ErmiDetection Correction Circuit

ELECTRICALLY TESTED PER: MPG 10563

The 10563 is an error detection and correction circuit. It is a building block designed for use with memory systems. The 10563 offers economy in the design of the error detection/correction subsystems for mainframe and add-on memory systems.

For example, using eight 10563s together with eight 12-bit parity checkers (10560), single bit error detection/correction and double-bit error detection can be done on a word of 64-bit length. Only eight check bits (B₀-B₇) need be added to the word.

- 720 mW Max/Pkg (No Load)
- t_{pd} = 5.0 ns typ

	PIN ASSIGNMENTS						
FUNCTION	DIL	FLATS	LCC	BURN-IN			
				(CONDITION C)			
V _{CC1}	1	5	2	GND			
P0B	2	6	3	51 Ω to V $\uparrow\uparrow$			
P ₃	3	7	4	51 Ω to V \top			
B ₅	4	8	5	OPEN			
В6	5	9	7	OPEN			
B ₂	6	10	8	GND			
B ₁	7	11	9	GND			
VEE	8	12	10	VEE			
В ₀	9	13	12	OPEN			
В3	10	14	13	GND			
B ₇	11	15	14	GND			
B ₄	12	16	15	OPEN			
P ₂	13	1	17	51 Ω to VTT			
P ₁	14	2	18	51 Ω to V_{TT}			
P0A	15	3	19	51 Ω to V $_{TT}$			
V _{CC2}	16	4	20	GND			

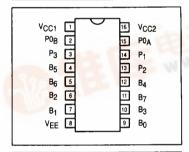
BURN - IN CONDITIONS: VTT = -2.0 V MAX/-2.2 V MIN

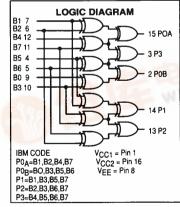
VEE = - 5.7 V MAX/ - 5.2 V MIN

Military 10563

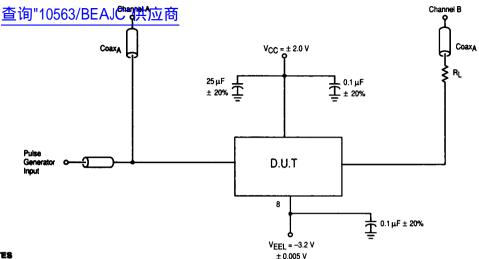
AVAILABLE AS

1) JAN: N/A


2) SMD: N/A


3) 883: 10563/BXAJC

X = CASE OUTLINE AS FOLLOWS:


PACKAGE: CERDIP: E CERFLAT: F LCC: 2

The letter "M" appears before the slash on LCC.

MOTOROLA MILITARY MECL DATA 3-152

- NOTES
- 1. Pulse generator must be capable of rise and fall times of 2.0 ns \pm 0.2 ns.
- 2. Length of CoaxA and CoaxB should be equal for equal time delay.
- 3. 2:1 divider may be used.
- 4. $t_r = t_f = 2.0 \text{ ns} \pm 0.2 \text{ ns} (20\% \text{ to } 80\%)$
- 5. R_L = 50 Ω resistor in series with 50 Ω coax constituting the 100 Ω load.
- 6. VIN has the following characteristics:
 - a) pulse width ≥ 20 ns.
 - b) frequency = 1.0 MHz.
- 7. Unused outputs should be loaded 100 Ω to ground.

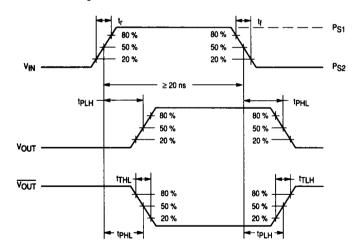


Figure 1. Switching Test Circuit and Waveforms

10563 QUIESCENT LIMIT TABLE *

VEEL

Ps2

Ps1

<u>۲</u>

Ξ

불

Ξ

Test Temperature

Test Voltage Values (Volts)

查询"1056월

3.2

BE

+0.3d

-1.475

-1.105

-1.85 -1.92

-0.78 -0.63 -0.88

3.2

+1.11

Gg

+0.28

+1.01

-1.510

-1.255

TA = 25 °C TA = 125 °C TA = - 55 °C

• ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

														<u> </u>	共应
Symbol	Parameter			Limits	its			Units		TEST	VOLTAGE AF	TEST VOLTAGE APPLIED TO PINS BELOW	1S BEL		商
	:	+ 25	+ 25 °C	+ 125 °C	သို့င	- 55	- 55 °C		Pin	outs referenc	ed are for DIL	Pinouts referenced are for DIL package, check Pin Assignments	ck Pin	Assignn	nents
	Functional Parameters:	Subgroup 1	oup 1	Subgroup 2	oup 2	Subgr	Subgroup 3			N _C C	= 0 V, Output	V_{CC} = 0 V, Output Load = 100 Ω to -2.0 V	to – 2.0	>	
		Min	Мах	Μi	Мах	Min	Мах		H/	\ \ \	YE.	VIL1	VEE	γcc	P. U. T.
ΛОН	High Output Voltage	- 0.93	- 0.78	- 0.825	- 0.63	- 1.08	- 0.88	>	4, 11				8	1, 16	2, 3, 13 - 15
رم ام	Low Output Voltage	- 1.85	- 1.62	- 1.82	- 1.545	- 1.92	- 1.655	>					8	1, 16	2, 3, 13 - 15
VOL1	Low Output Voltage	- 1.85	- 1.60	- 1.82	- 1.525	- 1.92	- 1.635	>				4-7,9-12	8	1, 16	2, 3, 13 - 15
VOH1	High Output Voltage	- 0.95	- 0.78	- 0.845	- 0.63	- 1.10	- 0.88	>			4-7,9-12		8	1, 16	2, 3, 13 - 15
프	Input Current High		220		375		375	Υı	4, 6, 10				8	1, 16	4, 6, 10
圭	Input Current High		265		450		450	¥ <u>1</u>	5, 7, 9, 11, 12				80	16	5, 7, 9, 11 12
=	Input Current Low	0.5		0.3		0.5		Ą		4 - 7, 9 - 12			۵	16	2, 7, 9, 14 15
盟	Power Supply Drain Current	- 125		- 138		- 138		Ą					80	1, 16	8

10563 QUIESCENT LIMIT TABLE *

3.2 3.2 3.2 3.2 3.2 3.2 3.2

S

Ps

딜

重

₹

Test Temperature

Test Voltage Values (Volts)

/BE

±0.36

± ± ± ± 0.1

-1.475

1.105

-1.85

-0.78 -0.63 -0.88

Ĝ

+0.28

-1.510

-1.255

1.92

TA = 25 °C TA = 125 °C TA = -55 °C

查询"10563

* ELECTRICAL CHARACTERISTICS

Each MECL 10K series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 100 Ω resistor to - 2.0 volts.

共应	LOW 🔐	Pinouts referenced are for DIL package, check Pin Assignments	GND	P. U. T.	2, 3, 13 - 15	2, 3, 13 - 15	2, 3, 13 - 16	2, 3, 13 - 15
	TEST VOLTAGE APPLIED TO PINS BELOW	age, check Pi	V _{CC} = 2.0 V, Output Load = 100 Ω to GND	PS1	8 7, 9, 14	8 7, 9, 14	7, 9, 14	7, 9, 14
	APPLIED	DIL pack	rtput Load	VEEL	8	80	8 7, 9, 14	8 7, 9, 14
	OLTAGE	ed are for	: 2.0 V, Ou	vcc Vcc	1, 16	1, 16	1, 16	1, 16
	TEST V	reference	-CC	VOUT VCC VEEL PS1	2,3 13-15	2,3 13-15	2,3 13 - 15	2,3 13-15
		Pinouts		NIA	4-7,9-12 2,3	4-7,9-12 2,3 13-15 1,16	4-7,9-12 2,3 1,16	6.5 1.5 7.5 1.3 7.0 ns 4-7,9-12 2,3
	Units				Su	Su	su	SU
		ე ₀ 99 −	oup 11	Max	4.4	1.1 3.9 1.1 4.5 1.1 4.4	0.7	7.0
		99 –	Subgro	Min	1.1	1.1	1.3	1.3
	Limits	+ 125 °C	Subgroup 10 Subgroup 11	Min Max Min Max Min Max	1.1 3.9 1.1 4.5 1.1 4.4	4.5	6.5 1.5 7.5 1.3	5'2
	Lin	+ 12	Subgre	Min	171	171	1.5	1.5
		၁	Subgroup 9	Max	3.9	3.9	6.5	6.5
.i		+ 25 °C	Subgr	Ĕ	1.1	1.1	1.5	1.5
	Parameter Functional Parameters:				tTLH Rise Time	THL Fall Time	tPLH Propagation Delay	Propagation Delay
	Symbol				Ť.H	TH	фгн	钟