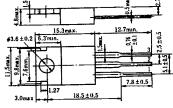

查询"28 26 440

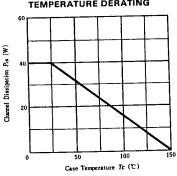

SILICON N-CHANNEL MOS FET

HIGH SPEED POWER SWITCHING HIGH FREQUENCY POWER AMPLIFIER

FEATURES

- Low On-Resistance.
- High Speed Switching.
- High Cutoff Frequency.
- No Secondary Breakdown.
- Suitable for Switching Regulator and DC-DC Converter.

1. Gate
2. Drain
(Flange)
3. Source
(Dimensions in mm)


(JEDEC TO-220AB)

■ ABSOLUTE MAXIMUM RATINGS (T_a=25 °C)

Item	Symbol	Rating	Unit	
Drain-Source Voltage	VDSS	200	v	
Gate-Source Voltage	Vass	±20	v	
Drain Current	I_D	6	A	
Drain Peak Current	I _{D(peak)}	12	A	
Body-Drain Diode Reverse Drain Current	I_{DR}	6	A	
Channel Dissipation	P _{ch} *	40	w	
Channel Temperature	Tch	150	°C	
Storage Temperature	T_{sig}	-55~+150	°C	

^{*}Value at Tt=25 °C

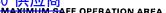
POWER VS. TEMPERATURE DERATING

■ ELECTRICAL CHARACTERISTICS (T_d=25°C)

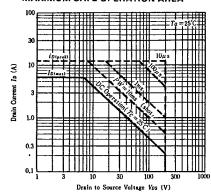
	Symbol	Test Condition	min.	typ.	max.	Unit
Item		$I_D=10$ mA, $V_{GS}=0$	200		-	V
Drain-Source Breakdown Voltage	V _{(BR)DSS}		+		±1	μА
Gate-Source Leak Current	I _{GSS}	$V_{GS}=\pm 20$ V, $V_{DS}=0$				mA
Zero Gate Voltage Drain Current	IDSS	$V_{DS}=160 \text{V}, V_{GS}=0$			5.0	v
Gate-Source Cutoff Voltage	$V_{GS(\circ \mathcal{G})}$	$I_D=1$ mA, $V_{DS}=10$ V	2.0			
Static Drain-Source On State Resistance	R _{DS(on)}	$I_D=3A$, $V_{GS}=15V^*$		0.4	0.5	Ω
Drain-Source Saturation Voltage	V _{DS(on)}	$I_{p}=3A, V_{GS}=15V^{*}$		1.2	1.5	V
Forward Transfer Admittance	ly _f	$I_D=3A$, $V_{DS}=10V^{\bullet}$	1.0	1.8		, S
	City		_	750		pF
Input Capacitance		$V_{as}=10V$, $V_{GS}=0$, $f=1MHz$	_	300	T -	pF
Output Capacitance	Coss	V B3-10 V, V G3 - 01,7 2		60	Τ=	pF
Reverse Transfer Capacitance	Crss		+	15	$\vdash =$	ns
Turn-on Delay Time	t _{d(on)}	$I_D=2A$, $V_{GS}=15V$, $R_L=15\Omega$	<u> </u>	25	-	ns
Rise Time	t,				 	
Turn-off Delay Time	terogn	15-211, 7 03 20 1, 1-5		70		ns
Fall Time	t _f			40		ns
Body-Drain Diode Forward Voltage	V _{DF}	$I_{F}=3A$, $V_{GS}=0$		0.9	<u> </u>	V
Body-Drain Diode Body-Drain Diode Reverse Recovery Time	t _{rr}	I_F =3A, V_{GS} =0 di_F/dt =50A/ μ s	_	300		ns

^{*}Pulse Test

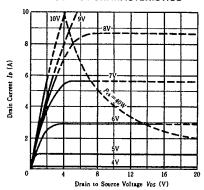
198

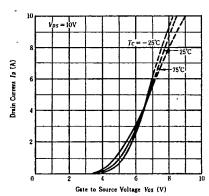

(1) HITACHI

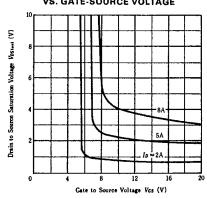
73C 10081

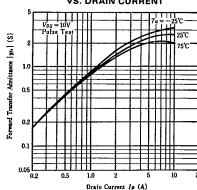

D T-39-11

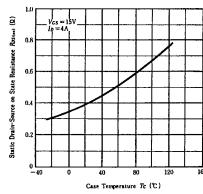
2SK440


查询"2SK440"供应商
MAXIMUM SAFE OPERATION AREA


4496205 HITACHI/(OPTOELECTRONICS)


TYPICAL OUTPUT CHARACTERISTICS

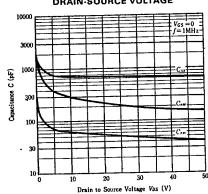

TYPICAL TRANSFER CHARACTERISTICS


DRAIN-SOURCE SATURATION VOLTAGE VS. GATE-SOURCE VOLTAGE

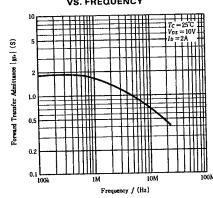
FORWARD TRANSFER ADMITTANCE **VS. DRAIN CURRENT**

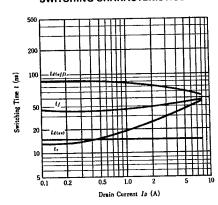
STATIC DRAIN-SOURCE ON STATE **RESISTANCE VS. TEMPERATURE**

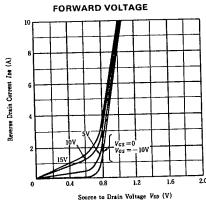
(1) HITACHI

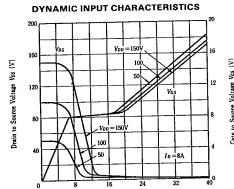

199

73C 10082

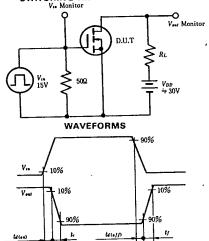

DT-39-11


4496205 HITACHI7 (OPTOELECTRONICS)


FORWARD TRANSFER ADMITTANCE VS. FREQUENCY



SWITCHING CHARACTERISTICS



MAXIMUM BODY-DRAIN DIODE

SWITCHING TIME TEST CIRCUIT

200

(D) HITACHI