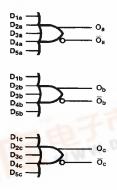
July 1992

100301 Low Power Triple 5-Input OR/NOR Gate

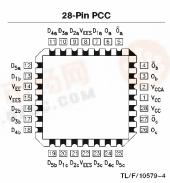
WWW.DZSC

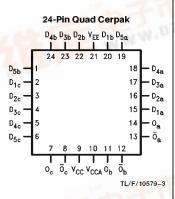

General Description

The 100301 is a monolithic triple 5-input OR/NOR gate. All inputs have 50 k Ω pull-down resistors and all outputs are buffered.

Features

- 23% power reduction of the 100101
- 2000V ESD protection
- Pin/function compatible with 100101
- Voltage compensated operating range = -4.2V to -5.7V
- Available to MIL-STD-883
- Available to industrial grade temperature range


Logic Symbol


Pin Names	Description
D _{na} , D _{nb} , D _{nc} O _a , O _b , O _c O _a , Ō _b , Ō _c	Data Inputs Data Outputs Complementary Data Outputs

Connection Diagrams

24-Pin DIP/SOIC -D_{2c} D_{4c} 23 -D_{1c} 22 -D_{5b} - D_{4b} 0, 21 ō, 20 -D_{3b} -D_{2b} v_{cc} -V_{EE} 17 -D_{1b} — D_{5a} 16 ō 10 15 -D_{4a} -D_{3a} 0a -D_{2a} TL/F/10579-2

TL/F/10579-1

1995 National Semiconductor Corporation TL/F/10579

RRD-B30M105/Printed in U. S. A

<u> 查询"100301FC"供应商</u>

Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$

Maximum Junction Temperature (T_J)

Ceramic + 175°C Plastic + 150°C

V_{EE} Pin Potential to

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Recommended Operating Conditions

Case Temperature (T_C)

 Commercial
 0°C to +85°C

 Industrial
 −40°C to +85°C

 Military
 −55°C to +125°C

 Supply Voltage (V_{EE})
 −5.7V to −4.2V

Commercial Version

DC Electrical Characteristics

 $V_{\mbox{\footnotesize{EE}}}=\,-4.2\mbox{\footnotesize{V}}$ to $\,-5.7\mbox{\footnotesize{V}},\,V_{\mbox{\footnotesize{CC}}}=\,V_{\mbox{\footnotesize{CCA}}}=\,\mbox{\footnotesize{GND}},\,T_{\mbox{\footnotesize{C}}}=\,0^{\circ}\mbox{\footnotesize{C}}$ to $\,+\,85^{\circ}\mbox{\footnotesize{C}}$ (Note 3)

Symbol	Parameter	Min	Тур	Max	Units	Conditions			
V _{OH}	Output HIGH Voltage	- 1025	-955	-870	mV	$V_{IN} = V_{IH(Max)} \text{ or } V_{IL(Min)}$	Loading with		
V _{OL}	Output LOW Voltage	- 1830	- 1705	- 1620	mV		50Ω to −2.0V		
V _{OHC}	Output HIGH Voltage	- 1035			mV	$V_{IN} = V_{IH(Min)}$ or $V_{IL(Max)}$	Loading with		
V _{OLC}	Output LOW Voltage			-1610	mV		50Ω to −2.0V		
V _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs			
V _{IL}	Input LOW Voltage	- 1830		- 1475	mV	Guaranteed LOW Signal for	All Inputs		
I _{IL}	Input LOW Current	0.50			μΑ	$V_{IN} = V_{IL(Min)}$			
I _{IH}	Input HIGH Current			240	μΑ	V _{IN} = V _{IH(Max)}			
I _{EE}	Power Supply Current	-29	-17	-15	mA	Inputs Open			

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

 $V_{\mbox{\footnotesize EE}}=\,$ -4.2V to -5.7V, $V_{\mbox{\footnotesize CC}}=\,V_{\mbox{\footnotesize CCA}}=\,$ GND

Symbol	Parameter	T _C = 0°C		T _C = +25°C		T _C = +85°C		Units	Conditions
		Min	Max	Min	Max	Min	Max	Oto	Conditions
t _{PLH}	Propagation Delay Data to Output	0.50	1.10	0.50	1.15	0.50	1.20	ns	Figures 1 and 2 (Note 1)
t _{TLH}	Transition Time 20% to 80%, 80% to 20%	0.40	1.20	0.40	1.20	0.40	1.20	ns	Figures 1 and 2

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Commercial Version (Continued)

SOIC, PCC and Cerpak AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C =	0°C	T _C =	+ 25°C	T _C =	+ 85°C	Units	Conditions
	. a. a.noto.	Min	Max	Min	Max	Min	Max	00	Somman
t _{PLH}	Propagation Delay Data to Output	0.50	1.00	0.50	1.05	0.50	1.10	ns	Figures 1 and 2 (Note 2)
^t TLH ^t THL	Transition Time 20% to 80%, 80% to 20%	0.40	1.10	0.40	1.10	0.40	1.10	ns	Figures 1 and 2
toshl	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		240		240		240	ps	PCC Only (Note 1)
^t OSLH	Maximum Skew Common Edge Output-to-Output Variation Data to Output Path		330		330		330	ps	PCC Only (Note 1)
tost	Maximum Skew Opposite Edge Output-to-Output Variation Data to Output Path		330		330		330	ps	PCC Only (Note 1)
tpS	Maximum Skew Pin (Signal) Transition Variation Data to Output Path		230		230		230	ps	PCC Only (Note 1)

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (t_{OSHL}), or LOW to HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

Note 2: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Industrial Version

PCC DC Electrical Characteristics

 $V_{\text{EE}} = -4.2 \text{V to } -5.7 \text{V}$, $V_{\text{CC}} = V_{\text{CCA}} = \text{GND}$, $T_{\text{C}} = -40 ^{\circ} \text{C}$ to $+85 ^{\circ} \text{C}$ (Note 3)

Symbol	Parameter	T _C =	−40°C	T _C = 0°C	to +85°C	Units	Condit	ions	
	T di di iliotoi	Min	Max	Min	Max		oonaic		
V _{OH}	Output HIGH Voltage	- 1085	-870	- 1025	-870	mV	$V_{IN} = V_{IH(Max)}$	Loading with	
VOL	Output LOW Voltage	- 1830	- 1575	-1830	-1620	mV	or V _{IL(Min)}	50Ω to -2.0V	
Vohc	Output HIGH Voltage	- 1095		-1035		mV	$V_{IN} = V_{IH(Min)}$	Loading with	
V _{OLC}	Output LOW Voltage		- 1565		-1610	mV	or V _{IL(Max)}	50Ω to -2.0V	
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for All Inputs		
VIL	Input LOW Voltage	- 1830	-1480	-1830	-1475	mV	Guaranteed LOW Sign	al for All Inputs	
IIL	Input LOW Current	0.50		0.50		μΑ	$V_{IN} = V_{IL(Min)}$		
Iн	Input HIGH Current	·	240	·	240	μΑ	$V_{IN} = V_{IH(Max)}$		
I _{EE}	Power Supply Current	-29	- 15	-29	-15	mA	Inputs Open		

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

Industrial Version (Continued)

PCC AC Electrical Characteristics

 $V_{\mbox{\footnotesize{EE}}}=\,-4.2\mbox{\footnotesize{V}}$ to $\,-5.7\mbox{\footnotesize{V}},\,V_{\mbox{\footnotesize{CC}}}=\,V_{\mbox{\footnotesize{CCA}}}=\,\mbox{\footnotesize{GND}}$

Symbol	Parameter	$T_C = -40^{\circ}C$		$T_C = +25^{\circ}C$		T _C =	+ 85°C	Units	Conditions	
- Cyllibor	T di di iliotoi	Min	Max	Min	Max	Min	Max	010	00.10.100113	
t _{PLH}	Propagation Delay Data to Output	0.40	1.00	0.50	1.05	0.50	1.10	ns	Figures 1 and 2 (Note 1)	
t _{TLH}	Transition Time 20% to 80%, 80% to 20%	0.30	1.10	0.40	1.10	0.40	1.10	ns	Figures 1 and 2	

Note 1: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Military Version

DC Electrical Characteristics

 $V_{\text{EE}} = -4.2 \text{V to } -5.7 \text{V}, \, V_{\text{CC}} = V_{\text{CCA}} = \text{GND, T}_{\text{C}} = -55 ^{\circ} \text{C to } + 125 ^{\circ} \text{C}$

Symbol	Parameter	Min	Max	Units	T _C	Conditions		Notes
V _{OH}	Output HIGH Voltage	- 1025	-870	mV	0°C to +125°C			
		- 1085	-870	mV	−55°C	V _{IN} = V _{IH(Max)}	Loading with	1, 2, 3
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to +125°C	or V_{IL} (Min) $\int 50\Omega$ to $-2.0V$		1, 2, 0
		-1830	- 1555	mV	−55°C			
V _{OHC}	Output HIGH Voltage	- 1035		mV	0°C to +125°C			
		- 1085		mV	−55°C	$V_{IN} = V_{IH(Min)}$	Loading with 50Ω to $-2.0V$	1, 2, 3
V _{OLC}	Output LOW Voltage		-1610	mV	0°C to +125°C	or V _{IL} (Max)		
			- 1555	mV	−55°C			
V _{IH}	Input HIGH Voltage	-1165	-870	mV	-55°C to +125°C	Guaranteed HIGH Signal for All Inputs		1, 2, 3, 4
V _{IL}	Input LOW Voltage	- 1830	- 1475	mV	-55°C to +125°C	Guaranteed LOW Signal for All Inputs		1, 2, 3, 4
IIL	Input LOW Current	0.50		μΑ	-55°C to +125°C	$V_{EE} = -4.2V$ $V_{IN} = V_{IL(Min)}$		1, 2, 3
I _{IH}	Input HIGH Current		240	μΑ	0°C to +125°C	$V_{EE} = -5.7V$ $V_{IN} = V_{IH} (Max)$		1, 2, 3
			340	μΑ	−55°C			1, 2, 0
IEE	Power Supply Current	-32	-12	mA	-55°C to +125°C	Inputs Open		1, 2, 3

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 2: Screen tested 100% on each device at -55° C, $+25^{\circ}$ C, and $+125^{\circ}$ C, Subgroups 1, 2, 3, 7, and 8.

Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at -55° C, $+25^{\circ}$ C, and $+125^{\circ}$ C, Subgroups A1, 2, 3, 7, and 8.

Note 4: Guaranteed by applying specified input condition and testing V_{OH}/V_{OL} .

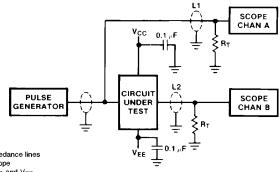
Military Version (Continued)

AC Electrical Characteristics

 $V_{\mbox{\footnotesize{EE}}} \,=\, -4.2 \mbox{\footnotesize{V}}$ to $\, -5.7 \mbox{\footnotesize{V}}, \, V_{\mbox{\footnotesize{CC}}} = \, V_{\mbox{\footnotesize{CCA}}} = \, \mbox{\footnotesize{GND}}$

Symbol	Parameter	$T_C = -55^{\circ}C$		T _C = +25°C		T _C = +125°C		Units	Conditions	Notes
Cymbol		Min	Max	Min	Max	Min	Max		Containons	
t _{PLH} t _{PHL}	Propagation Delay Data to Output	0.25	1.70	0.30	1.50	0.30	1.80	ns	Figures 1 and 2	1, 2, 3, 5
t _{TLH}	Transition Time 20% to 80%, 80% to 20%	0.30	1.20	0.30	1.20	0.30	1.20	ns	, iguiec i ana z	4

Note 1: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.


Note 2: Screen tested 100% on each device at +25°C temperature only, Subgroup A9.

Note 3: Sample tested (Method 5005, Table I) on each manufactured lot at +25°C, Subgroup A9, and at +125°C and -55°C temperatures, Subgroups A10 and A11.

Note 4: Not tested at +25°C, +125°C, and -55°C temperature (design characterization data).

Note 5: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

Test Circuitry

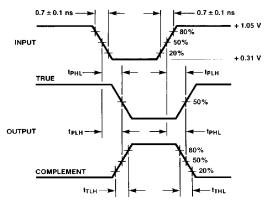
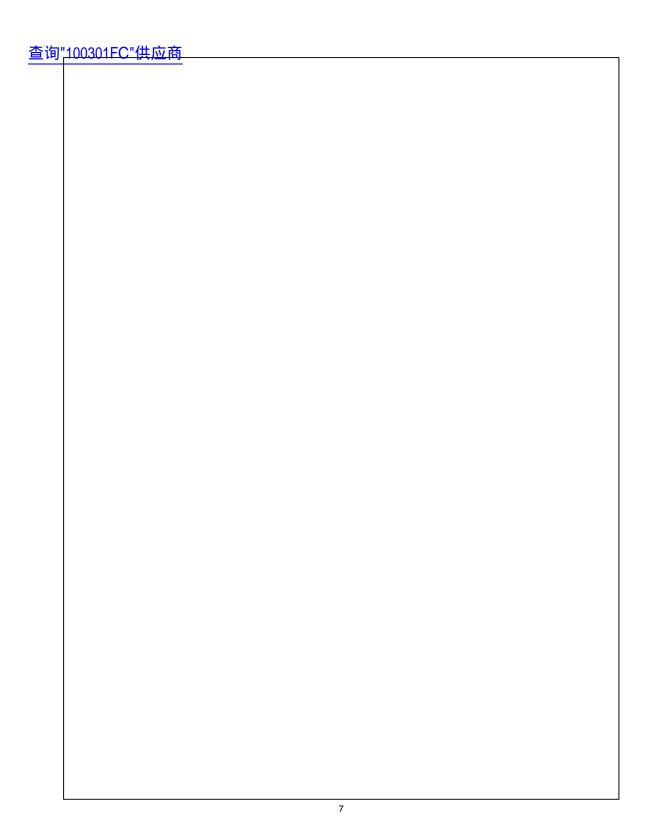
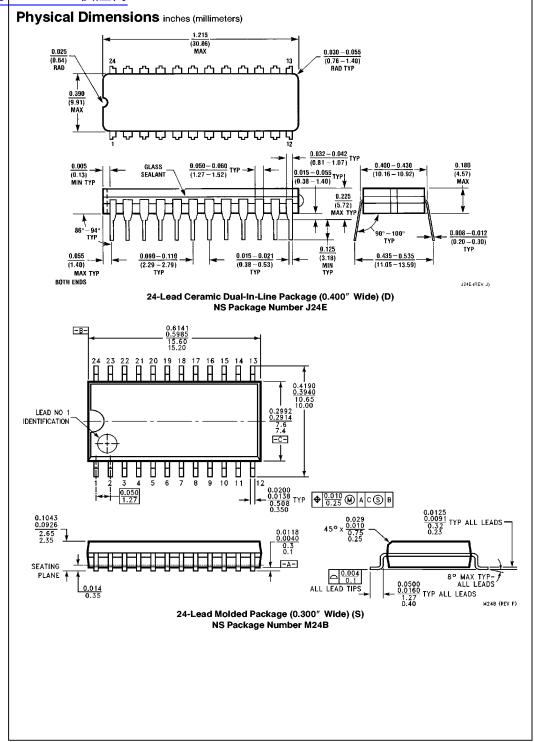
Notes:

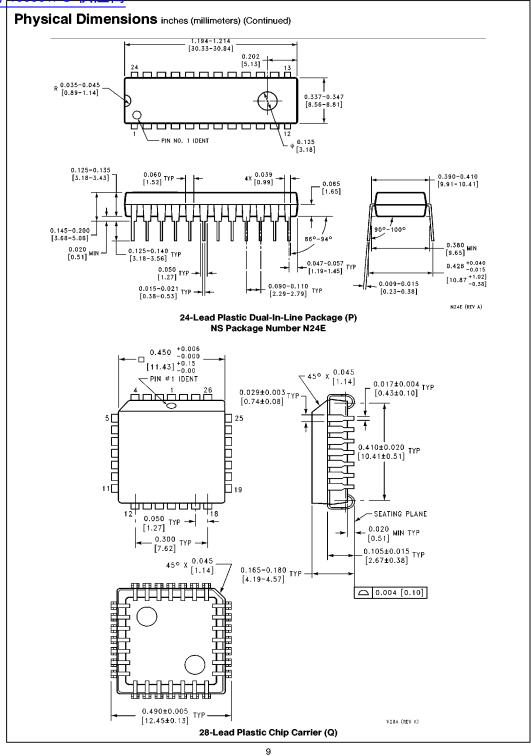
V_{CC}, V_{CCA} = +2V, V_{EE} = -2.5V L1 and L2 = equal length 50Ω impedance lines R_T = 50Ω terminator internal to scope Decoupling 0.1 μ F from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND C_L = Fixture and stray capacitance ≤ 3 pF

TL/F/10579-5

FIGURE 1. AC Test Circuit

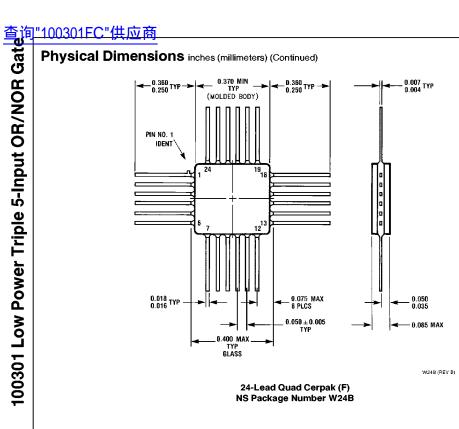
Switching Waveforms


FIGURE 2. Propagation Delay and Transition Times

TL/F/10579-6

Ordering Information The device number is used to form part of a simplified purchasing code where a package type and temperature range are defined as follows: 100301 Special Variation QB = Military grade device with environmental and burn-in processing Device Number (Basic) Package Code D = Ceramic DIP F = Quad Cerpak Q = Plastic-Leaded Chip Carrier (PCC) P = Plastic DIP S = Small Outline (SOIC) Temperature Range C = Commercial (0°C to +85°C) I = Industrial (-40°C to +85°C) (PCC only) M = Military (-55°C to +125°C)



--- OVERFLOW DATA THIS PAGE ---

Physical Dimensions inches (millimeters) (Continued)

Lit. # 114900

24-Lead Quad Cerpak (F) **NS Package Number W24B**

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Europe Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tei: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.