Ma D65NQ3R D65NQ3R

Power MOSFET 25 V, 65 A, Single N–Channel, DPAK

Features

- Low R_{DS(on)}
- Ultra Low Gate Charge
- Low Reverse Recovery Charge
- Pb–Free Packages are Available

Applications

- Desktop CPU Power
- DC–DC Converters
- High and Low Side Switch

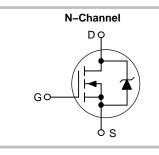
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

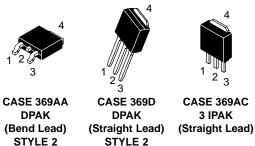
Param	Symbol	Value	Unit		
Drain-to-Source Volta	V _{DSS}	25	V		
Gate-to-Source Voltag	ge		V _{GS}	±20	V
Continuous Drain Current ($R_{\theta,IC}$) Limited		$T_C = 25^{\circ}C$	Ι _D	65	А
by Die		$T_C = 85^{\circ}C$		45	
Continuous Drain Current ($R_{\theta JC}$) Limited by Wire	Steady State	T _C = 25°C	Ι _D	32	A
Power Dissipation ($R_{\theta JC}$)		$T_C = 25^{\circ}C$	PD	50	W
Continuous Drain		$T_A = 25^{\circ}C$	I _D	11.4	А
Current (Note 1)	Steady	$T_A = 85^{\circ}C$		8.9	
Power Dissipation (Note 1)	State	$T_A = 25^{\circ}C$	PD	1.88	W
Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	9.5	А
Current (Note 2)		$T_A = 85^{\circ}C$		7.4	
Power Dissipation (Note 2)	State	$T_A = 25^{\circ}C$	PD	1.3	W
Pulsed Drain Current	t _p =	10 μs	I _{DM}	130	Α
Operating Junction and Temperature	T _J , T _{stg}	–55 to 175	°C		
Drain-to-Source (dv/dt	dv/dt	2.0	V/ns		
Source Current (Body D	I _S	2.1	А		
Single Pulse Drain–to–Source Avalanche Energy (V _{DD} = 24 V, V _{GS} = 10 V, I _L = 12 A, L = 1.0 mH, R _G = 25 Ω)			E _{AS}	71.7	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using 1 in sq pad size

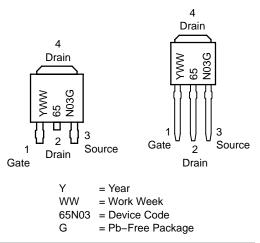
(Cu area = 1.127 in sq [1 oz] including traces).


 Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.15 in sq) [1 oz] including traces.



ON Semiconductor®

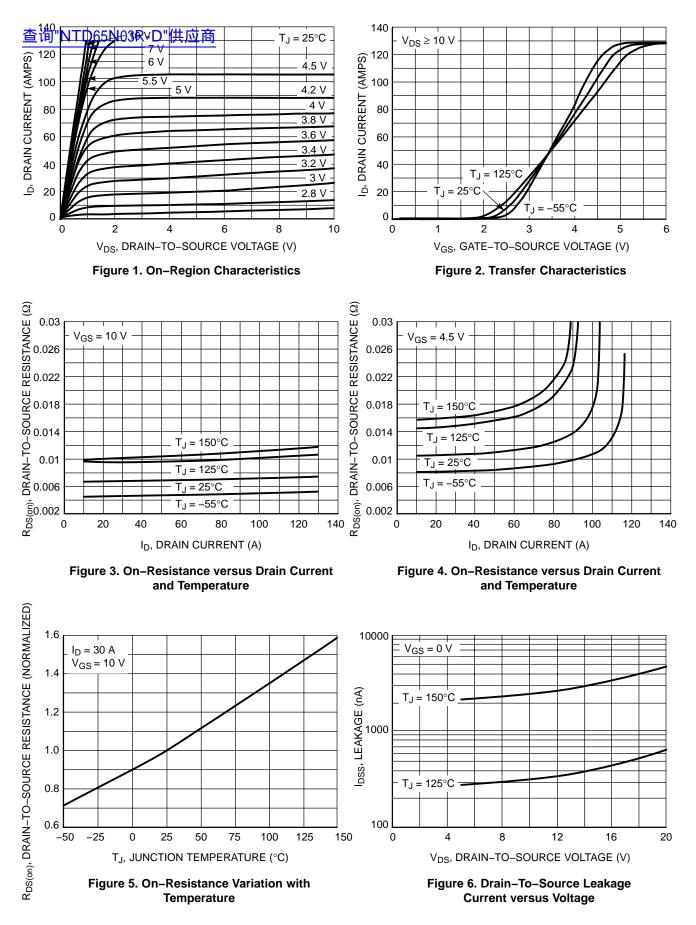
http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
25 V	6.5 mΩ @ 10 V	65 A
25 V	9.7 mΩ @ 4.5 V	05 A

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS


Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ extsf{ heta}JC}$	2.5	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{ extsf{ heta}JA}$	80	
Junction-to-Ambient - Steady State (Note 4)	$R_{ hetaJA}$	115	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Co	ndition	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I	_D = 250 μA	25	29.5		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				19.2		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 20 V	$T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$			1.5 10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V ₀				±100	nA
ON CHARACTERISTICS (Note 5)		_			1		
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, I	_D = 250 μA	1.0	1.74	2.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V,	I _D = 30 A		6.5	8.4	mΩ
	20(01)	V _{GS} = 4.5 V			9.7	14.6	-
Forward Transconductance	9 FS	V _{DS} = 15 V,	I _D = 15 A		27		mHos
CHARGES, CAPACITANCES AND GATE RE	SISTANCE						
Input Capacitance	C _{iss}				1177	1400	pF
Output Capacitance	C _{oss}	$V_{GS} = 0 V, f = 1.0 MHz,$ $V_{DS} = 20 V$			555		
Reverse Transfer Capacitance	C _{rss}				218		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 5.0 \text{ V}, V_{DS} = 10 \text{ V},$ $I_D = 30 \text{ A}$			12.2	16	nC
Threshold Gate Charge	Q _{G(TH)}				1.5		-
Gate-to-Source Charge	Q _{GS}				2.95		
Gate-to-Drain Charge	Q _{GD}				6.08		
SWITCHING CHARACTERISTICS (Note 6)					•		•
Turn–On Delay Time	t _{d(on)}				6.3		ns
Rise Time	t _r	V _{GS} = 10 V, V	V _{DS} = 25 V,		18.6		
Turn-Off Delay Time	t _{d(off)}	I _D = 30 A, F			20.3		
Fall Time	t _f				8.8		
DRAIN-SOURCE DIODE CHARACTERISTIC	S		·				•
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$		0.85	1.1	V
		$I_{\rm S} = 20 \text{ A}$ $T_{\rm J} = 125^{\circ}\text{C}$			0.72		
Reverse Recovery Time	t _{RR}				28.8		ns
Charge Time	ta	$\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \ V, \ dI_S/dt = 100 \ A/\mu s, \\ I_S = 20 \ A \end{array}$			12.8		
Discharge Time	t _b				16		
Reverse Recovery Time	Q _{RR}				20		nC
PACKAGE PARASITIC VALUES							•
Source Inductance	LS				2.49		
Drain Inductance	L _D]	E°C		0.02		nH
Gate Inductance	L _G	- T _A = 2	.o C		3.46		
Gate Resistance	R _G	1	F		1.75		Ω

3. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces). 4. Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.15 in sq [1 oz] including traces). 5. Pulse Test: Pulse Width $\leq 300 \ \mu$ s, Duty Cycle $\leq 2\%$.

6. Switching characteristics are independent of operating junction temperatures.

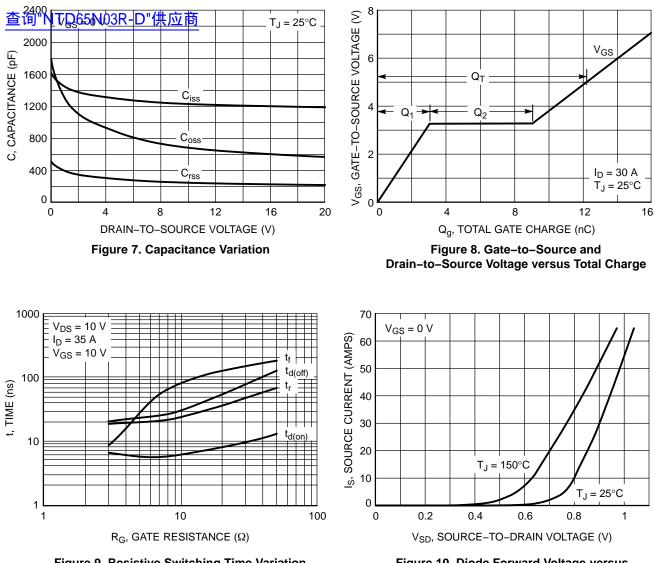
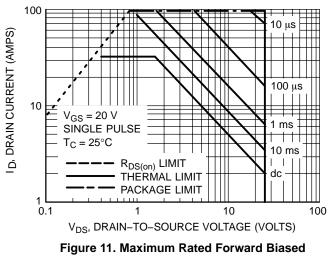
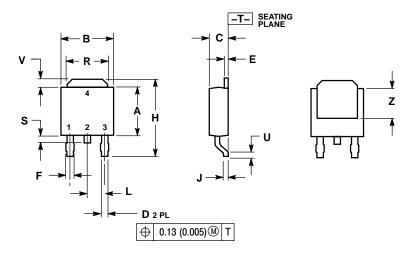



Figure 9. Resistive Switching Time Variation versus Gate Resistance

Safe Operating Area

查哈哈哈哈哈哈哈哈西

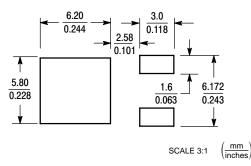

Order Number	Package	Shipping [†]
NTD65N03R	DPAK-3	75 Units / Rail
NTD65N03RG	DPAK-3 (Pb-Free)	75 Units / Rail
NTD65N03RT4	DPAK-3	2500 / Tape & Reel
NTD65N03RT4G	DPAK-3 (Pb-Free)	2500 / Tape & Reel
NTD65N03R-1	DPAK-3 Straight Lead	75 Units / Rail
NTD65N03R-1G	DPAK-3 Straight Lead (Pb-Free)	75 Units / Rail
NTD65N03R-35	DPAK Straight Lead Trimmed (3.5 ± 0.15 mm)	75 Units / Rail
NTD65N03R-35G	DPAK Straight Lead Trimmed (3.5 ± 0.15 mm) (Pb-Free)	75 Units / Rail

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

查询"NTD65N03R-D"供应商

PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE) CASE 369AA-01 **ISSUE A**

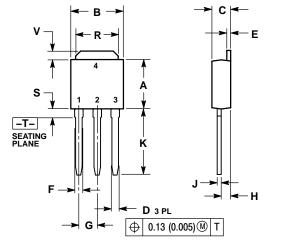


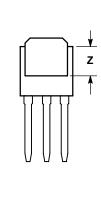
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.025	0.035	0.63	0.89
E	0.018	0.024	0.46	0.61
F	0.030	0.045	0.77	1.14
н	0.386	0.410	9.80	10.40
J	0.018	0.023	0.46	0.58
L	0.090 BSC		2.29 BSC	
R	0.180	0.215	4.57	5.45
S	0.024	0.040	0.60	1.01
U	0.020		0.51	
v	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

SOLDERING FOOTPRINT*

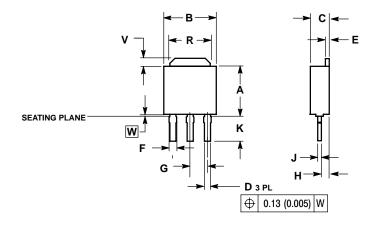



*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

查询"NTD65N03R-D"供应商

DPAK CASE 369D-01 ISSUE B


NOTES:
1. DIMENSIONING AND TOLERANCING PER

ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090) BSC	2.29 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
κ	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
V	0.035	0.050	0.89	1.27	
Ζ	0.155		3.93		

2. DRAIN 3. SOURC 4. DRAIN SOURCE

3 IPAK, STRAIGHT LEAD CASE 369AC-01 ISSUE O

NOTES:

NOTES: 1.. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2.. CONTROLLING DIMENSION: INCH. 3. SEATING PLANE IS ON TOP OF DAMBAR POSITION. 4. DIMENSION A DOES NOT INCLUDE DAMBAR POSITION OR MOLD GATE.

	INC	HES	MILLIMETER		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.22	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
E	0.018	0.023	0.46	0.58	
F	0.037	0.043	0.94	1.09	
G	0.090 BSC		2.29 BSC		
н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
ĸ	0.134	0.142	3.40	3.60	
R	0.180	0.215	4.57	5.46	
v	0.035	0.050	0.89	1.27	
W	0.000	0.010	0.000	0.25	

查询"NTD65N03R-D"供应商

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personse to scill was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative