
t _{PZH} , t _{PZL} ⁽³⁾	SEL	R1, G1, B1, SCL1, SDA1 or R2, G2, B2, SCL2, SDA2	0.5		11	ns
	SEL	H1, V1 or H2, V2	0.5		13	
t _{sk(o)} ⁽⁴⁾	R, G, B			0.05	0.1	ns
t _{sk(p)} ⁽⁵⁾	R,	G, В		0.05	0.1	ns

(3) Line enable time: SEL to input, output; also called SEL to switch turn on time.

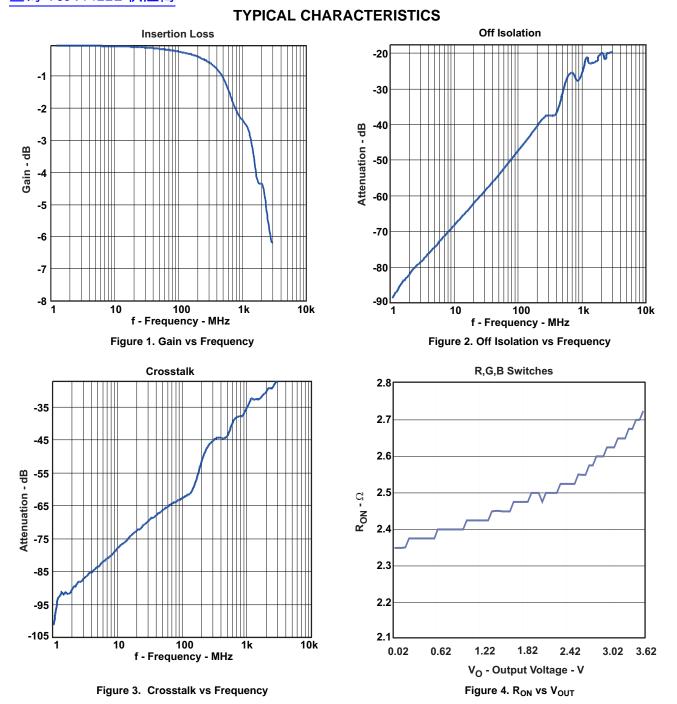
(4) Output skew between center channel to any other channel.

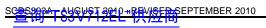
(5) Skew between opposite transitions of the same output. |t_{PHL} - t_{PLH}|

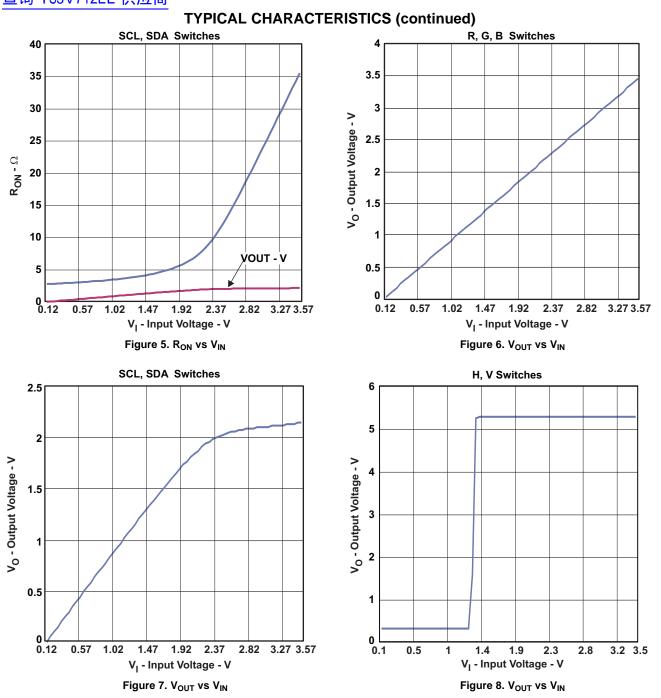
DYNAMIC CHARACTERISTICS

over recommended operating free-air temperature range, V_{DD} = 3.3 V ±0.3 V, V_{DD 5} = 5 V ±0.5 V (unless otherwise noted)

PARA	PARAMETER TEST CONDITIONS				UNIT
X _{TALK}	R, G, B	$R_L = 50 \Omega$,	f = 250 MHz,	-47	dB
O _{IRR}	R, G, B	$R_L = 50 \Omega$,	f = 250 MHz,	-38	dB
BW	R, G, B	$R_L = 50 \Omega$,	Switch ON	1.3	GHz

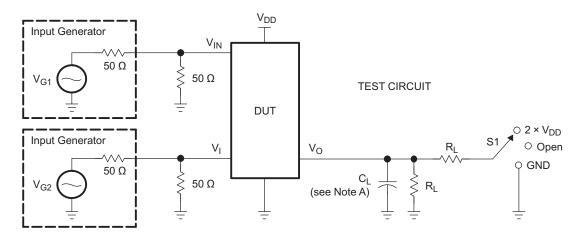

(1) All typical values are at V_{DD} = 3.3 V, $V_{DD_{-5}}$ = 5 V (unless otherwise noted), T_A = 25°C.



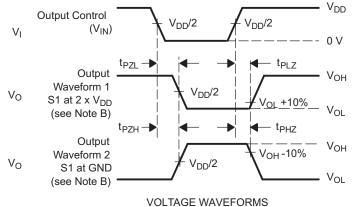


<u>₩營糖師S3\/712EL"供应商</u>

SCDS303A – AUGUST 2010– REVISED SEPTEMBER 2010



<u>₩豐铈呷S3\/712EL"供应商</u>


PARAMETER MEASUREMENT INFORMATION (Enable and Disable Times)

TE	EST	V _{DD_5}	V _{DD}	S1	RL	V _{in}	CL	V_{Δ}
t _{PL2}	z/t _{PZL}	5 V± 0.5 V	3.3 V± 0.3 V	$2 \times V_{DD}$	200 Ω	GND	10 pF	0.3 V
t _{PH2}	z/t _{PZH}	5 V± 0.5 V	3.3 V± 0.3 V	GND	or 1 kΩ*	V _{DD}	10 pF	0.3 V

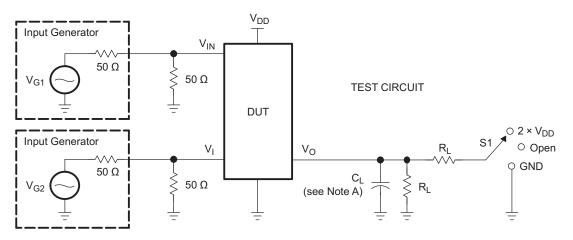
 ${}^{*}R_{I} = 200 \Omega$ applies to all switch outputs

 $R_{L} = 1 k\Omega$ applies to all buffer outputs

ENABLE AND DISABLE TIMES

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is lowexcept when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRI 10 MHz, $Z_0 = 50 \Omega$, $t_r \le 2.5 \text{ ns}$, $t_f \le 2.5 \text{ ns}$.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .

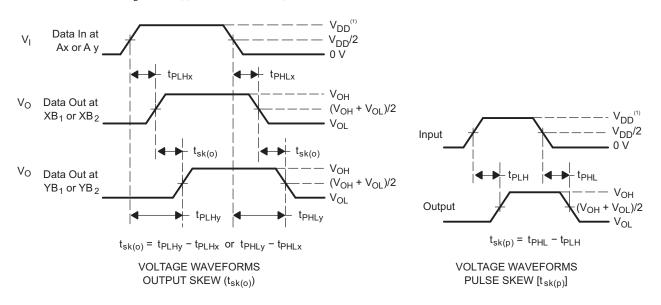
Figure 9. Test Circuit and Voltage Waveforms


SCESSBAT SUSVET 2010 ** PTVSETBSEPTEMBER 2010

www.ti.com

ISTRUMENTS

EXAS

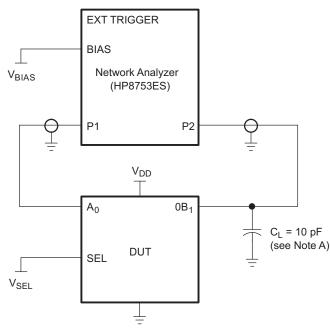

PARAMETER MEASUREMENT INFORMATION (Propagation Delay and Skew)

TEST	V _{DD}	V _{DD_5}	S1	RL	V _{in}	CL
t _{sk(o)}	3.3 V ± 0.3 V	5 V ± 0.5 V	Open	200 Ω*	V_{DD} or GND	10 pF
t _{sk(p)}	3.3 V ± 0.3 V	5 V ± 0.5 V	Open	or 1 kΩ	V _{DD} or GND	10 pF

 ${}^{*}R_{L}$ = 200 Ω applies to all switch outputs

 $R_1 = 1 k\Omega$ applies to all buffer outputs

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is lowexcept when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r \leq 2.5 ns. t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - (1) $2 V \pm 0.2 V$ for SCL, SDA


Figure 10. Test Circuit and Voltage Waveforms

<u>₩豐簡¶\$3\/712EL"供应商</u>

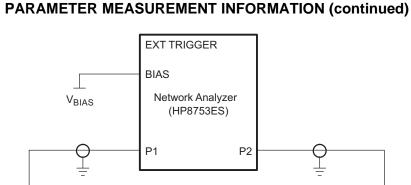
SCDS303A - AUGUST 2010 - REVISED SEPTEMBER 2010

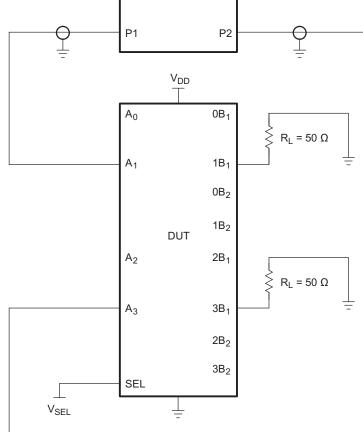
PARAMETER MEASUREMENT INFORMATION

A. C_L includes probe and jig capacitance.

Figure 11. Test Circuit for Frequency Response (BW)

Frequency response is measured at the output of the ON channel. For example, when $V_{SEL} = 0$ and A_0 is the input, the output is measured at $0B_1$. All unused analog I/O ports are left open.


HP8753ES Setup


Average = 4 RBW = 3 kHz $V_{BIAS} = 0.35 V$ ST = 2 s P1 = 0 dBM

TEXAS INSTRUMENTS

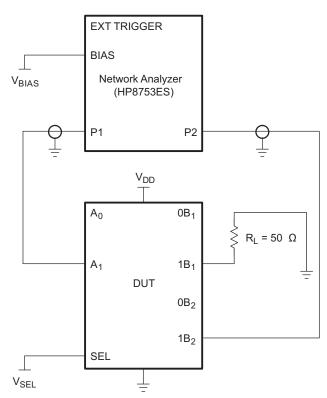
SCESSION COUPT 2010 TREVISE EPTEMBER 2010

www.ti.com

- A. C_L includes probe and jig capacitance.
- B. A 50- Ω termination resistor is needed to match the loading of the network analyzer.

Figure 12. Test Circuit for Crosstalk (X_{TALK})

Crosstalk is measured at the output of the nonadjacent ON channel. For example, when $V_{SEL} = 0$ and A_1 is the input, the output is measured at A_3 . All unused analog input (A) ports are connected to GND, and the output (B) ports are left open.


HP8753ES Setup

Average = 4 RBW = 3 kHz $V_{BIAS} = 0.35 V$ ST = 2 s P1 = 0 dBM

<u>₩營销@TPS3\/712EL"供应商</u>

PARAMETER MEASUREMENT INFORMATION (continued)

A. C_L includes probe and jig capacitance.

B. A 50- Ω termination resistor is needed to match the loading of the network analyzer.

Figure 13. Test Circuit for Off Isolation (O_{IRR})

Off isolation is measured at the output of the OFF channel. For example, when $V_{SEL} = GND$ and A_s is the input, the output is measured at $1B_2$. All unused analog input (A) ports are connected to GND, and the output (B) ports are left open.

HP8753ES Setup

Average = 4 RBW = 3 kHz $V_{BIAS} = 0.35 V$ ST = 2 s P1 = 0 dBM

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Pea
TS3V712ELRTGR	ACTIVE	WQFN	RTG	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

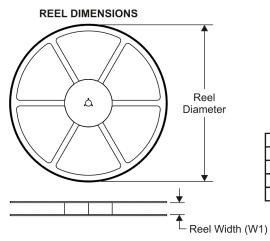
OBSOLETE: TI has discontinued the production of the device.

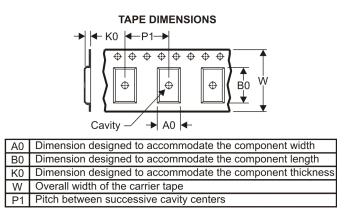
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www. information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

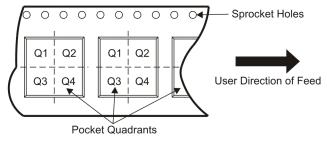
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retard in homogeneous material)


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

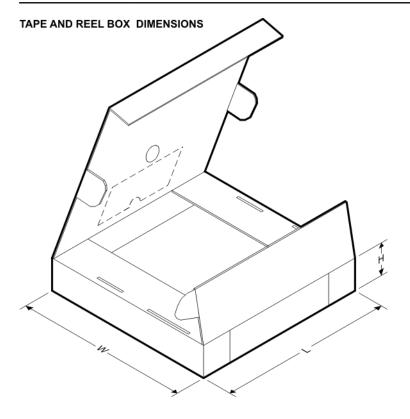

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information but may not have conducted destructive testing or chemical ar TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Cu


₩ Texas INSTRUMENTS 查询"JT\$3V712EL"供应商

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

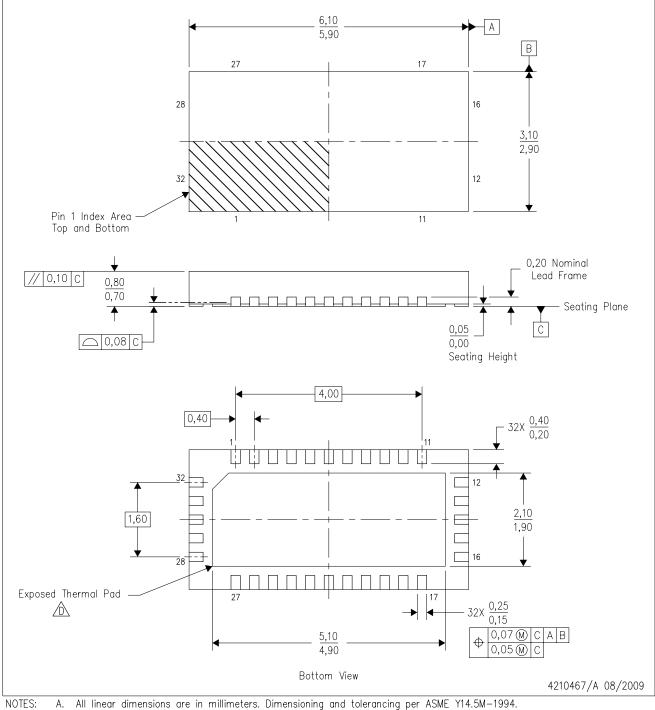

*All dimensions are nominal	

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS3V712ELRTGR	WQFN	RTG	32	3000	330.0	16.4	3.3	6.3	1.0	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

10-Sep-2010

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS3V712ELRTGR	WQFN	RTG	32	3000	346.0	346.0	33.0

MECHANICAL DATA

查询"TS3V712EL"供应商

RTG (R-PWQFN-N32)

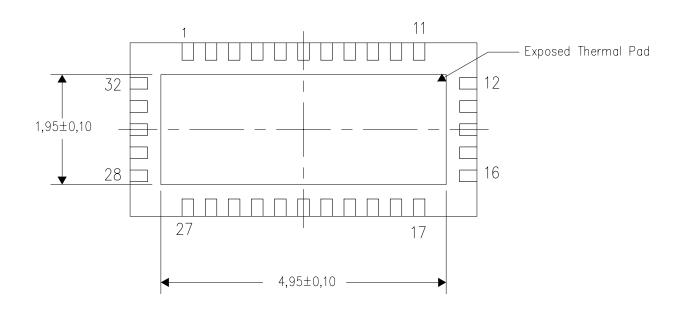
PLASTIC QUAD FLATPACK NO-LEAD

- Β.
 - This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.

⚠ The package thermal pad must be soldered to the board for thermal and mechanical performance.

Reference JEDEC MO-220. E.

<mark>查询"T\$3V712EL"供应商</mark> RTG(R—PWQFN—N32)


THERMAL PAD MECHANICAL DATA PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

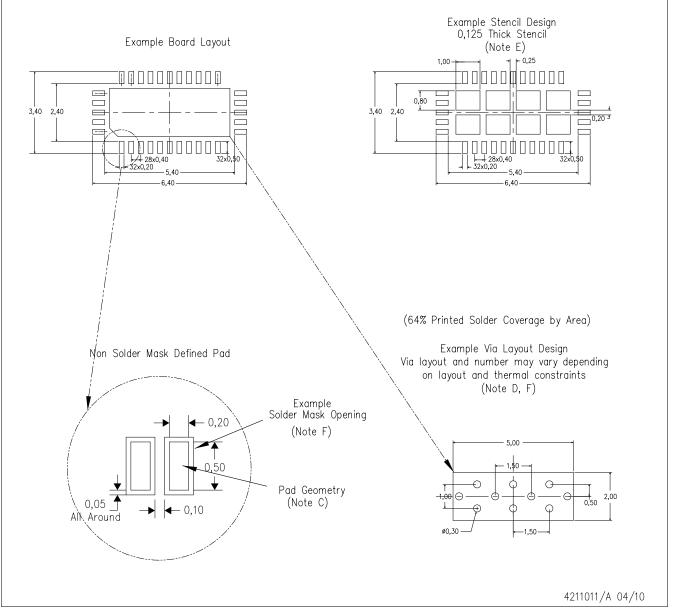
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions



LAND PATTERN

查询"TS3V712EL"供应商

RTG (R-PWQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication $\mathsf{IPC}-7351$ is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

查询"TS3V712EL"供应商

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated