ADS-942 14-Bit, 2MHz Sampling A/D Converters

FEATURES

- 14-bit resolution
- 2MHz minimum throughput
- Functionally complete
- Internal reference and sample/hold
- -85dB total harmonic distortion
- 78dB signal-to-noise ratio
- Full Nyquist-rate sampling
- Small 32-pin DIP

df.dzsc.com

• Low-power, 2.9 Watts

GENERAL DESCRIPTION

DATEL's ADS-942 is a functionally complete, 14-bit, 2MHz, sampling A/D converter. Its standard, 32-pin, triple-wide ceramic DIP contains a fast-settling sample/hold amplifier, a 14-bit subranging (two-pass) A/D converter, a precision reference, three-state output register and all the timing and control logic necessary to operate from a single start convert pulse.

WWW.DZSC.COM

The ADS-942 is optimized for wideband frequency-domain applications and is fully FFT tested. The ADS-942 requires ±15V and +5V supplies and typically consumes 2.9 Watts.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	+10V REF. OUT	32	START CONVERT
2	BIPOLAR	31	BIT 1 OUT (MSB)
3	ANALOG INPUT	30	BIT 1 OUT (MSB)
4	SIGNAL GROUND	29	BIT 2 OUT
5	OFFSET ADJUST	28	BIT 3 OUT
6	ANALOG GROUND	27	BIT 4 OUT
7	OVERFLOW	26	BIT 5 OUT
8	CODING SELECT	25	BIT 6 OUT
9	ENABLE	24	BIT 7 OUT
10	+5V SUPPLY	23	BIT 8 OUT
11	DIGITAL GROUND	22	BIT 9 OUT
12	+15V SUPPLY	21	BIT 10 OUT
13	-15V SUPPLY	20	BIT 11 OUT
14	ANALOG GROUND	19	BIT 12 OUT
15	ANALOG GROUND	18	BIT 13 OUT
16	EOC	17	BIT 14 OUT (LSB)

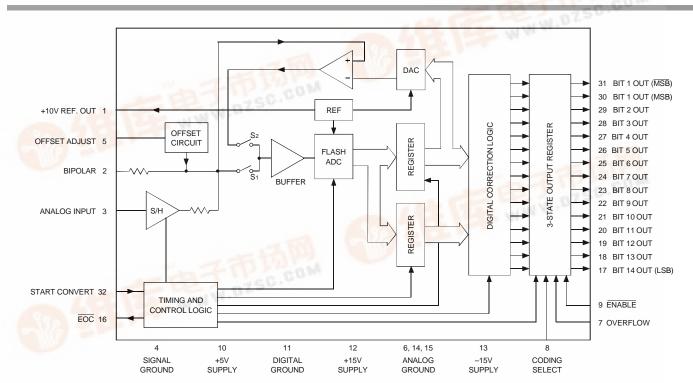


Figure 1. ADS-942 Functional Block Diagram

ABSCENTEMMAXIMUM (PATINGS

PARAMETERS	LIMITS	UNITS	
+15V Supply (Pin 12)	0 to +16	Volts	
-15V Supply (Pin 13)	0 to -16	Volts	
+5V Supply (Pin 10)	0 to +6	Volts	
Digital Inputs (Pin 8,9, 32)	-0.3 to +VDD +0.3	Volts	
Analog Input (Pin 3)	±15	Volts	
Lead Temp. (10 seconds)	+300	°C	

FUNCTIONAL SPECIFICATIONS

(TA = +25°C, \pm Vcc = \pm 15V, +VDD = +5V, 2MHz sampling rate, and a minimum 7 minute warmup unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range Unipolar Bipolar Input Impedence Input Capacitance		0 to +10 ±5 5 7	_ _ _ _ 15	Volts Volts kΩ pF
DIGITAL INPUTS				
Logic Levels Logic "1" Logic "0" Logic Loading "1" Logic Loading "0"	+2.0 — — —	_ _ _ _	 +0.8 +5 -600	Volts Volts µA µA
PERFORMANCE				
Integral Non-Linearity (fin = 1MHz) +25°C 0 to +70°C	_	±1 ±1	±2 ±2	LSB LSB
-40 to +85°C Differential Non-Linearity (fin = 1MHz) +25°C	_ 	±2 ±0.5	±3 ±0.75	LSB
0 to +70°C -40 to +85°C Full Scale Absolute Accuracy	-0.75 -0.95 -1	±0.75 ±1	±1.25 +2.5	LSB LSB
+25°C 0 to +70°C -40 to +85°C Unipolar Zero Error	_ _ _	±0.1 ±0.12 ±0.45	±0.122 ±0.36 ±0.85	%FSR %FSR %FSR
+25°C (see Figure 3) 0 to +70°C -40 to +85°C Bipolar Zero Error	_ _ _	±0.05 ±0.1 ±0.2	±0.122 ±0.2 ±0.3	%FSR %FSR %FSR
+25°C (see Figure 3) 0 to +70°C -40 to +85°C Bipolar Offset Error	_ _ _	±0.05 ±0.1 ±0.2	±0.122 ±0.2 ±0.3	%FSR %FSR %FSR
+25°C (see Figure 3) 0 to +70°C -40 to +85°C Gain Error	_ _ _	±0.1 ±0.12 ±0.5	±0.2 ±0.3 ±0.8	%FSR %FSR %FSR
+25°C (see Figure 3) 0 to +70°C -40 to +85°C No Missing Codes (fin = 500kHz)	_ _ _	±0.018 ±0.12 ±0.6	±0.122 ±0.3 ±0.8	% % %
14 Bits 13 Bits Resolution	0 to +70°C -40 to +85°C 14 Bits			

Footnote:

① Same specification as In-Band Harmonics and Peak Harmonics.

OUTPUTS	MIN.	TYP.	MAX.	UNITS	
Output Coding	Staight Bin./Offset Bin./2's Comp. Comp. Bin./Comp. Offset Bin./C2C				
Logic Level				.,,,,,	
Logic "1" Logic "0"	+2.4	_	+0.4	Volts Volts	
Logic U			-160	μA	
Logic Loading "0"	_	_	+6.4	mA	
Internal Reference					
Voltage, +25°C	+9.98	+10.0	+10.02	Volts	
Drift External Current	_	±13	±30 5	ppm/°C mA	
			- U		
DYNAMIC PERFORMANCE		I		1	
Total Harm. Distort. (–0.5dB)		0.5	7,	ID.	
dc to 100kHz 100kHz to 500kHz	_	-85 -80	-76 -75	dB dB	
500kHz to 1MHz		-00 -77	-/s 	dB	
Signal-to-Noise Ratio		''		ub	
(w/o distortion, –0.5dB					
dc to 100kHz	74	78	_	dB	
100kHz to 500kHz	73	75 72	_	dB dB	
500kHz to 1MHz Signal-to-Noise Ratio	_	73	_	dB	
(and distortion, -0.5dB)					
dc to 100kHz	73	78	_	dB	
100kHz to 500kHz	72	75	_	dB	
500kHz to 1MHz	_	72	_	dB	
Spurious Free Dyn. Range ① dc to 100kHz	_	-86	-77	dB	
100 to 500kHz	_	-81	-75	dB	
500kHz to 1MHz	_	-78	_	dB	
Two-tone IMD					
Distortion (fin = 100kHz,					
240kHz, fs = 2.0Mhz, -0.5dB)	-85	_	_	dB	
Input Bandwidth (–3dB)	0.5			ub.	
Small Signal (-20dB input)	_	6	_	MHz	
Large Signal (–0.5dB input)	_	1.75	_	MHz	
Slew Rate Aperture Delay Time	_	±250	±10	V/µs ns	
Aperature Uncertainty			±10 5	ps, ms	
S/H Acq. Time, (to ±0.003%FSR)			Ü	μογιιιο	
Sinusoidal (fin = 1MHz)	_	120	150	ns	
Step input	_	250	450	ns	
Conversion Rate Sinusoidal (fin = 1MHz)	2			MHz	
Step input	1.3		_	MHz	
Feedthrough Rejection					
(fin = 1MHz)	_	85	_	dB	
Overvoltage Recovery, ±12V Noise	_	1000 250	2000	ns µVrms	
		230		μνιιιιο	
POWER REQUIREMENTS		l			
Power Supply Ranges	14.05	150	45.75	17-0	
+15V Supply -15V Supply	+14.25 -14.25	+15.0 -15.0	+15.75 -15.75	Volts Volts	
+5V Supply	-14.25 +4.75	-15.0 +5.0	-15.75 +5.25	Volts	
Power Supply Currents	. 1.75	70.0	. 0.20	* 0.103	
+15V Supply	_	+65	+87	mA	
-15V Supply	_	-80	-98	mA	
+5V Supply Power Dissipation		+150 2.9	+165 3.4	mA Watts	
Power Supply Rejection	_		±0.02	%FSR%V	
PHYSICAL/ENVIRONMENTAL					
Operating Temp. Range, Case					
ADS-942MC	0	_	+70	°C	
ADS-942ME	-40	_	+85	°C	
Storage Temperature Range	-65	motel ===1	+150	°C	
Package Type		metal-seal		, וטוץ	
Weight	0.46 o	unces (13 (grams)		

TESHNICAS-NOTIFES"供应商

- Rated performance requires using good high-frequency circuit board layout techniques. Connect the digital and analog grounds to one point, the analog ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies. SIGNAL GROUND (pin 4) is not internally connected to ANALOG GROUND (pins 6, 15).
- Bypass the analog and digital supplies and the +10V REF. OUT (pin 1) to ground with a 4.7μF, 25V tantalum electrolytic capacitor in parallel with a 0.1μF ceramic capacitor.
- CODING SELECT(pin 8) is compatible with CMOS/TTL logic levels for those users desiring logic control of this function. There is an internal pull-up resistor on this pin; connect to +5V or leave open for logic 1. See the Calibration Procedure for selecting an output coding.
- To enable the three-state outputs, connect ENABLE (pin 9) to a logic "0" (low). To disable, connect pin 9 to a logic "1" (high).

Table 1. Input Connections

INPUT RANGE	INPUT PIN	TIE TOGETHER
0 +10V	Pin 3	Pins 2 and 4
±5V	Pin 3	Pins 1 and 2

CALIBRATION PROCEDURE

 Connect the converter per Figure 3 and Table 1 for the appropriate input voltage range. Apply a pulse of 35 nanoseconds minimum to START CONVERT (pin 32) at a rate of 200kHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

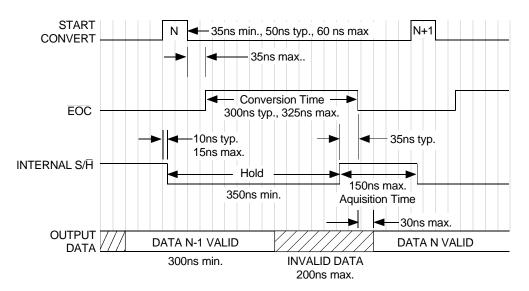
2. Zero Adjustments

Apply a precision voltage reference source between ANALOG INPUT (pin 3) and SIGNAL GROUND (pin 4), then adjust the reference source output per Table 2.

For bipolar operation, adjust the trimpot until the code flickers equally between 10 0000 0000 0000 and 10 0000 0000 0001 with pin 8 tied low (offset binary) or between 01 1111 1111 1111 and 01 1111 1111 1110 with pin 8 tied high (complementary offset binary).

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 2.


Table 2. Zero and Gain Adjustments

Input	Zero Adjust	Gain Adjust
Range	+1/2 LSB	FS – 1½ LSB
0 to +10V	+305μV	+9.999085V
±5V	+305μV	+4.999085V

Adjust the gain trimpot until the output code flickers equally between 11 1111 1111 1110 and 11 1111 1111 1111 with pin 8 tied low for straight binary/offset binary or between 00 0000 0000 0000 and 00 0000 0000 with pin 8 tied high for complementary binary/complementary offset binary.

Two's complement coding requires using pin 31. With pin 8 tied low, adjust the gain trimpot until the output code flickers equally between 01 1111 1111 1110 and 01 1111 1111 1111.

To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

Note: Scale is approximately 25ns per division.

Figure 2. ADS-942 Timing Diagram

查询"ADS-942MC"供应商

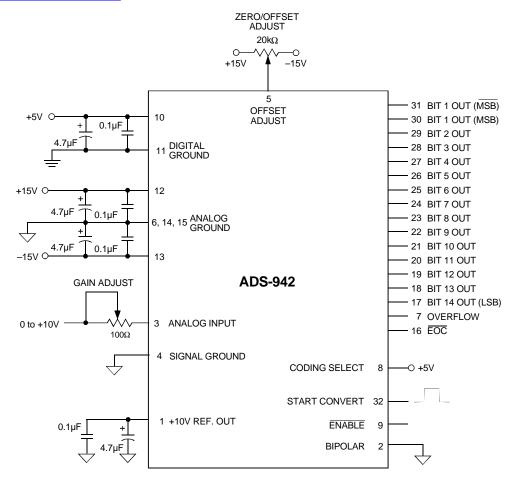


Figure 3. ADS-942 Connection Diagram

Removing System Errors

Use external potentiometers to remove system errors or to reduce the small initial errors to zero. Use a 100Ω trimpot in series with the analog input for gain adjustment. Use a fixed 50Ω resistor instead of the trimpot for operation without

adjustment. Use a $20k\Omega$ trimpot with the wiper tied to OFFSET ADJUST (pin 5) for zero/offset adjustment. Connect pin 5 to ANALOG GROUND (pin 6) for operation without zero/offset adjustment.

Table 3. Output Coding

		STRAIGHT BIN.	COMP. BINARY			
UNIPOLAR	INPUT VOLT.		OUTPUT CODING		INPUT VOLT.	BIPOLAR
SCALE	0 TO +10V	MSB LSB	MSB LSB	MSB LSB	±5V	SCALE
+FS – 1 LSB +7/8 FS	+9.999390 +8.750000	11 1111 1111 1111	00 0000 0000 0000	01 1111 1111 1111 01 1000 0000 0000	+4.999390 +3.750000	+FS – 1LSB +3/4FS
+3/4 FS +1/2 FS	+7.500000 +5.000000	11 0000 0000 0000	00 1111 1111 1111	01 0000 0000 0000	+2.500000 0.000000	+1/2FS 0
+1/4 FS +1/8 FS	+2.500000 +1.250000	01 0000 0000 0000	10 1111 1111 1111	11 0000 0000 0000	-2.500000 -3.750000	-1/2FS -3/4FS
+1/6 FS +1 LSB	+0.000610	00 0000 0000 0001	11 1111 1111 1110	10 0000 0000 0001	-4.999390	-FS+1LSB
0	0.000000	00 0000 0000 0000	11 1111 1111 1111	10 0000 0000 0000	-5.000000	–FS
		OFF. BINARY	COMP. OFF. BIN.	TWO'S COMP.		

TEERMAD BEQUIRE MENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ}$ C and -55 to $+125^{\circ}$ C. All room-temperature (T_A = $+25^{\circ}$ C) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package. Electrically-insulating, thermally-conductive "pads" may be installed

underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically 35%) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.

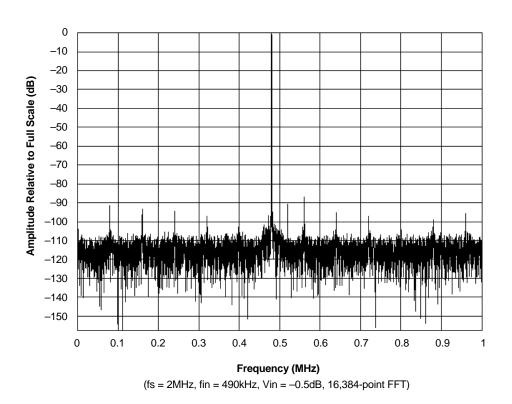
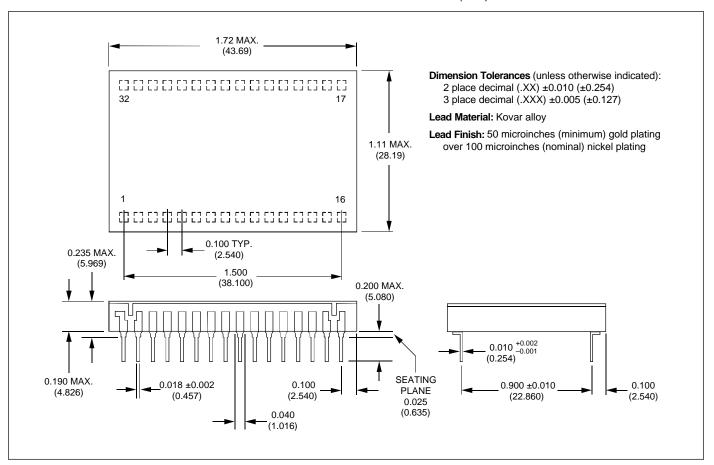



Figure 4. FFT Analysis of ADS-942

查询"ADS-942MC"供应商

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	ACCESSORIE	s	
ADS-942MC	0 to +70°C	ADS-EVAL4	Evaluation Board (without ADS-942)	
ADS-942ME	-40 to +85°C	HS-32	Heat Sink for all ADS-942 models	

Receptacles for PC mounting can be ordered through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 32 required.

DS-0228B

10/96

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 Tel: (508) 339-3000 (800) 233-2765 Fax: (508) 339-6356 Internet: www.datel.com E-mail:sales@datel.com Data Sheet Fax Back: (508) 261-2857

DATEL (UK) LTD. Tadley, England Tel: (01256)-880444 DATEL S.A.R.L. Montigny Le Bretonneux, France Tel: 1-34-60-01-01 DATEL GmbH München, Germany Tel: 89-544334-0 DATEL KK Tokyo, Japan Tel: 3-3779-1031, Osaka Tel: 6-354-2025