
RoHS

COMPLIANT

Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	50	50			
R _{DS(on)} (Ω)	V _{GS} = 10 V	0.10			
Q _g (Max.) (nC)	17	,			
Q _{gs} (nC)	9.0	9.0			
Q _{gd} (nC)	3.0	3.0			
Configuration	Sing	Single			

FEATURES

- Extremely Low R_{DS(on)}
- Compact Plastic Package
- Fast Switching
- Low Drive Current
- Ease of Paralleling
- Excellent Temperature Stability
- Parts Per Million Quality
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

The technology has expanded its product base to serve the low voltage, very low $R_{DS(on)}$ MOSFET transistor requirements. Vishay's highly efficient geometry and unique processing have been combined to create the lowest on resistance per device performance. In addition to this feature all have documented reliability and parts per million quality!

The transistor also offer all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling, and temperature stability of the electrical parameters.

They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and in systems that are operated from low voltage batteries, such as automotive, portable equipment, etc.

ORDERING INFORMATION	WW.DZSC.
Package	TO-220AB
Level (DIA) Cons	IRFZ20PbF
Lead (Pb)-free	SiHFZ20-E3
SnPb F56.G0M	IRFZ20
	SiHFZ20

ABSOLUTE MAXIMUM RATINGS PARAMETER			SYMBOL	LIMIT	UNIT		
Drain-Source Voltage ^a			V _{DS}	50			
Gate-Source Voltage ^a			V _{GS}	± 20	V		
Continuous Drain Current	V -+ 10 V	T _C = 25 °C	I _D	15	А		
	V _{GS} at 10 V	$T_C = 25 ^{\circ}C$ $T_C = 100 ^{\circ}C$		10			
Pulsed Drain Current ^b			I _{DM}	60			
Single Pulse Avalanche Energy ^c		E _{AS}	5	mJ			
Linear Derating Factor (see fig. 16)	73 177			0.32	W/°C		
Maximum Power Dissipation (see fig. 16)	T _C = 25 °C		T _C = 25 °C		P_{D}	40	W
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to + 150	°C			
Soldering Recommendations (Peak Temperature)	for 10 s			300 (0.063" (1.6 mm) from case	∍		

Notes

- a. $T_J = 25$ °C to 150 °C
- b. Repeditive rating: Pulse width limited by max. junction temperature. See transient temperature impedance curve (see fig. 11).
- c. Starting T_J = 25 °C, L = 0.07 mH, R_g = 25 Ω , I_{AS} = 12 A

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

Vi**雪泊yi Siikooniix**FZ20"供应商

THERMAL RESISTANCE RATINGS					
PARAMETER	SYMBOL	TYP.	MAX.	UNIT	
Typical Socket Mount, Junction-to-Ambient	R_{thJA}	-	80		
Case-to-Sink, Mounting Surface Flat, Smooth, and Greased	R _{thCS}	1.0	-	°C/W	
Junction-to-Case	R_{thJC}	-	3.12		

PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static					L	L	
Drain-Source Breakdown Voltage	V _{DS}	V _{GS}	50	-	-	V	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$			-	4.0	V
Gate-Source Leakage	I _{GSS}		-	-	± 500	nA	
		$V_{DS} > M$	-	-	250		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = Max.	-	-	1000	μA	
On-State Drain Current	I _{D(on)}	V _{GS} = 10 V	$V_{DS} > I_{D(on)} \times R_{DS(on)} \max$.	-	-	15	Α
Drain-Source On-State Resistance ^b	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A	1	0.080	0.10	Ω
Forward Transconductance ^b	9 _{fs}	$V_{DS} > I_{D(on)}$	$x R_{DS(on)} max., I_D = 9.0 A$	5.0	6.0	-	S
Dynamic							
Input Capacitance	C_{iss}	$V_{GS} = 0 \text{ V},$ $V_{DS} = 25 \text{ V},$ $f = 1.0 \text{ MHz}, \text{ see fig. } 11$		1	560	860	pF
Output Capacitance	C_{oss}			1	250	350	
Reverse Transfer Capacitance	C_{rss}			ı	60	100	
Total Gate Charge	Q_g		I _D = 20 A, V _{DS} = 0.8 max. rating, see fig. 18 for test circuit (Gate charge is	-	12	17	nC
Gate-Source Charge	Q_gs	V _{GS} = 10 V		-	9.0	-	
Gate-Drain Charge	Q_{gd}		essentially independent of operating temperature)	-	3.0	-	
Turn-On Delay Time	t _{d(on)}	V_{DD} = 25 V, I_D = 9.0 A, Z_0 = 50 Ω , see fig. 5 ^b		-	15	30	- ns
Rise Time	t _r			-	45	90	
Turn-Off Delay Time	t _{d(off)}			-	20	40	
Fall Time	t _f			-	15	30	
Internal Drain Inductance	L _D	Modified MOSFET symbol showing the internal device inductances		-	3.5	-	
Internal Source Inductance	L _S			-	4.5	-	- nH
Drain-Source Body Diode Characteristic	s						
Continuous Source-Drain Diode Current	I _S	MOSFET symbol showing the integral reverse p - n junction rectifier		-	-	15	A
Pulsed Diode Forward Current ^a	I _{SM}			-	-	60	_ ^
Body Diode Voltage ^b	V _{SD}	T _C = 25 °C, I _S = 15 A, V _{GS} = 0 V		-		1.5	V
Body Diode Reverse Recovery Time	t _{rr}	- T _J = 150 °C, I _F = 15 A, dI _F /dt = 100 A/μs		-	100		ns
Body Diode Reverse Recovery Charge	Q _{rr}			-	0.4	-	μC
Forward Turn-On Time	t _{on}	Intrinsic tu	ırn-on time is negligible (turn-	on is dor	ninated b	y L _S and	L _D)

- a. Repeditive rating: Pulse width limited by max. junction temperature. See transient temperature impedance curve (see fig. 5).
- b. Pulse test: Pulse width \leq 300 μ s; duty cycle \leq 2 %.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

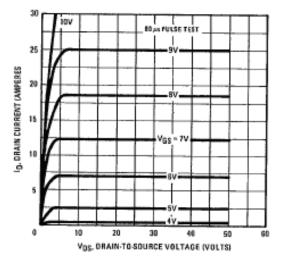


Fig. 1 - Typical Output Characteristics

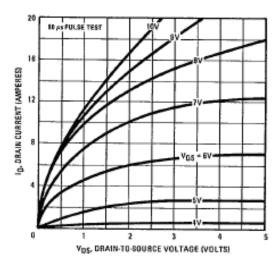


Fig. 2 - Typical Saturation Characteristics

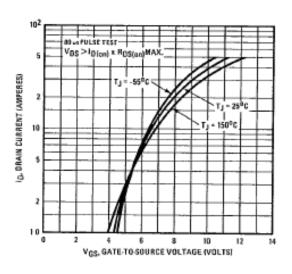


Fig. 3 - Typical Transfer Characteristics

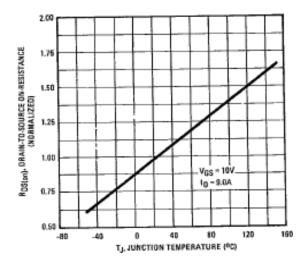


Fig. 4 - Normalized On-Resistance vs. Temperature

Vi**雪油yi Siiieopfiix** FZ20"供应商

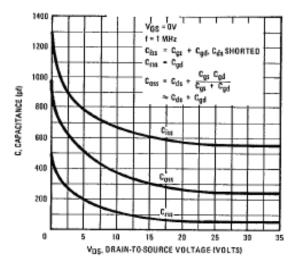


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

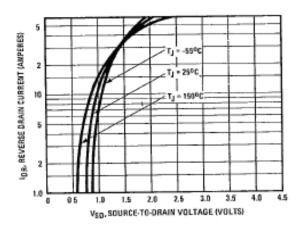


Fig. 7 - Typical Source-Drain Diode Forward Voltage

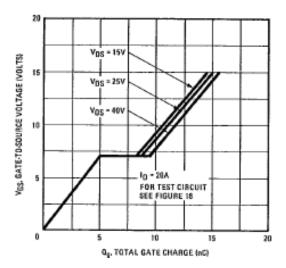


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

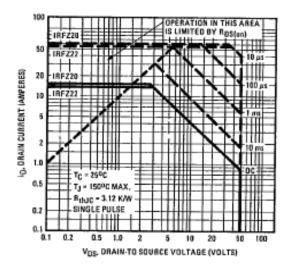


Fig. 8 - Maximum Safe Operating Area

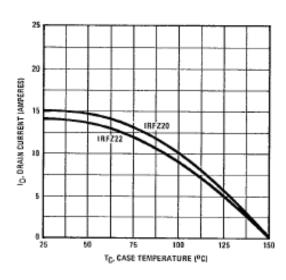


Fig. 9 - Maximum Drain Current vs. Case Temperature

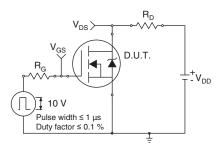


Fig. 10a - Switching Time Test Circuit

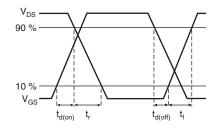


Fig. 10b - Switching Time Waveforms

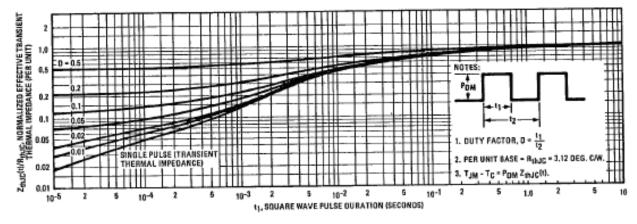


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case vs. Pulse Duration

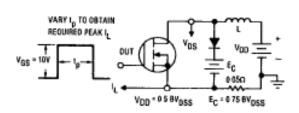


Fig. 12a - Clamped Inductive Test Circuit

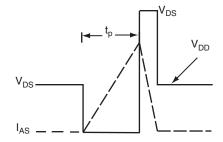


Fig. 12b - Unclamped Inductive Waveforms

Vi**雪询yi &iiieonsi M**FZ20"供应商

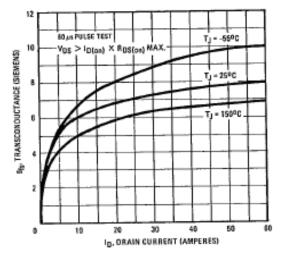


Fig. 13 - Typical Transconductance vs. Drain Current

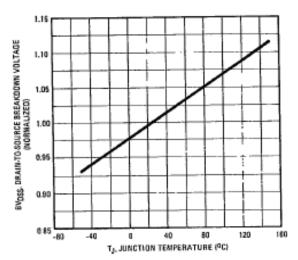


Fig. 14 - Breakdown Voltage vs. Temperature

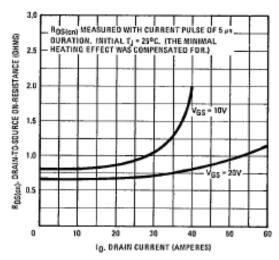


Fig. 15 - Typical On-Resistance vs. Drain Current

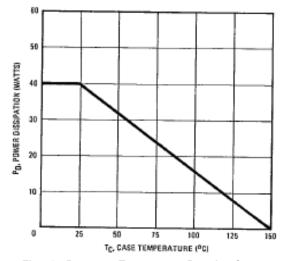


Fig. 16 - Power vs. Temperature Derating Curve

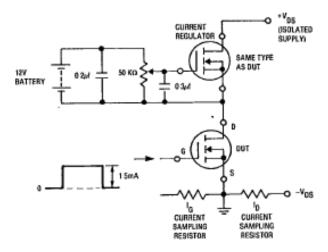
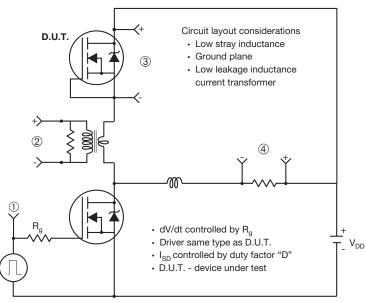



Fig. 17 - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit

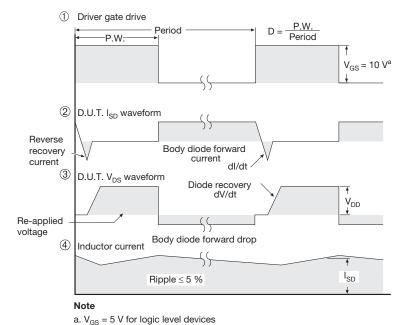


Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91340.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08

www.vishay.com