

www.ti.com

HIGH-SPEED QUAD DIGITAL ISOLATORS

Check for Samples: ISO7240CF-Q1, ISO7241C-Q1

FEATURES

- Qualified for Automotive Applications
- Selectable Failsafe Output (ISO7240CF)
- 25 and 150-Mbps Signaling Rate Options
 - Low Channel-to-Channel Output Skew; 1 ns Max
 - Low Pulse-Width Distortion (PWD);
 2 ns Max
 - Low Jitter Content; 1 ns Typ at 150 Mbps
- Typical 25-Year Life at Rated Working Voltage (see application note SLLA197 and Figure 17)
- 4000-V_{peak} Isolation, 560-V_{peak} V_{IORM}
 - UL 1577, IEC 60747-5-2 (VDE 0884, Rev 2), IEC 61010-1, IEC 60950-1 and CSA Approved

- 4 kV ESD Protection
- Operate With 3.3-V or 5-V Supplies

ISO7240CF-Q1, ISO7240C-Q1

IS07241C-Q1, IS07242C-Q1

SLLSE40-SEPTEMBER 2010

- High Electromagnetic Immunity
 (see application report SLLA181)
- –40°C to 125°C Operating Range

DESCRIPTION

The ISO7240, ISO7241 and ISO7242 are quad-channel digital isolators with multiple channel configurations and output enable functions. These devices have logic input and output buffers separated by TI's silicon dioxide (SiO₂) isolation barrier. Used in conjunction with isolated power supplies, these devices block high voltage, isolate grounds, and prevent noise currents from entering the local ground and interfering with or damaging sensitive circuitry.

The ISO7240 has all four channels in the same direction while the ISO7241 has three channels the same direction and one channel in opposition. The ISO7242 has two channels in each direction.

The C option devices have TTL input thresholds and a noise-filter at the input that prevents transient pulses from being passed to the output of the device. The M option devices have CMOS $V_{CC}/2$ input thresholds and do not have the input noise-filter or the additional propagation delay.

The ISO7240CF has an input disable function on pin 7, and a selectable high or low failsafe-output function with the CTRL pin (pin 10). The failsafe-output is a logic high when a logic-high is placed on the CTRL pin or it is left unconnected. If a logic-low signal is applied to the CTRL pin, the failsafe-output becomes a logic-low output state. The ISO7240CF input disable function prevents data from being passed across the isolation barrier to the output. When the inputs are disabled, the outputs are set by the CTRL pin.

These devices may be powered from either 3.3-V or 5-V supplies on either side in any 3.3-V / 3.3-V, 5-V / 5-V, 5-V / 3.3-V, or 3.3-V / 5-V combination. Note that the signal input pins are 5-V tolerant regardless of the voltage supply level being used.

These devices are characterized for operation over the ambient temperature range of -40°C to 125°C.

df.dzsc.com

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

<u>si響爾卡特的理解的建設1"供应商</u>

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION⁽¹⁾

T _A	PACKAGE ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
		Reel of 2000	ISO7240CFQDWRQ1	ISO7240CFQ
			ISO7240CQDWRQ1	Product Preview
–40°C to 125°C	SOIC – DW		ISO7241CQDWRQ1	ISO7241CQ
			ISO7242CQDWRQ1	Product Preview

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

ISO7240CF	ISO7240	ISO7241	ISO7242
$V_{CC1} = 1 \bullet 11 = 16 = V_{CC2}$ GND1 = 2 $\downarrow \downarrow = 15 = 0$ GND2	$V_{CC1} \square 1 \bullet 1 16 \square V_{CC2}$ GND1 □ 2 11 15 □ GND2	V _{CC1} 1 • 11 16 · V _{CC2} GND1 2 11 15 · GND2	$V_{CC1} \square 1 \bullet 11 16 \square V_{CC2}$ GND1 \square 2 11 15 \square GND2
$ \begin{array}{c} \text{IN}_{C} \end{array} 5 \xrightarrow{-} 1 \xrightarrow{-} 1 \xrightarrow{-} 12 \end{array} \text{OUT}_{C} \\ \text{IN}_{D} \end{array} 6 \xrightarrow{-} 1 \xrightarrow{-} 11 \end{array} 0 \text{UT}_{D} \\ \text{DISABLE} \end{array} 7 \xrightarrow{-} 1 \xrightarrow{+} 10 \end{array} $			$\begin{array}{c} OUT_{C} \boxplus 5 & \swarrow & \downarrow & \downarrow & \downarrow & 12 \boxplus IN_{C} \\ OUT_{D} \boxplus 6 & \swarrow & \downarrow & \downarrow & 11 \boxplus IN_{D} \\ EN_1 \boxplus 7 & \downarrow & \downarrow & 10 \boxplus EN_2 \end{array}$
			$GND1 \blacksquare 8 \qquad '' \qquad 9 \blacksquare GND2$

Table 1. ISO724xC Function Table⁽¹⁾

INPUT V _{CC}	OUTPUT V _{CC}	INPUT (IN)	OUTPUT ENABLE (EN)	OUTPUT (OUT)
		Н	H or Open	Н
PU	PU	L	H or Open	L
PU		Х	L	Z
		Open	H or Open	Н
PD	PU	Х	H or Open	Н
PD	PU	Х	L	Z

(1) PU = Powered Up; PD = Powered Down ; X = Irrelevant; H = High Level; L = Low Level

Table 2. ISO7240CF Function Table

V _{CC1}	V _{CC2}	DATA INPUT (IN)	DISABLE INPUT (DISABLE)	FAILSAFE CONTROL INPUT (CTRL)	DATA OUTPUT (OUT)
PU	PU	Н	L or Open	Х	Н
PU	PU	L	L or Open	Х	L
Х	PU	Х	Н	H or Open	Н
Х	PU	Х	Н	L	L
PD	PU	Х	Х	H or Open	Н
PD	PU	Х	Х	L	L

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

				VALUE	UNIT
V_{CC}	Supply voltag	19 ⁽²⁾ , V _{CC1} , V _{CC2}		–0.5 to 6	V
VI	Voltage at IN, OUT, EN, DISABLE, CTRL		–0.5 to 6	V	
Ιo	Output currer	nt		±15	mA
		Human-Body Model		±4	kV
ESD	Electrostatic discharge	Field-Induced-Charged Device Model	All pins	±1	ĸv
	alsonargo	Machine Model		±200	V
TJ	Maximum jun	ction temperature		150	°C

Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings (1) only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values are with respect to network ground terminal and are peak voltage values. (2)

RECOMMENDED OPERATING CONDITIONS

		MIN	TYP	MAX	UNIT
V_{CC}	Supply voltage ⁽¹⁾ , V _{CC1} , V _{CC2}	3.15		5.5	V
I _{OH}	High-level output current			4	mA
I _{OL}	Low-level output current	-4			mA
t _{ui}	Input pulse width	40			ns
1/t _{ui}	Signaling rate	0	30 ⁽²⁾	25	Mbps
VIH	High-level input voltage (IN, DISABLE, CTRL, EN)	2		V_{CC}	V
VIL	Low-level input voltage (IN, DISABLE, CTRL, EN)	0		0.8	V
T _A	Operating free-air temperature	-40		125	°C
н	External magnetic field-strength immunity per IEC 61000-4-8 and IEC 61000-4-9 certification			1000	A/m

For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V. Typical value at room temperature and well-regulated power supply. (1)

(2)

IEC 60747-5-2 INSULATION CHARACTERISTICS⁽¹⁾

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	SPECIFICATIONS	UNIT
V _{IORM}	Maximum working insulation voltage		560	V
		After Input/Output Safety Test Subgroup 2/3 $V_{PR} = V_{IORM} \times 1.2$, t = 10 s, Partial discharge < 5 pC	672	V
V _{PR}	Input to output test voltage Type a	Method a, $V_{PR} = V_{IORM} \times 1.6$, Type and sample test with t = 10 s, Partial discharge < 5 pC	896	V
		Method b1, $V_{PR} = V_{IORM} \times 1.875$, 100 % Production test with t = 1 s, Partial discharge < 5 pC	1050	V
VIOTM	Transient overvoltage	t = 60 s	4000	V
R _S	Insulation resistance	$V_{IO} = 500 \text{ V at } T_{S}$	>10 ⁹	Ω
	Pollution degree		2	

(1) Climatic Classification 40/125/21

<u>SL誓销=修行控制6219Q1=供应商</u>

ELECTRICAL CHARACTERISTICS: V_{cc1} and V_{cc2} at 5-V⁽¹⁾ OPERATION

, over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
SUPPLY	CURRENT							
	18072400	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load,		1	3	~^^	
	ISO7240C	25 Mbps	EN ₂ at 3 V		7	10.5	mA	
	ISO7241C	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load,		6.5	11		
I _{CC1}	13072410	25 Mbps	EN_1 at 3 V, EN_2 at 3 V		12	18	mA	
	ISO7242C	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load,		10	16		
	15072420	25 Mbps	EN_1 at 3 V, EN_2 at 3 V		15	24	mA	
	18072400	Quiescent $V_I = V_{CC}$ or 0 V, All channels, no load,		15	22	~ ^		
	ISO7240C	25 Mbps	EN ₂ at 3 V		17	25	25 mA	
	ISO7241C	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load,	or 0 V, All channels, no load,	13	20	m (
I _{CC2}	15072410	25 Mbps	EN_1 at 3 V, EN_2 at 3 V		18	28	mA	
	ISO7242C	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, no load,		10	16	mA	
	13072420	25 Mbps	EN_1 at 3 V, EN_2 at 3 V		15	24	ША	
ELECTR	ICAL CHARACTERISTICS							
I _{OFF}	Sleep mode output current		EN at 0 V, Single channel		0		μA	
V	Lligh lovel output veltage		I _{OH} = -4 mA, See Figure 1	$V_{CC} - 0.8$			V	
V _{ОН}	High-level output voltage		$I_{OH} = -20 \ \mu A$, See Figure 1	$V_{CC} - 0.1$			v	
V	Low-level output voltage		I _{OL} = 4 mA, See Figure 1			0.4	V	
V _{OL}	Low-level output voltage		$I_{OL} = 20 \ \mu A$, See Figure 1			0.1	v	
V _{I(HYS)}	Input voltage hysteresis				150		mV	
IIH	High-level input current Low-level input current					10	A	
IIL			IN from 0 V to V _{CC}	-10			μΑ	
CI	Input capacitance to groun	d	IN at V_{CC} , $V_{I} = 0.4 \sin (4E6\pi t)$		2		pF	
CMTI	Common-mode transient in	nmunity	V _I = V _{CC} or 0 V, See Figure 5	25	50		kV/μs	

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

4

Copyright © 2010, Texas Instruments Incorporated

SLLSE40-SEPTEMBER 2010

SWITCHING CHARACTERISTICS: V_{CC1} and V_{CC2} at 5-V OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay	See Figure 1	18		45	20
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} – t _{PLH}	See Figure 1			5	ns
t _{sk(pp)}	Part-to-part skew ⁽²⁾				8	ns
t _{sk(o)}	Channel-to-channel output skew ⁽³⁾				3	ns
t _r	Output signal rise time	See Figure 1		2		
t _f	Output signal fall time	See Figure 1		2		ns
t _{PHZ}	Propagation delay, high-level-to-high-impedance output			15	25	
t _{PZH}	Propagation delay, high-impedance-to-high-level output	See Figure 2		15	25	20
t _{PLZ}	Propagation delay, low-level-to-high-impedance output	See Figure 2		15	25	ns
t _{PZL}	Propagation delay, high-impedance-to-low-level output			15	25	
t _{fs}	Failsafe output delay time from input power loss	See Figure 3		12		μS
t _{wake}	Wake time from input disable	See Figure 4		15		μS

(1) Also referred to as pulse skew.

(2) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

(3) $t_{sk(0)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

SL誓销=移行控制621-01-供应商

ELECTRICAL CHARACTERISTICS: V_{CC1} at 5-V, V_{CC2} at 3.3-V⁽¹⁾ OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMET	ER	TEST CONDIT	IONS	MIN	TYP	MAX	UNIT
SUPPL	Y CURRENT		-		*			
	16072400	Quiescent		a load EN at 2.1/		1	3	~ ^
	ISO7240C	25 Mbps	$V_{I} = V_{CC}$ or 0 V, All channels, n	10 10ad, EN_2 at 3 V		7	10.5	mA
	ISO7241C	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, n	lo load, EN₁ at 3 V,		6.5	11	~ ^
I _{CC1}	15072410	25 Mbps	EN ₂ at 3 V			12	18	mA
	ISO7242C	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, n	o load, EN₁ at 3 V,		10	16	6 mA
	13072420	25 Mbps	EN ₂ at 3 V			15	24	IIIA
ISO7240C		Quiescent	$V_{\rm I} = V_{\rm CC}$ or 0 V, All channels, n	oload EN, at 3 V		9.5	15	mA
	13072400	25 Mbps				10.5	17	ША
امم	ISO7241C	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, n	$V_{I} = V_{CC}$ or 0 V, All channels, no load, EN ₁ at 3 V,		8	13	mA
I _{CC2}	13072410	25 Mbps	EN ₂ at 3 V			11.5	18	IIIA
	ISO7242C	Quiescent	$V_{I} = V_{CC}$ or 0 V, All channels, n	$V_{\rm I}$ = V_{CC} or 0 V, All channels, no load, EN_1 at 3 V, EN_2 at 3 V		6	10	mA
	13072420	25 Mbps	EN ₂ at 3 V			9	14	IIIA
ELECT	RICAL CHARACT	ERISTICS						
I _{OFF}	Sleep mode out	put current	EN at 0 V, Single channel			0		μA
				ISO7240	$V_{CC} - 0.4$			
V _{OH}	High-level output	it voltage	$I_{OH} = -4$ mA, See Figure 1	ISO724x (5-V side)	$V_{CC} - 0.8$			V
			$I_{OH} = -20 \ \mu A$, See Figure 1		V _{CC} - 0.1			
V	Low-level output	tvoltogo	I _{OL} = 4 mA, See Figure 1				0.4	V
V _{OL}	Low-level output	i vollage	$I_{OL} = 20 \ \mu A$, See Figure 1				0.1	v
V _{I(HYS)}	Input voltage hy	steresis				150		mV
I _{IH}	High-level input	current	IN from 0.V to Var	IN from 0 \/ to \/			10	ıιΔ
IIL	Low-level input	current	INVIIONIO VIO VCC	IN from 0 V to V _{CC}				μA
CI	Input capacitance	ce to ground	IN at V _{CC} , V _I = 0.4 sin (4E6 π t)			2		pF
CMTI	Common-mode immunity	transient	$V_1 = V_{CC}$ or 0 V, See Figure 5		25	50		kV/μs

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

6

SLLSE40-SEPTEMBER 2010

<u>₩豐精會的07240CF Q1"供应商</u>

SWITCHING CHARACTERISTICS: V_{CC1} at 5-V, V_{CC2} at 3.3-V OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay	See Figure 1	20		50	
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} – t _{PLH}				3	ns
t _{sk(pp)}	Part-to-part skew ⁽²⁾				10	ns
t _{sk(o)}	Channel-to-channel output skew (3)				3	ns
t _r	Output signal rise time	Coo Figure 4		2		
t _f	Output signal fall time	See Figure 1		2		ns
t _{PHZ}	Propagation delay, high-level-to-high-impedance output			15	25	
t _{PZH}	Propagation delay, high-impedance-to-high-level output	See Figure 2		15	25	
t _{PLZ}	Propagation delay, low-level-to-high-impedance output	See Figure 2		15	25	ns
t _{PZL}	Propagation delay, high-impedance-to-low-level output			15	25	
t _{fs}	Failsafe output delay time from input power loss	See Figure 3		18		μS
t _{wake}	Wake time from input disable	See Figure 4		15		μS

(1) Also known as pulse skew

(2) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

(3) $t_{sk(0)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

Copyright © 2010, Texas Instruments Incorporated

SL誓销=移行控制C21-供应商

www.ti.com

STRUMENTS

EXAS

ELECTRICAL CHARACTERISTICS: V_{CC1} at 3.3-V, V_{CC2} at 5-V⁽¹⁾ OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETE	ER	TEST CONDI	TIONS	MIN	TYP	MAX	UNIT
SUPPL	Y CURRENT				-			
	10070400	Quiescent	$V_1 = V_{CC}$ or 0 V, All channels, no load, EN ₂ at 3 V			0.5	1	
	ISO7240C	25 Mbps				3	5	mA
	ISO7241C	Quiescent	$V_1 = V_{CC}$ or 0 V, All channels, EN ₂ at 3 V	no load, EN ₁ at 3 V,		4	7	mA
I _{CC1}		25 Mbps				6.5	11	
	ISO724C	Quiescent	$V_1 = V_{CC}$ or 0 V, All channels, EN ₂ at 3 V		6	10	mA	
		25 Mbps				9	14	
	ISO7240C	Quiescent	$V_I = V_{CC}$ or 0 V, All channels,	no load, EN ₂ at 3 V		15	22	mA
I _{CC2}	15072400	25 Mbps				17	25	ША
	ISO7241C Quiescent $V_1 = V_{CC}$ or 0 V, All channels, no load, EN ₁ at 3 V EN ₂ at 3 V		no load, EN ₁ at 3 V,		13	20	mA	
		25 Mbps				18	28	
	ISO7242C	Quiescent	$V_1 = V_{CC}$ or 0 V, All channels, EN ₂ at 3 V	iels, no load, EN ₁ at 3 V,		10	16	mA
		25 Mbps			15	24		
ELECT	RICAL CHARACTE	RISTICS						
I _{OFF}	Sleep mode out	put current	EN at 0 V, Single channel			0		μA
			I _{OH} = -4 mA, See Figure 1	ISO7240	$V_{CC} - 0.4$			
V _{OH}	High-level outpu	it voltage	$I_{OH} = -4 \text{ mA}, \text{ See Figure 1}$	ISO724x (5-V side)	$V_{CC} - 0.8$			V
			$I_{OH} = -20 \ \mu A$, See Figure 1		V _{CC} – 0.1			
Va	Low lovel output	t voltago	I _{OL} = 4 mA, See Figure 1				0.4	V
V _{OL}	Low-level outpu	i voilaye	I_{OL} = 20 μ A, See Figure 1				0.1	v
V _{I(HYS)}	Input voltage hy	steresis				150		mV
I _{IH}	High-level input	current	IN from 0 V/ to V/				10	
IIL	Low-level input	current	IN from 0 V to V _{CC}		-10			μA
CI	Input capacitance	ce to ground	IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$)		2		pF
CMTI	Common-mode immunity	transient	$V_{I} = V_{CC}$ or 0 V, See Figure 5		25	50		kV/μs

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

SLLSE40-SEPTEMBER 2010

SWITCHING CHARACTERISTICS: V_{CC1} at 3.3-V and V_{CC2} at 5-V OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay	Cas Figure 1	20		51	
PWD	Pulse-width distortion ⁽¹⁾ t _{PHL} – t _{PLH}	See Figure 1			3	ns
t _{sk(pp)}	Part-to-part skew ⁽²⁾				10	ns
t _{sk(o)}	Channel-to-channel output skew (3)				3	ns
t _r	Output signal rise time	See Figure 1		2		~~~
t _f	Output signal fall time	See Figure 1		2		ns
t _{PHZ}	Propagation delay, high-level-to-high-impedance output			15	25	
t _{PZH}	Propagation delay, high-impedance-to-high-level output	See Figure 2		15	25	20
t _{PLZ}	Propagation delay, low-level-to-high-impedance output	- See Figure 2		15	25	ns
t _{PZL}	Propagation delay, high-impedance-to-low-level output			15	25	
t _{fs}	Failsafe output delay time from input power loss	See Figure 3		12		μs
t _{wake}	Wake time from input disable	See Figure 4		15		μS

(1) Also known as pulse skew

(2) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

(3) $t_{sk(0)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

SL誓销=移行控制C21-供应商

ELECTRICAL CHARACTERISTICS: V_{CC1} and V_{CC2} at 3.3 $V^{(1)}$ OPERATION

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
SUPPLY	CURRENT							
	ISO7240C	Quiescent	$V_{I} = V_{CC}$ or 0 V, all channels, no load,		0.5	1	mA	
	25 Mbps		EN ₂ at 3 V		3	5	ША	
	ISO7241C Quiesc		$V_{I} = V_{CC}$ or 0 V, all channels, no load,		4	7		
I _{CC1}		25 Mbps	EN ₁ at 3 V, EN ₂ at 3 V		6.5	11	mA	
	ISO7242C	Quiescent	$V_{I} = V_{CC}$ or 0 V, all channels, no load,		6	10	ША	
		25 Mbps	EN_1 at 3 V, EN_2 at 3 V		9	14		
	ISO7240C	Quiescent	$V_{I} = V_{CC}$ or 0 V, all channels, no load,		9.5	15	mA	
	10072400	25 Mbps EN ₂ at 3 V			10.5	17		
loos	ISO7241C	Quiescent	$V_{I} = V_{CC}$ or 0 V, all channels, no load,		8	13		
I _{CC2}		25 Mbps	EN ₁ at 3 V, EN ₂ at 3 V		11.5	18	mA	
	ISO7242C Quiescent 25 Mbps		$V_{I} = V_{CC}$ or 0 V, all channels, no load,		6	10	III/A	
			EN_1 at 3 V, EN_2 at 3 V		9	14		
ELECTR	RICAL CHARACTERISTICS							
I _{OFF}	Sleep mode output current		EN at 0 V, single channel		0		μA	
V _{OH}	High-level output voltage		I _{OH} = -4 mA, See Figure 1	$V_{CC} - 0.4$			V	
VОН	Thigh level output voltage		$I_{OH} = -20 \ \mu A$, See Figure 1	$V_{CC} - 0.1$			v	
V _{OL}	Low-level output voltage		I _{OL} = 4 mA, See Figure 1			0.4	V	
VOL	Low-level output voltage		I_{OL} = 20 µA, See Figure 1			0.1	•	
V _{I(HYS)}	Input voltage hysteresis				150		mV	
I _{IH}	High-level input current Low-level input current		IN from 0 V or V _{CC}			10	μA	
I _{IL}				-10			μΛ	
Cl	Input capacitance to ground		IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$		2		pF	
CMTI	Common-mode transient im	munity	$V_I = V_{CC}$ or 0 V, See Figure 5	25	50		kV/μs	

(1) For the 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For the 3-V operation, V_{CC1} or V_{CC2} is specified from 3.15 V to 3.6 V.

SLLSE40-SEPTEMBER 2010

SWITCHING CHARACTERISTICS: V_{CC1} and V_{CC2} at 3.3-V OPERATION

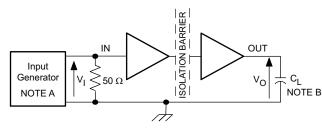
over recommended operating conditions (unless otherwise noted)

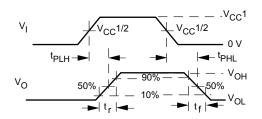
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay		25		56	
PWD	Pulse-width distortion $ t_{PHL} - t_{PLH} ^{(1)}$	See Figure 1			4	ns
t _{sk(pp)}	Part-to-part skew ⁽²⁾				10	ns
t _{sk(o)}	Channel-to-channel output skew (3)				3.5	ns
t _r	Output signal rise time	See Figure 1		2		ns
t _f	Output signal fall time	See Figure 1		2		ns
t _{PHZ}	Propagation delay, high-level-to-high-impedance output			15	20	
t _{PZH}	Propagation delay, high-impedance-to-high-level output	See Figure 2		15	20	ns
t _{PLZ}	Propagation delay, low-level-to-high-impedance output			15	20	115
t _{PZL}	Propagation delay, high-impedance-to-low-level output			15	20	
t _{fs}	Failsafe output delay time from input power loss	See Figure 3		18		μS
t _{wake}	Wake time from input disable	See Figure 4		15		μS

(1) Also referred to as pulse skew.

(2) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

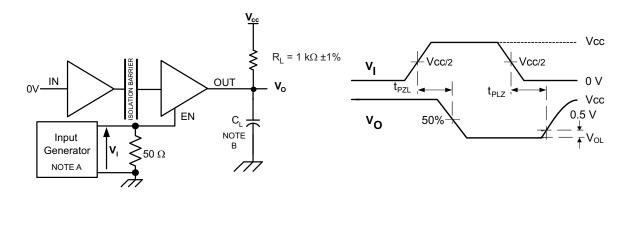
(3) $t_{sk(0)}$ is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical specified loads.

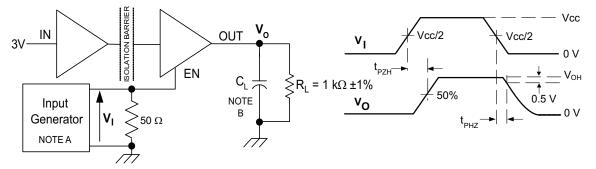

www.ti.com


INSTRUMENTS

Texas

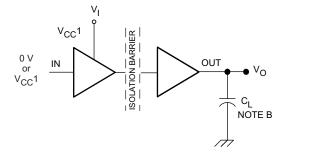
SL塑制+除OF型和C21-以中应商

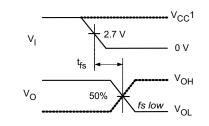

PARAMETER MEASUREMENT INFORMATION

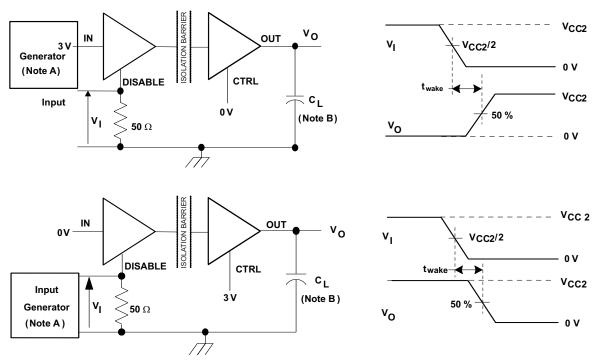


- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3 ns, Z₀ = 50 Ω .
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Figure 1. Switching Characteristic Test Circuit and Voltage Waveforms


- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3 ns, Z_O = 50 Ω .
- B. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.


Figure 2. Enable/Disable Propagation Delay Time Test Circuit and Waveform



PARAMETER MEASUREMENT INFORMATION (continued)

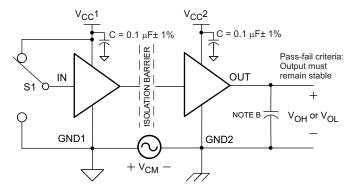
- A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.
- B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3 ns, Z_O = 50 Ω .

Figure 3. Failsafe Delay Time Test Circuit and Voltage Waveforms

NOTE: Which ever test yields the longest time is used in this datasheet

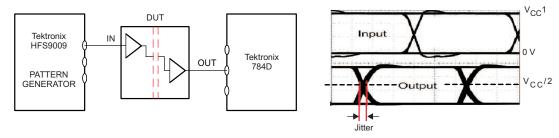
A. Whichever test yields the longest time is used in this data sheet.

Figure 4. Wake Time From Input Disable Test Circuit and Voltage Waveforms


供应商

SL26E49+SEPTEMBER 2010 1 "/H

TEXAS INSTRUMENTS


www.ti.com

PARAMETER MEASUREMENT INFORMATION (continued)

- A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.
- B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3 ns, Z₀ = 50 Ω .

Figure 5. Common-Mode Transient Immunity Test Circuit and Voltage Waveform

NOTE: PRBS bit pattern run length is 2¹⁶ – 1. Transition time is 800 ps. NRZ data input has no more than five consecutive 1s or 0s.

Figure 6. Peak-to-Peak Eye-Pattern Jitter Test Circuit and Voltage Waveform

<mark>₩營街⁰₨</mark>⊖7240CF-Q1"供应商-

DEVICE INFORMATION

PACKAGE CHARACTERISTICS

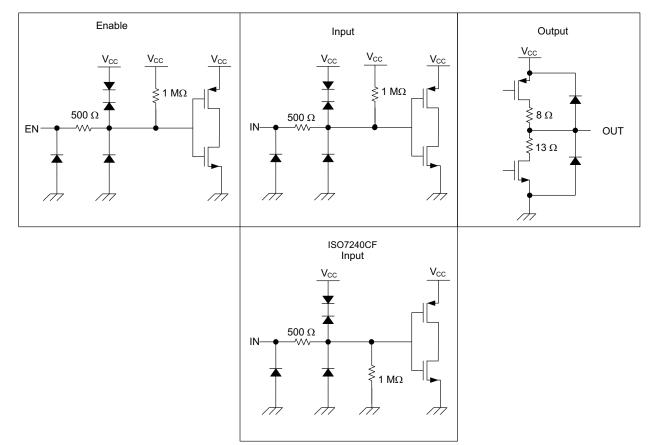
	PARAMETER	RAMETER TEST CONDITIONS				UNIT
L(I01)	Minimum air gap (Clearance)	Shortest terminal-to-terminal distance through air	8.34			mm
L(I02)	Minimum external tracking (Creepage)	Shortest terminal-to-terminal distance across the package surface	8.1			mm
C _{TI}	Tracking resistance (comparative tracking index)	DIN IEC 60112/VDE 0303 Part 1	≥ 175			V
	Minimum Internal Gap (Internal Clearance)	Distance through the insulation	0.008			mm
R _{IO}	Isolation resistance	Input to output, V_{IO} = 500 V, all pins on each side of the barrier tied together creating a two-terminal device		>10 ¹²		Ω
C _{IO}	Barrier capacitance Input to output	V _I = 0.4 sin (4E6πt)		2		pF
CI	Input capacitance to ground	V _I = 0.4 sin (4E6πt)		2		pF

IEC 60664-1 RATINGS TABLE

PARAMETER	TEST CONDITIONS	SPECIFICATION
Basic isolation group	Material group	Illa
Installation classification	Rated mains voltage ≤150 VRMS	I-IV
	Rated mains voltage ≤300 VRMS	I-III

REGULATORY INFORMATION

VDE	CSA	UL
Certified according to IEC 60747-5-2	Approved under CSA Component Acceptance Notice	Recognized under 1577 Component Recognition Program ⁽¹⁾
File Number: 40016131	File Number: 1698195	File Number: E181974

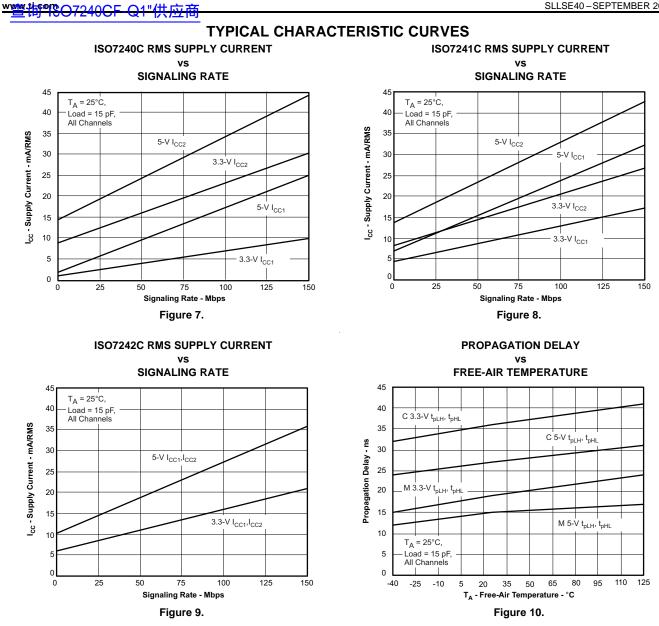

(1) Production tested \geq 3000 Vrms for 1 second in accordance with UL 1577.

<u>st響爾#修び羟酮C219Q1"供应商</u>

DEVICE I/O SCHEMATICS

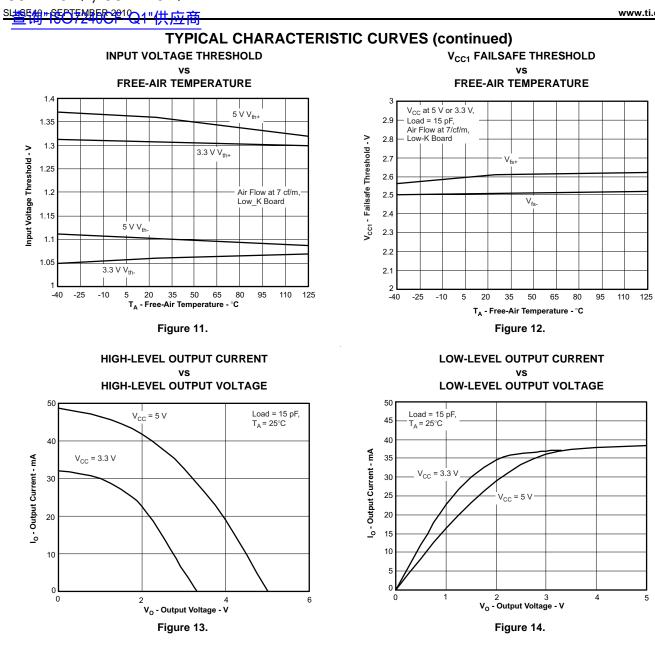
www.ti.com

THERMAL CHARACTERISTICS


over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
0	lunction to cir	Low-K Thermal Resistance ⁽¹⁾		168		°C/W
θ_{JA}	Junction-to-air	High-K Thermal Resistance		96.1		°C/vv
θ_{JB}	Junction-to-Board Thermal Resistance			61		°C/W
θ_{JC}	Junction-to-Case Thermal Resistance			48		°C/W
P _D	Device Power Dissipation	$V_{CC1} = V_{CC2} = 5.5 \text{ V}, T_J = 150^{\circ}\text{C}, C_L = 15 \text{ pF},$ Input a 50% duty cycle square wave			220	mW

(1) Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.



SLLSE40-SEPTEMBER 2010

Texas INSTRUMENTS

www.ti.com

Copyright © 2010, Texas Instruments Incorporated

ISO7240CF-Q1, ISO7240C-Q1 ISO7241C-Q1, ISO7242C-Q1 SLLSE40-SEPTEMBER 2010

<mark>₩豐簡¶\$07240CF Q1"供应商</mark>

APPLICATION INFORMATION

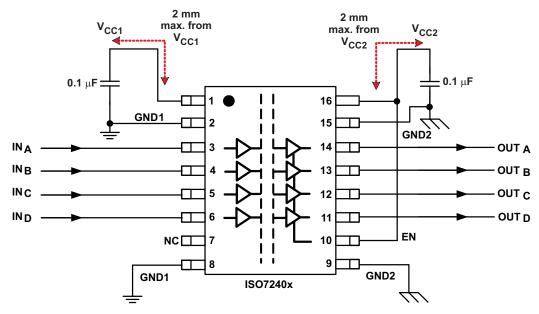


Figure 15. Typical ISO7240x Application Circuit

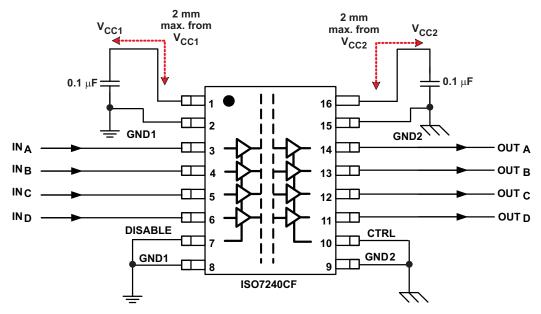


Figure 16. Typical ISO7240CF Failsafe-Low Application Circuit

LIFE EXPECTANCY vs WORKING VOLTAGE

www.ti.com

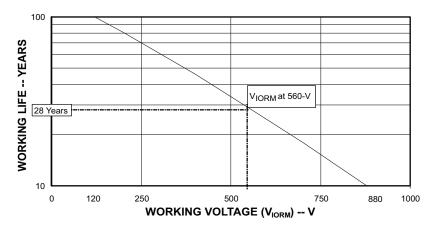


Figure 17. Time-Dependant Dielectric Breakdown Testing Results

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Pea
ISO7240CFQDWRQ1	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260
ISO7241CQDWRQ1	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www. information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retard in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

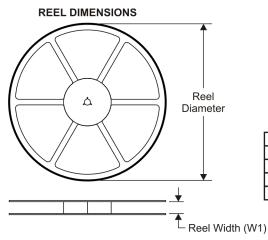
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information but may not have conducted destructive testing or chemical ar TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release

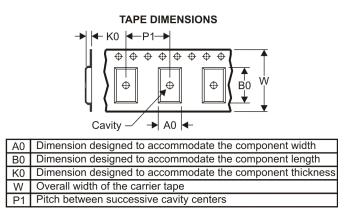
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Cu

OTHER QUALIFIED VERSIONS OF ISO7240CF-Q1, ISO7241C-Q1 :

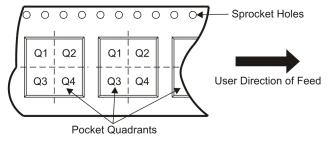
• Catalog: ISO7240CF, ISO7241C

NOTE: Qualified Version Definitions:



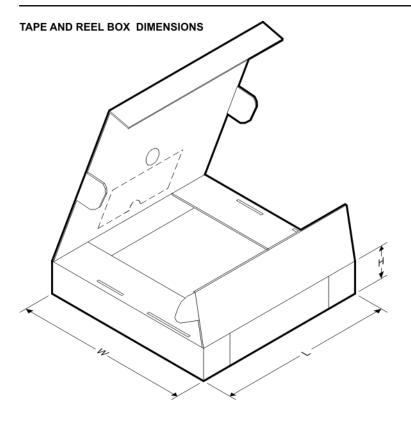

PACKAG

• Catalog - TI's standard catalog product


₩ Texas INSTRUMENTS 查询"。SO7240CF-Q1"供应商

TAPE AND REEL INFORMATION

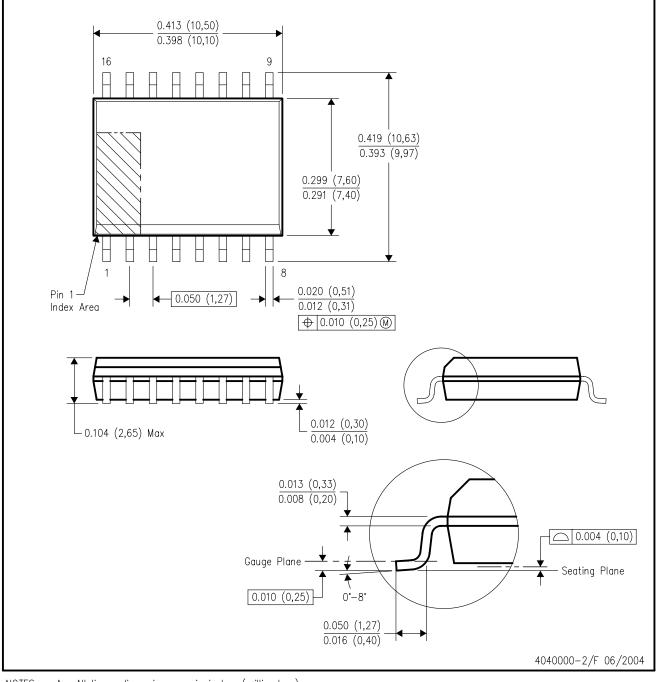
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO7240CFQDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7241CQDWRQ1	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

4-Oct-2010


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO7240CFQDWRQ1	SOIC	DW	16	2000	346.0	346.0	33.0
ISO7241CQDWRQ1	SOIC	DW	16	2000	533.4	186.0	36.0

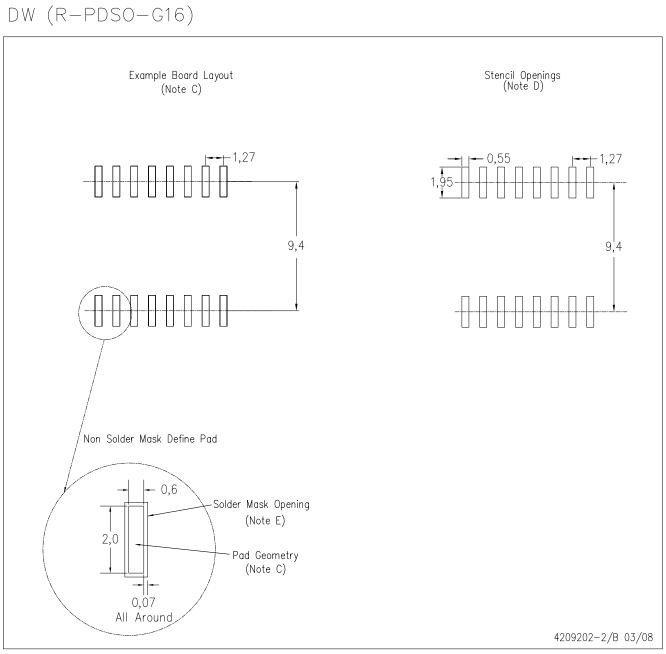
查询"ISO7240CF-Q1"供应商

DW (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AA.

LAND PATTERN

查询"ISO7240CF-Q1"供应商

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

查询"ISO7240CF-Q1"供应商

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated