

4-BIT BINARY FULL ADDER WITH FAST CARRY

FEATURES

- High-speed 4-bit binary addition
- Cascadable in 4-bit increments
- Fast internal look-ahead carry
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT283 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LS TTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT283 add two 4-bit binary words (A_n plus B_n) plus the incoming carry. The binary sum appears on the sum outputs (Σ_1 to Σ_4) and the out-going carry (C_{OUT}) according to the equation:

$$\begin{aligned} C_{IN} + (A_1 + B_1) + 2(A_2 + B_2) + \\ + 4(A_3 + B_3) + 8(A_4 + B_4) = \\ = \Sigma_1 + 2\Sigma_2 + 4\Sigma_3 + 8\Sigma_4 + 16C_{OUT} \\ \text{Where } (+) = \text{plus.} \end{aligned}$$

Due to the symmetry of the binary add function, the "283" can be used with either all active HIGH operands (positive logic) or all active LOW operands (negative logic); see function table. In case of all active LOW operands the results Σ_1 to Σ_4 and C_{OUT} should be interpreted also as active LOW. With active HIGH inputs, C_{IN} must be held LOW when no "carry in" is intended. Interchanging inputs of equal weight does not affect the operation, thus C_{IN} , A_1 , B_1 can be assigned arbitrarily to pins 5, 6, 7, etc.

See the "583" for the BCD version.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
t_{PHL}/t_{PLH}	propagation delay C_{IN} to Σ_1 C_{IN} to Σ_2 C_{IN} to Σ_3 C_{IN} to Σ_4 A_n or B_n to Σ_n C_{IN} to C_{OUT} A_n or B_n to C_{OUT}	$C_L = 15 \text{ pF}$ $V_{CC} = 5 \text{ V}$	16 18 20 23 21 20 20	15 21 23 27 25 23 24	ns ns ns ns ns ns ns
C_I	input capacitance		3.5	3.5	pF
CPD	power dissipation capacitance per package	notes 1 and 2	88	92	pF

$GND = 0 \text{ V}$; $T_{amb} = 25^\circ\text{C}$; $t_r = t_f = 6 \text{ ns}$

Notes

- CPD is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = CPD \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where:}$$

f_i = input frequency in MHz

C_L = output load capacitance in pF

f_o = output frequency in MHz

V_{CC} = supply voltage in V

$\Sigma (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs

- For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

PACKAGE OUTLINES

16-lead DIL; plastic (SOT38Z).

16-lead mini-pack; plastic (SO16; SOT109A).

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
4, 1, 13, 10	Σ_1 to Σ_4	sum outputs
5, 3, 14, 12	A_1 to A_4	A operand inputs
6, 2, 15, 11	B_1 to B_4	B operand inputs
7	C_{IN}	carry input
8	GND	ground (0 V)
9	C_{OUT}	carry output
16	V_{CC}	positive supply voltage

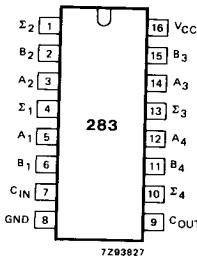


Fig. 1 Pin configuration.

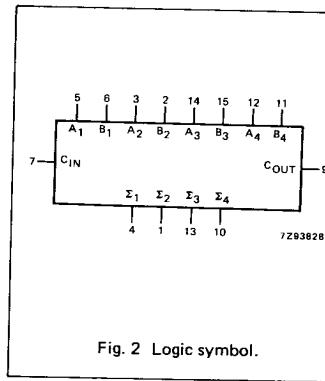


Fig. 2 Logic symbol.

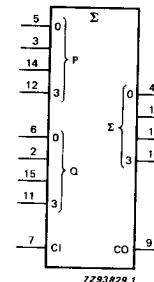


Fig. 3 IEC logic symbol.

[查询"74HC283D-T"供应商](#)

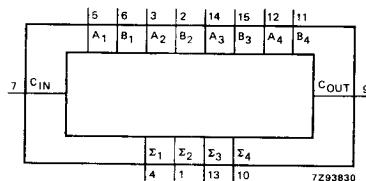


Fig. 4 Functional diagram.

FUNCTION TABLE

PINS	C _{IN}	A ₁	A ₂	A ₃	A ₄	B ₁	B ₂	B ₃	B ₄	Σ ₁	Σ ₂	Σ ₃	Σ ₄	C _{OUT}	EXAMPLE
logic levels	L	L	H	L	H	H	L	L	H	H	H	L	L	H	
active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1	(a)
active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0	(b)

Example $\begin{array}{r} 1001 \\ 1010 \\ \hline \end{array}$

10011

(a) for active HIGH,
example = (9 + 10 = 19)

(b) for active LOW,
example = (carry + 6 + 5 = 12)

H = HIGH voltage level
L = LOW voltage level

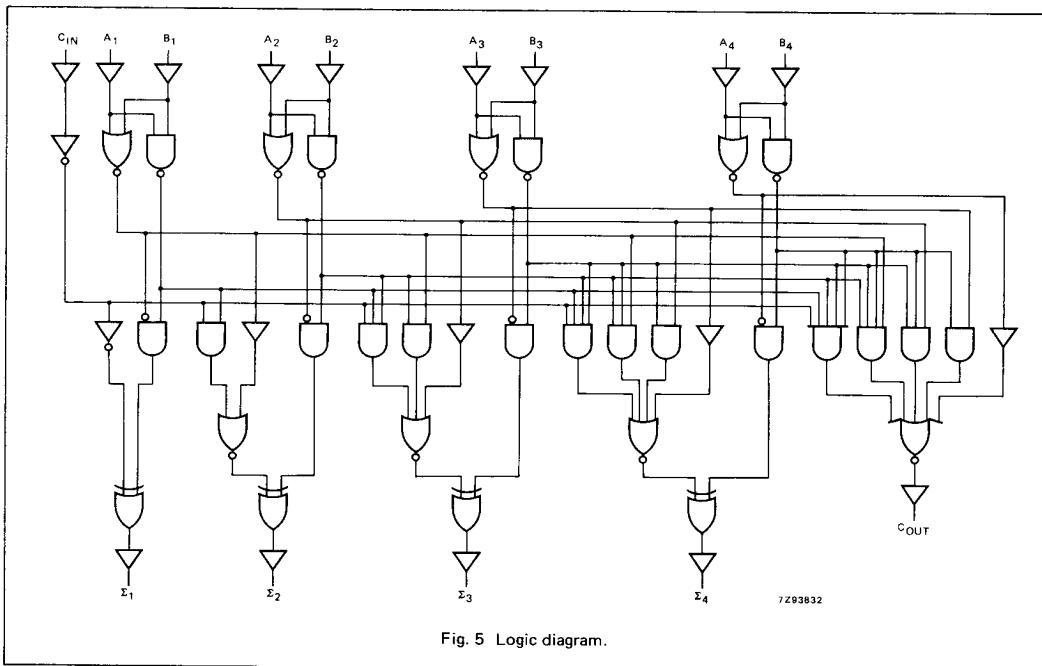


Fig. 5 Logic diagram.

查询"74HC283D-T"供应商

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

$GND = 0 \text{ V}$; $t_f = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS			
		74HC							V _{CC} V	WAVEFORMS		
		+25		-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay C _{IN} to Σ_1		52 19 15	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig. 6	
t _{PHL} / t _{PLH}	propagation delay C _{IN} to Σ_2		58 21 17	180 36 31		225 45 38		270 54 46	ns	2.0 4.5 6.0	Fig. 6	
t _{PHL} / t _{PLH}	propagation delay C _{IN} to Σ_3		63 23 18	195 39 33		245 49 42		295 59 50	ns	2.0 4.5 6.0	Fig. 6	
t _{PHL} / t _{PLH}	propagation delay C _{IN} to Σ_4		74 27 22	230 46 39		290 58 49		345 69 59	ns	2.0 4.5 6.0	Fig. 6	
t _{PHL} / t _{PLH}	propagation delay A _n or B _n to Σ_n		69 25 20	210 42 36		265 53 45		315 63 54	ns	2.0 4.5 6.0	Fig. 6	
t _{PHL} / t _{PLH}	propagation delay C _{IN} to C _{OUT}		63 23 18	195 39 33		245 49 42		295 59 50	ns	2.0 4.5 6.0	Fig. 6	
t _{PHL} / t _{PLH}	propagation delay A _n or B _n to C _{OUT}		63 23 18	195 39 33		245 49 42		295 59 50	ns	2.0 4.5 6.0	Fig. 6	
t _{THL} / t _{TTLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig. 6	

查询"74HC283D-T"供应商

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: standard

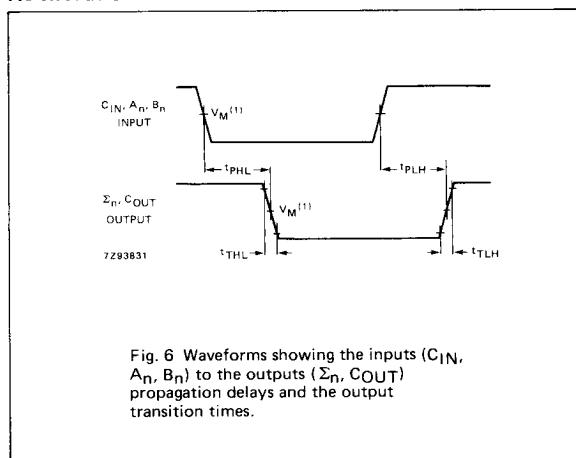
I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications.

To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
C_{IN}	1.50
B_2, A_2, A_1	1.00
B_1	0.40
$B_4, A_4,$ A_3, B_3	0.50


AC CHARACTERISTICS FOR 74HCT

$GND = 0 \text{ V}$; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS			
		74HCT							V _{CC} V	WAVEFORMS		
		+25			−40 to +85		−40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
t_{PHL}/t_{PLH}	propagation delay C_{IN} to Σ_1		18	31		39		47	ns	4.5	Fig. 6	
t_{PHL}/t_{PLH}	propagation delay C_{IN} to Σ_2		25	43		54		65	ns	4.5	Fig. 6	
t_{PHL}/t_{PLH}	propagation delay C_{IN} to Σ_3		27	46		58		69	ns	4.5	Fig. 6	
t_{PHL}/t_{PLH}	propagation delay C_{IN} to Σ_4		31	53		66		80	ns	4.5	Fig. 6	
t_{PHL}/t_{PLH}	propagation delay A_n or B_n to Σ_n		29	49		61		74	ns	4.5	Fig. 6	
t_{PHL}/t_{PLH}	propagation delay C_{IN} to C_{OUT}		27	46		58		69	ns	4.5	Fig. 6	
t_{PHL}/t_{PLH}	propagation delay A_n or B_n to C_{OUT}		28	48		60		72	ns	4.5	Fig. 6	
t_{THL}/t_{TLH}	output transition time		7	15		19		22	ns	4.5	Fig. 6	

[查询"74HC283D-T"供应商](#)

AC WAVEFORMS

Note to AC waveforms

(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} .
HCT: $V_M = 1.3V$; $V_I = GND$ to $3V$.

查询"74HC283D-T"供应商

APPLICATION INFORMATION

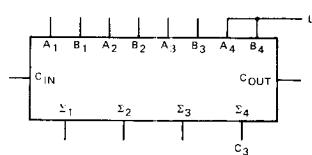


Fig. 7 3-bit adder.

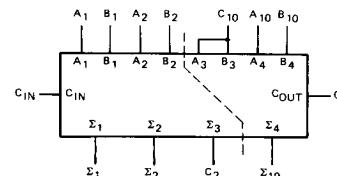


Fig. 8 2-bit and 1-bit adder.

Fig. 9 5-input encoder.

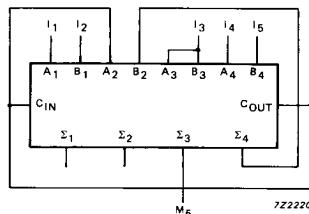


Fig. 10 5-input majority gate.

Note to Figs 7 to 10

Figure 7 shows a 3-bit adder using the "283". Tying the operand inputs of the fourth adder (A_3, B_3) LOW makes Σ_3 dependent on, and equal to, the carry from the third adder. Based on the same principle, Figure 8 shows a method of dividing the "283" into a 2-bit and 1-bit adder. The third stage adder (A_2, B_2, Σ_2) is used simply as means of transferring the carry into the fourth stage (via A_2 and B_2) and transferring the carry from the second stage on Σ_2 . Note that as long as A_2 and B_2 are the same, HIGH or LOW, they do not influence Σ_2 . Similarly, when A_2 and B_2 are the same, the carry into the third stage does not influence the carry out of the third stage. Figure 9 shows a method of implementing a 5-input encoder, where the inputs are equally weighted. The outputs Σ_0, Σ_1 and Σ_2 produce a binary number equal to the number inputs (I_1 to I_5) that are HIGH. Figure 10 shows a method of implementing a 5-input majority gate. When three or more inputs (I_1 to I_5) are HIGH, the output M_5 is HIGH.