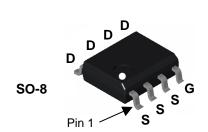
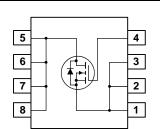


FDS8449_F085

40V N-Channel PowerTrench[®] MOSFET


General Description


These N-Channel MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.

Application

- Inverter
- **Power Supplies**

Absolute Maximum Ratings T_{A=25°C} unless otherwise noted

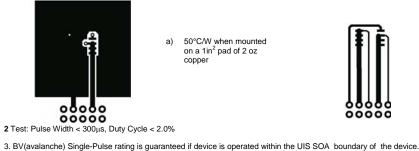
Symbol		Parameter		Ratings	Units
V _{DSS}	Drain-Sourc	e Voltage		40	V
V _{GSS}	Gate-Sourc	e Voltage		±20	V
I _D	Drain Curre	nt – Continuous	(Note 1a)	7.6	А
		– Pulsed		50	
P _D	Power Dissi	pation for Single Operation	n (Note 1a)	2.5	W
			(Note 1b)	1	
T_J, T_{STG}	Operating a	nd Storage Junction Temp	perature Range	-55 to +150	°C
Therma	I Charac	teristics			
$R_{\theta JA}$	Thermal Re	sistance, Junction-to-Amb	ient (Note 1a)	50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1b)		ient (Note 1b)	125	
$R_{\theta JC}$	Thermal Re	sistance, Junction-to-Case	e (Note 1)	25	
Packag	e Markin	g and Ordering I	nformation		
Device Marking		Device	Reel Size	Tape width	Quantity

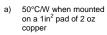
Device Marking	Device	Reel Size	Tape width	Quantity
FDS8449	FDS8449_F085	13"	12mm	2500 units

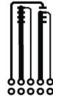
©2009 Fairchild Semiconductor Corporation FDS8449_F085 Rev. A

Features

7.6 A, 40V
$$R_{DS(on)} = 29m\Omega @ V_{GS} = 10V$$


 $\mathrm{R}_{\mathrm{DS(on)}} = 36 \mathrm{m}\Omega ~ @ ~ \mathrm{V}_{\mathrm{GS}} = 4.5 \mathrm{V}$

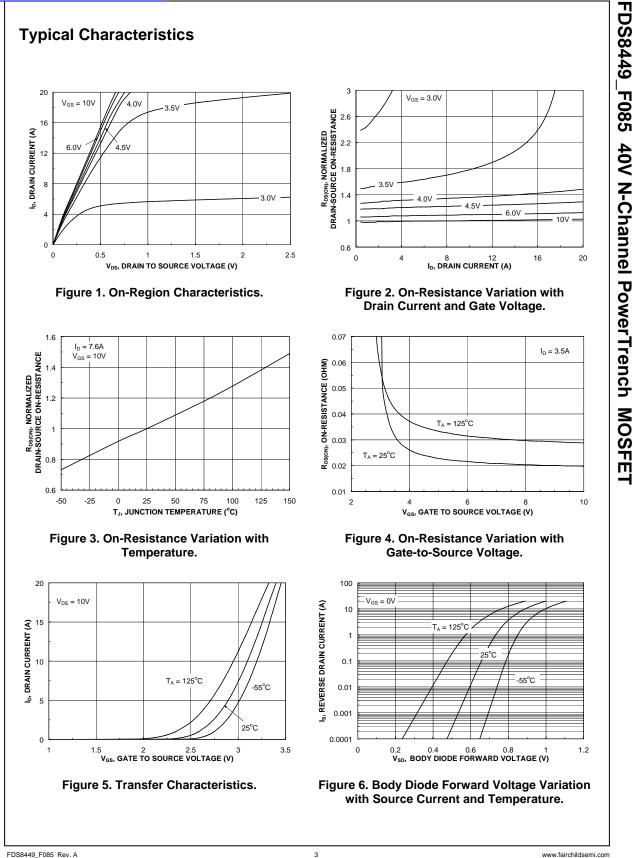

July 2009


- High power handling capability in a widely used • surface mount package
- **RoHS** compliant
- Qualified to AEC Q101

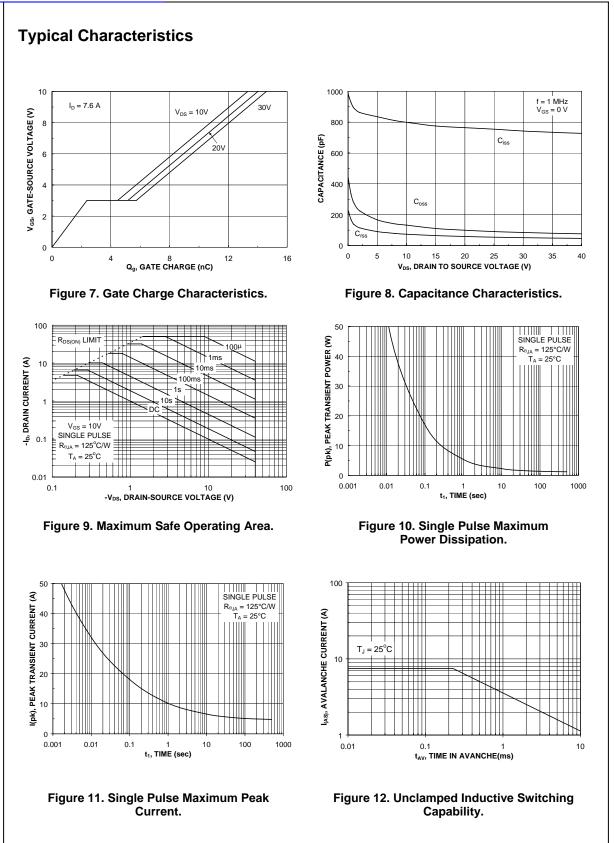
查询"FDS8449_F085"供应商

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	urce Avalanche Ratings (Not	e 3)		•	•	
E _{AS}	Drain-Source Avalanche Energy	$V_{DD} = 40 \text{ V}, I_D = 7.3 \text{ A}, \text{ L} = 1 \text{ mH}$			27	mJ
I _{AS}	Drain-Source Avalanche Current			7.3		А
Off Char	acteristics	•				
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	40			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25° C		34		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 32 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	1.9	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, Referenced to $25^{\circ}C$		-5		mV/°C
R _{DS(on)}	Static Drain–Source	$V_{GS} = 10 \text{ V}, \qquad I_D = 7.6 \text{ A}$		21	29	mΩ
	On–Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 6.8 \text{ A}$		26 29	36 43	
		V_{GS} = 10 V, I_D = 7.6 A, T_J =125°C		-	43	
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \qquad I_D = 7.6 \text{ A}$		21		S
	Characteristics			700		-
Ciss	Input Capacitance	$V_{DS} = 20 V, V_{GS} = 0 V,$		760		pF
Coss	Output Capacitance	f = 1.0 MHz		100		pF
Crss	Reverse Transfer Capacitance	6 4 0 MUL		60 1.2		pF
R _G	Gate Resistance	f = 1.0 MHz		1.2		Ω
	g Characteristics (Note 2)				40	
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 20 \text{ V}, I_D = 1 \text{ A},$ $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$		9	18	ns
t _r	Turn–On Rise Time			5	10	ns
t _{d(off)}	Turn–Off Delay Time Turn–Off Fall Time	_		23 3	17 6	ns
t _f Q _q	Total Gate Charge			7.7	11	ns nC
Q _g Q _{gs}	Gate-Source Charge	$V_{DS} = 20 \text{ V}, \qquad I_D = 7.6 \text{ A},$ $V_{GS} = 5 \text{ V}$		2.4	11	nC
Q _{gs} Q _{gd}	Gate-Drain Charge	$ V_{GS} = 5$ V		2.4		nC
	.			2.0		
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 2.1 A$ (Note 2)		0.76	1.2	V
t _{rr}	Diode Reverse Recovery Time			17		nS
Q _{rr}	Diode Reverse Recovery Charge	$I_F = 7.6 \text{ A}, \qquad d_{iF}/d_t = 100 \text{ A}/\mu\text{s}$		7		nC

b) 125°C/W when mounted on a minimum pad.

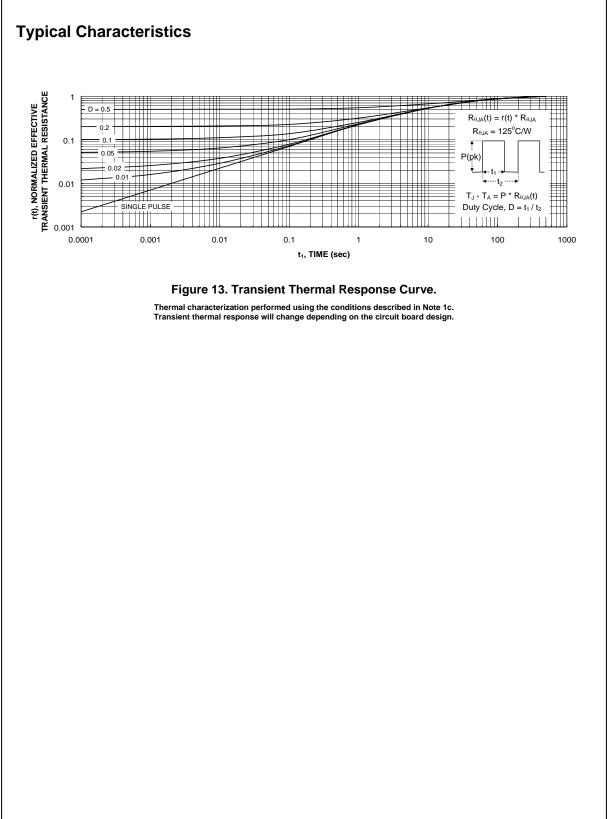

Scale 1 : 1 on letter size paper

FDS8449_F085 Rev. A


www.fairchildsemi.com

FDS8449_F085 40V N-Channel PowerTrench®MOSFET

查询"FD\$8449_F085"供应商



查询"FDS8449_F085"供应商

FDS8449_F085 40V N-Channel PowerTrench[®]MOSFET

www.fairchildsemi.com

FDS8449_F085 Rev. A

www.fairchildsemi.com

查询"FD\$8449_F085"供应商 FAIRCHTLD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
Auto-SPM™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic [™]
EcoSPARK [®]
EfficentMax™
EZSWITCH™*

Fairchild Semiconductor®

FACT Quiet Series™

FACT[®]

FAST®

FastvCore™

FETBench™

FlashWriter^{®*}

F-PFS™ FRFET® Global Power Resource Green FPS™ Green FPS™ e-Series™ G*m*ax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET[™] MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ **OPTOLOGIC[®] OPTOPLANAR[®]** PDP SPM™ Power-SPM™

FPST

PowerTrench® PowerXS™ Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ O_TM Saving our world, 1mW/W/kW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperFET™ SuperSOT™-3 The Power Franchise[®]

puwer

franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* µSerDes™

UHC[®] Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SuperSOT™-6

SuperSOT™-8

SupreMOS™

SyncFET™

Sync-Lock™

GENERAL

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance
 with instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 141