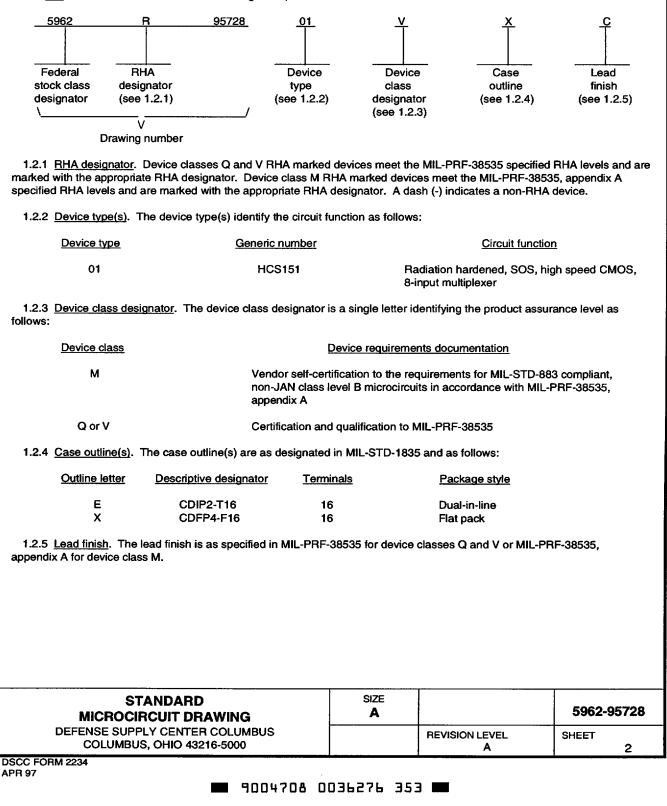
	DESCRIPTION										DA	TE (YF	-MO -D)A)		APPR	OVED			
A	Corre	ct the in phout.	nput na	me des	ignator	rs S0 ai	nd S2 i	n Figur	e 2. Ec	litorial c	hange	s		98-0	5-04		м	onica L	. Poelkir	ng
REV																	· · · · ·			
SHEET		Δ	Δ																	
SHEET REV	A 15	A	A 17																	
SHEET REV SHEET	15	A 16	A 17	BEV			Δ													
SHEET REV SHEET REV STATUS	15			REV			A	A 2	A	A 4	A 5	A	A 7	A	A	A 10	A 11	A 12	A 13	
SHEET REV SHEET	15			SHE PREI	ET) BY V. Nguy	1	A 2	A 3	A 4	5	6	7	8	9	10	11	A 12	13	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MIC RO	15 NDAF	16 RD CUIT		SHE	ET PARED Thanh CKED	V. Nguy	1 yen			ł	5	6	7 ISE S	8 UPPL	9 .Y CE	10		12 .UMB	13	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DR THIS DRAWN FOR U	NDAF DCIRC AWIN NG IS A JSE BY	16 RD CUIT G VAILAR	17	SHE PREI	ET PARED Thanh CKED Thanh PROVE	V. Nguy BY V. Nguy	1 yen yen			4 MIC	5 D CRO(6 EFEN	7 ISE S COL	8 UPPL UMBI	9 .Y CE US, C	10 NTEF DHIO	11 3 COL 43210	-UMB 6	13 US	<u> </u>
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DR THIS DRAWN FOR U	NDAF DCIRC AWIN JSE BY RTMEN NCIES	TIG RD CUIT G VAILAR ALL ITS OF THE	3LE	SHE PREI	ET PAREC Thanh CKED Thanh PROVE Monica	V. Nguy BY V. Nguy D BY a L. Poo	1 yen elking DVAL [2		4 MIC HA	5 D ROC RDE	6 EFEN CIRC	7 ISE S COL	8 UPPL UMBI DIGI ^T GH S	9 .Y CE US, C TAL,	10 INTER PHIO RAD	11 43210 IATIO	-UMB 6 ON , 8-IN	13	<u> </u>
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MIC R DR THIS DRAWI FOR U DEPA AND AGE DEPARTME	NDAF DCIRC AWIN JSE BY RTMEN NCIES	TIG RD CUIT G VAILAR ALL ITS OF THE DEFEN	3LE	SHE PREI CHE	ET PARED Thanh CKED Thanh PROVE Monica WING	V. Ngu BY V. Ngu D BY a L. Po APPRC 95-1	yen elking DVAL [2		4 MIC HA MU	5 D CROC RDE LTIP	6 EFEN CIRC	7 ISE S COL UIT, I D, HK	B UPPL UMBI DIGI ^T GH S	9 .Y CE US, C TAL,	10 INTER PHIO RAD	11 43210 IATIO	-UMB 6 ON , 8-IN	13 US	<u> </u>
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MIC R DR THIS DRAWI FOR U DEPA AND AGE DEPARTME	15 NDAF DCIRC AWIN JSE BY RTMEN NCIES (NT OF I	TIG RD CUIT G VAILAR ALL ITS OF THE DEFEN	3LE	SHE PREI CHE	ET PARED Thanh CKED Thanh PROVE Monica WING	V. Nguy BY V. Nguy D BY a L. Poo APPR(95-1	yen elking DVAL [2		4 MIC HA MU	5 D ROC RDE LTIP ZE A	6 EFEN CIRC INEC LEXI	7 ISE S COL UIT, I	B UPPL UMBI DIGI GH S 10NC	9 .Y CE US, C TAL,	IIO INTEF PHIO RAD D CI HIC S	11 43210 1ATIC MOS	-UMB 6 ON , 8-IN	13 US NPUT	

■ 9004708 0036275 4**1**7 ■

·· —


- -

查询"5962R9572801VEC"供应商 1.SCOPE

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

1.2 PIN. The PIN is as shown in the following example:

Supply voltage range (V_{CC}) DC input voltage range (V_{IN}) DC output voltage range (V_{OUT}) DC input current, any one input (I_{IN}) DC output current, any one output (I_{OUT})	-0.5 V dc to V _{CC} + 0.5 V dc -0.5 V dc to V _{CC} + 0.5 V dc \pm 10 mA
Storage temperature range (TSTG)	
Lead temperature (soldering, 10 seconds)	
Thermal resistance, junction-to-case (θ _{JC}):	
Case outline E	24°C/W
Case outline X	
Thermal resistance, junction-to-ambient (θ_{JA}):	
Case outline E	73°C/W
Case outline X	114°C/W
Junction temperature (T _J)	+175°C
Maximum package power dissipation at $T_A = +125^{\circ}C$ (P _D): <u>4</u> /	
Case outline E	0.68 W
Case outline X	0.44 W

1.4 Recommended operating conditions. 2/ 3/

Supply voltage range (Vcc)	+4.5 V dc to +5.5 V dc
Input voltage range (V _{IN})	+0.0 V dc to Vcc
Output voltage range (Vout)	+0.0 V dc to Vcc
Maximum low level input voltage (ViL)	30% of Vcc
Minimum high level input voltage (VIH)	70% of Vcc
Case operating temperature range (Tc)	-55°C to +125°C
Maximum input rise and fall time at Vcc = 4.5 V (tr, tr)	500 ns
Radiation features:	
Total dose	> 2 x 10^5 Rads (Si)
Single event phenomenon (SEP) effective	
linear energy threshold (LET) no upsets (see 4.4.4.4) Dose rate upset (20 ns pulse)	> 100 MeV/(cm²/mg) 5/
Dose rate upset (20 ns pulse)	> 1 x 10 ¹⁰ Rads (Si)/s 5/
Latch-up	
Dose rate survivability	> 1 x 10 ¹² Rads (Si)/s 5/

1/	Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the
	maximum levels may degrade performance and affect reliability.
~ '	

2/ Unless otherwise noted, all voltages are referenced to GND.

3/ The limits for the parameters specified herein shall apply over the full specified Vcc range and case temperature range of -55°C to +125°C unless otherwise noted.

- 4/ If device power exceeds package dissipation capability, provide heat sinking or derate linearly (the derating is based on θ_{JA}) at the following rate:

----- ----

5/ Guaranteed by design or process but not tested.

	5962-95728
REVISION LEVEL A	SHEET 3
	REVISION LEVEL A

🔳 9004708 0036277 29T 🔳

查1月 5962R9572801VEC 供应的 2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883	-	Test Method Standard Microcircuits.
MIL-STD-973	•	Configuration Management.
MIL-STD-1835	-	Interface Standard For Microcircuit Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 -	List of Standard Microcircuit Drawings (SMD's).
MIL-HDBK-780 -	Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.

3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein.

3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.

3.2.3 Truth table. The truth table shall be as specified on figure 2.

3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3.

3.2.5 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 4.

3.2.6 Irradiation test connections. The irradiation test connections shall be as specified in table III.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95728
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL . A	SHEET 4

APR 97

9004708 0036278 126 🖿

道"5962R9572801VEC"供应商 33 Electrical performance characteristics and postirradiation parameter limits. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range.

3.4 Electrical test requirements. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table I.

3.5 Marking. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.

3.5.1 Certification/compliance mark. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

3.6 Certificate of compliance. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.

3.7 Certificate of conformance. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 Notification of change for device class M. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973.

3.9 Verification and review for device class M. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 Microcircuit group assignment for device class M. Device class M devices covered by this drawing shall be in microcircuit group number 39 (see MIL-PRF-38535, appendix A).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95728	
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL A	SHEET 5	
DSCC FORM 2234 APR 97				
90047	08 0036279 0	62 💻		

Powered by ICminer.com Electronic-Library Service CopyRight 2003

Test	Symbol	Conditions $1/$ -55°C \leq T _C \leq +125°C unless otherwise specified		Device Type	vcc	Group A subgroups	Limits <u>2</u> /		Unit					
-							Min	Max						
High level output voltage	Vон	output $V_{IN} = 3$. For all of	puts affecting under test 15 V or 1.35 V ther inputs cc or GND µA	Ali	4.5 V	1, 2, 3	4.40		V					
			M, D, L, R <u>3</u> /	Ali		1	4.40							
		For all inputs affecting output under test $V_{IN} = 3.85 \text{ V or } 1.65 \text{ V}$ For all other inputs $V_{IN} = V_{CC} \text{ or } \text{GND}$ $I_{OH} = -50 \ \mu\text{A}$		All	5.5 V	1, 2, 3	5.40							
			M, D, L, R <u>3</u> /	All		1	5.40							
Low level output voltage	Vol	output o V _{IN} = 3. For all ot	puts affecting under test 15 V or 1.35 V ther inputs cc or GND μΑ	All	4.5 V	1, 2, 3		0.1	V					
			M, D, L, R <u>3</u> /	All		1		0.1						
							output und	85 V or 1.65 V ther inputs cc or GND	All	5.5 V	1, 2, 3		0.1	
			M, D, L, R <u>3</u> /	All		1		0.1						
Input current high	lini	$V_{IN} = 5.$ For all of	her inputs	All	5.5 V	1		+0.5	μA					
		$V_{IN} = V_0$	cc or GND			2, 3		+5.0						
			M, D, L, R <u>3</u> /	All		1		+5.0						
Input current low	1 <u>11.</u>	VIN = G	t under test, ND ther inputs	All	5.5 V	1		-0.5	μA					
		VIN = Vo	cc or GND			2, 3		-5.0						
			M, D, L, R <u>3</u> /	Ail		1		-5.0						
See footnotes at end	of table.													
MICRO			NG	SIZE A		·		5962-	95728					
DEFENSE S		NTER COL	LUMBUS			REVISION LEVEL A		SHEET	6					

_ ____

юн		Conditions $1/$ -55°C \leq T _C \leq +125°C unless otherwise specified		Vcc	Group A subgroups	Limits <u>2</u> /		Unit								
юн	.					Min	Max									
1	output un V _{IN} = 4.5 For all oth	V or 0.0 V er inputs	All	4.5 V	1	-4.8		mA								
										-			2, 3	-4.0		
		M, D, L, R <u>3</u> /	All		1	-4.0										
lo _L	output ur VIN = 4.5	nder test, V or 0.0 V	All	4.5 V	1	4.8		mA								
					2, 3	4.0										
		M, D, L, R <u>3</u> /	Ali		1	4.0										
kc	VIN = VCC	or GND	All	5.5 V	1		40.0	μA								
					2, 3		750.0									
		M, D, L, R <u>3</u> /	All		1		750.0									
Cin			All	5.0 V	4		10.0	рF								
Сро			All	5.0 V	4		68.0	рF								
4/					5, 6		83.0									
<u>5</u> /			All	4.5 V	7, 8	L	н									
		M, D, L, R <u>3</u> /	All		7	L	н									
tplH1, tpHL1			All	4.5 V	9	2.0	21.0	ns								
<u>6</u> /	See figure	4			10, 11	2.0	23.0									
		M, D, L, R <u>3</u> /	All	1	9	2.0	29.0									
t _{PLH2} , t _{PHL2}			Ali	4.5 V	9	2.0	24.0	ns								
<u>6</u> /	See figure	9 4			10, 11	2.0	27.0									
1		M, D, L, R <u>3</u> /	All		9	2.0	34.0									
	Icc Сім Сро <u>4</u> / <u>5</u> / tplh1, tphl1 <u>6</u> / tphl2	Vour = 4.1 IoL For all inproving the second sec	IoLFor all inputs affecting output under test, $V_{IN} = 4.5 V \text{ or } 0.0 V$ For all other inputs $V_{IN} = V_{CC} \text{ or GND}$ $V_{OUT} = 0.4 V$ IccVIN = V_{CC} \text{ or GND}IccVIN = V_{CC} \text{ or GND}M, D, L, R 3/CINVIH = 5.0 V, VIL = 0.0 V f = 1 MHz, see 4.4.1cCPD 4/5/VIH = 3.15 V, VIL = 1.35 V See 4.4.1b5/VIH = 500 Q f = 1 MHz, see 4.4.1cCPD 4/5/VIH = 500 Q See figure 4fPLH1, fPHL2CL = 50 pF RL = 500QtPLH2, tPHL2CL = 50 pF RL = 500Q	$V_{OUT} = 4.1 \vee $ $M, D, L, R \underline{3}/$ All M	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c } & V_{OUT} = 4.1 \lor & & & & & & & & & & & & & & & & & & $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c } \hline V_{\text{OUT}} = 4.1 \ V & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$								

9004708 0036281 710

Test	Symbol	Conditions <u>1</u> / -55°C ≤ T _C ≤+125°C unless otherwise specifie	Device Type	Vcc	Group A subgroups	Limi	ts <u>2</u> /	Uni
						Min	Max	
Propagation delay time, Sm to Y	tplнз, tpнlз	CL = 50 pF RL = 500Ω	All	4.5 V	9	2.0	25.0	ns
	<u>6</u> /	See figure 4			10, 11	2.0	29.0	
		M, D, L, R <u>3</u>	/ All		9	2.0	37.0	
Propagation <u>de</u> lay time, Sm to Y	t _{PLH4} , t _{PHL4}	CL = 50 pF RL = 500Ω	Ali	4.5 V	9	2.0	29.0	ns
	<u>6</u> /	See figure 4			10, 11	2.0	33.0	
		M, D, L, R <u>3</u>	/ All		9	2.0	42.0	2
Propagation delay time, E to Y	t _{PLH5} , t _{PHL5}	CL = 50 pF RL = 500Ω	All	4.5 V	9	2.0	17.0	ns
	<u>6</u> /	See figure 4			10, 11	2.0	19.0	
		M, D, L, R <u>3</u>	/ Ali		9	2.0	24.0	
Propagation <u>d</u> elay time, E to Y	tplн6, tpнL6	CL = 50 pF RL = 500Ω	Ail	4.5 V	9	2.0	20.0	ns
	<u>6</u> /	See figure 4			10, 11	2.0	21.0	
		M, D, L, R <u>3</u>	/ All		9	2.0	27.0	
Output transition time	tтін, tтні <u>7</u> /	$C_L = 50 \text{ pF}$ $R_L = 500\Omega$ See figure 4	Ali	4.5 V	9		15.0	ns
		M, D, L, R <u>3</u>	/ All		10, 11		22.0	
herein. Output te terminals shall be flows through the For negative and the direction of cu	rminals not open. Whe meter. positive volt irrent flow re	ble, shall be tested at the sp designated shall be high lev on performing the I _{CC} test, th tage and current values, the espectively; and the absolute cable, listed herein.	el logic, low le e current mete sign designat	vel logic, er shall be es the pot	or open, excep placed in the tential difference	t for the la circuit suc	ec test, the h that all c ence to Gl	e outpu current ND and

4/ Power dissipation capacitance (C_{PD}) determines both the power consumption (P_D) and current consumption (Is). Where P_D = (C_{PD} + C_L) (V_{CC} × V_{CC})f + (I_{CC} × V_{CC}) k = (C_{PD} + C_L) V_{CC}f + I_{CC}

 $k = (C_{PD} + C_L) V_{CC}f + I_{CC}$ f is the frequency of the input signal.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95728
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL A	SHEET 8

9004708 0036282 657 🖿

查询"5962R9572801VEC"供应商 TABLE I. Electrical performance characteristics - Continued.

- 5/ The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 2 herein. For V_{OUT} measurements, L ≤ 0.5 V and H ≥ 4.0 V.
- 6/ AC limits at Vcc = 5.5 V are equal to the limits at Vcc = 4.5 V. For propagation delay tests, all paths must be tested.
- 1/ This parameter is guaranteed but not tested. This parameter is characterized upon initial design or process changes which affect this characteristic.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95728
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	9

9004708 0036283 593 🔳

查询"5962R9572801VEC"供应商

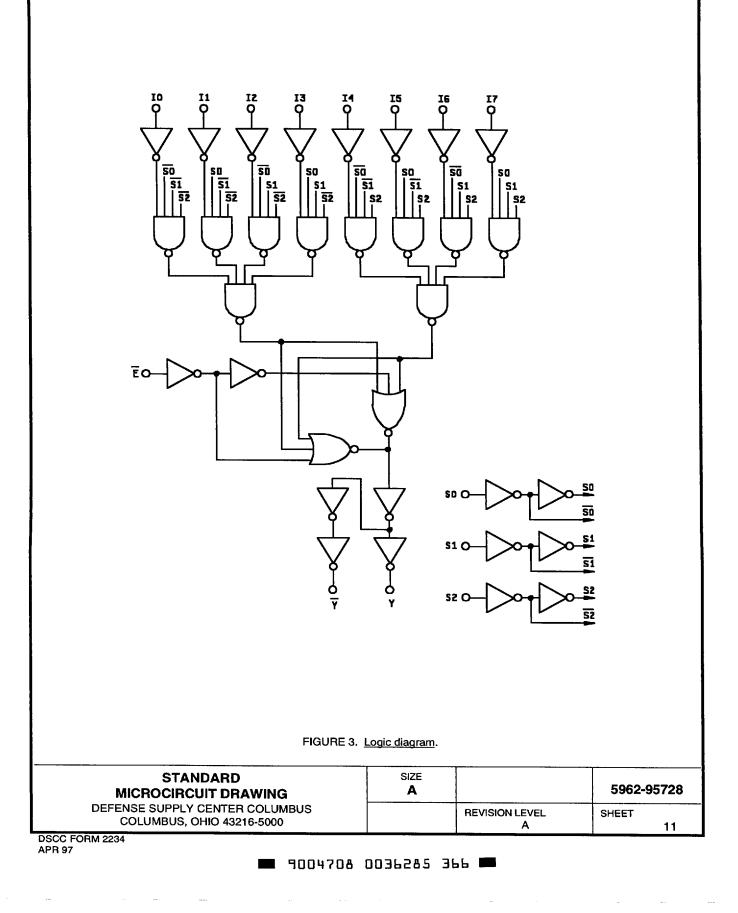
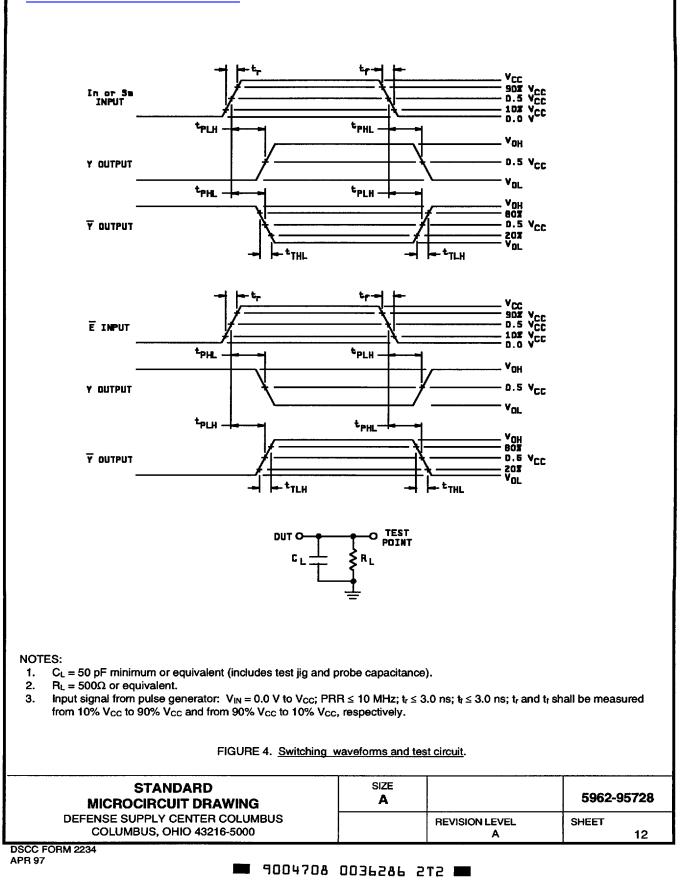

Device type	All							
Case outlines	E and X							
Terminal	Terminal	Terminal						
number	symbol	symbol						
1	13	9	S2					
2	12	10	S1					
3	11	11	S0					
4	10	12	I7					
5	Y	13	I6					
6	Y	14	I5					
7	E	15	I4					
8	GND	16	Vcc					

FIGURE 1. <u>Te</u>	rminal connections.
---------------------	---------------------

				· · ·		Inp	outs						Out	puts]
	Ē	S2	S1	SO	ю	11	12	в	14	15	16	17	Ÿ	Y	
	н	х	х	х	x	x	x	х	х	x	x	х	н	L	
	L	L	L	L	L	x	х	х	х	х	х	х	н	L	
	L	L	L	L	н	x	x	x	x	х	x	х	L	н]
	L	L	L	н	х	L	х	x	х	X	х	х	н	L	
	L	L	L	н	х	н	x	x	х	х	х	х	L	н	
	L	L	н	L	х	x	L	x	x	х	х	х	н	L	
	L	L	н	L	х	x	н	x	х	х	х	Х	L	н	
	L	L	н	н	х	x	x	L	х	х	x	х	н	L	-
	L	L	н	н	х	х	x	н	x	х	х	х	L	н	
	L	н	L	L	х	х	x	х	L	х	х	х	н	L	
	L	н	L	L	х	х	x	х	н	х	х	х	L	н	
	L	н	L	н	x	х	x	х	х	L	x	х	н	L	
	L	н	L	н	х	х	x	х	x	н	x	х	L	н	
	L	н	н	L	х	х	х	х	х	х	L	x	н	L	
	L	н	н	L	х	х	х	х	х	X	н	х	L	н	
	L	н	н	н	х	х	х	х	х	х	x	L	н	L	
	L	н	Н	н	х	х	х	×	х	X	х	н	L	Н	
	I	H = Hig _ = Lov (= Irre	v volta	ge lev											-
						FIGUF	RE 2. <u>-</u>	Truth t	<u>able</u> .						
MICR				WIN	G				IZE A						5962-95728
	SUPPL					5				F	EVISIC	N LEV A	EL.		SHEET 10
DSCC FORM 2234 APR 97					90	0471	38 C)036	284	421					


Powered by ICminer.com Electronic-Library Service CopyRight 2003

查询"5962R9572801VEC"供应商

Powered by ICminer.com Electronic-Library Service CopyRight 2003

宣间"5962R9572801VEC"供应商

查询"5962R9572801VEC"供应商。

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

4.2.1 Additional criteria for device class M.

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table IIA herein.
- 4.2.2 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table IIA herein.
 - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B or as modified in the device manufacturer's quality management (QM) plan.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.3.1 <u>Electrostatic discharge sensitivity (ESDS) qualification inspection</u>. ESDS testing shall be performed in accordance with MIL-STD-883, method 3015. ESDS testing shall be measured only for initial qualification and after process or design changes which may affect ESDS classification.

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 or as specified in QM plan including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-PRF-38535 permits alternate in-line control testing. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

MICROCIRCUIT DRAWING	A		5962-95728
DEFENSE SUPPLY CENTER COLUMBUS	RI	EVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	13

M 9004708 0036287 139 M

查询"5962R9572801VEC"供应商 4.4.1 Group A inspection.

- a. Tests shall be as specified in table IIA herein.
- b. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table in figure 2 herein. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device.
- c. C_{IN} and C_{PD} shall be measured only for initial qualification and after process or design changes which may affect capacitance. C_{IN} shall be measured between the designated terminal and GND at a frequency of 1 MHz. For C_{IN} and C_{PD}, tests shall be sufficient to validate the limits defined in table I herein.

Test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	Subgroups (in accordance with MIL-PRF-38535, table III)			
	Device	Device	Device		
	class M	class Q	class V		
Interim electrical parameters (see 4.2)	1, 7, 9	1, 7, 9	1, 7, 9		
Final electrical parameters (see 4.2)	1, 2, 3, 7,	1, 2, 3, 7,	1, 2, 3, 7,		
	8, 9, 10, 11	8, 9, 10, 11	8, 9, 10, 11		
	<u>1</u> /	<u>1</u> /	<u>2</u> / <u>3</u> /		
Group A test	1, 2, 3, 4, 5, 6,	1, 2, 3, 4, 5, 6,	1, 2, 3, 4, 5, 6,		
requirements (see 4.4)	7, 8, 9, 10, 11	7, 8, 9, 10, 11	7, 8, 9, 10, 11		
Group C end-point electrical	1, 2, 3, 7, 8, 9,	1, 2, 3, 7, 8, 9,	1, 2, 3, 7, 8, 9,		
parameters (see 4.4)	10, 11	10, 11	10, 11 <u>3</u> /		
Group D end-point electrical parameters (see 4.4)	1, 7, 9	1, 7, 9	1, 7, 9		
Group E end-point electrical parameters (see 4.4)	1, 7, 9	1, 7, 9	1, 7, 9		

1/ PDA applies to subgroups 1 and 7.

2/ PDA applies to subgroups 1, 7, 9 and Δ 's.

3/ Delta limits as specified in table IIB herein shall be required where specified, and the delta values shall be completed with reference to the zero hour electrical parameters (see table I).

TABLE IIB. Burn-in and operating life test, Delta parameters (+25°C).

	Parameters <u>1</u> /		Delta limits		
	lcc		+12 μA		
	ю./юн		-15%		
	and life test to determine delta limits				
		- -	·····		
MICRO	STANDARD DCIRCUIT DRAWING	SIZE A		5962-95728	

查询"5962R9572801VEC"供应商 TABLE III. Irradiation test connections.

Open	Ground	$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$
5, 6	8	1, 2, 3, 4, 7, 9, 10,
		11, 12, 13, 14, 15, 16

NOTE: Each pin except V_{CC} and GND will have a resistor of 47 k $\Omega \pm$ 5% for irradiation testing.

4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition A, B, C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- b. $T_A = +125^{\circ}C$, minimum.
- c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).

- a. End-point electrical parameters shall be as specified in table IIA herein.
- b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein.
- c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.

4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883, test method 1019 and as specified herein.

4.4.4.1.1 <u>Accelerated aging testing</u>. Accelerated aging testing shall be performed on all devices requiring a RHA level greater than 5k rads (Si). The post-anneal end-point electrical parameter limits shall be as specified in table I herein and shall be the pre-irradiation end-point electrical parameter limits at 25°C. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device.

4.4.4.2 <u>Dose rate induced latchup testing</u>. Dose rate induced latchup testing shall be performed in accordance with test method 1020 of MIL-STD-883 and as specified herein (see 1.4 herein). Tests shall be performed on devices, SEC, or approved test structures at technology qualification and after any design or process changes which may effect the RHA capability of the process.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95728
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL A	SHEET 15
DSCC FORM 2234 APB 97			

🖬 9004708 0036289 TOl 🔳

查询 5962R9572801VEC 供应商

4.4.4.3 <u>Dose rate upset testing</u>. Dose rate upset testing shall be performed in accordance with test method 1021 of MIL-STD-883 and herein (see 1.4 herein).

- a. Transient dose rate upset testing shall be performed at initial qualification and after any design or process changes which may affect the RHA performance of the devices. Test 10 devices with 0 defects unless otherwise specified.
- b. Transient dose rate upset testing for class Q and V devices shall be performed as specified by a TRB approved radiation hardness assurance plan and MIL-PRF-38535.

4.4.4.4 <u>Single event phenomena (SEP)</u>. SEP testing shall be required on class V devices (see 1.4 herein). SEP testing shall be performed on a technology process on the Standard Evaluation Circuit (SEC) or alternate SEP test vehicle as approved by the qualifying activity at initial qualification and after any design or process changes which may affect the upset or latchup characteristics. The recommended test conditions for SEP are as follows:

- a. The ion beam angle of incidence shall be between normal to the die surface and 60° to the normal, inclusive (i.e. 0° ≤ angle ≤ 60°). No shadowing of the ion beam due to fixturing or package related effects is allowed.
- b. The fluence shall be ≥ 100 errors or $\geq 10^6$ ions/cm².
- c. The flux shall be between 10² and 10⁵ ions/cm²/s. The cross-section shall be verified to be flux independent by measuring the cross-section at two flux rates which differ by at least an order of magnitude.
- d. The particle range shall be ≥ 20 micron in silicon.
- e. The test temperature shall be +25°C and the maximum rated operating temperature ±10°C.
- f. Bias conditions shall be defined by the manufacturer for the latchup measurements.
- g. Test four devices with zero failures.
- 4.5 <u>Methods of inspection</u>. Methods of inspection shall be specified as follows:

4.5.1 <u>Voltage and current</u>. Unless otherwise specified, all voltages given are referenced to the microcircuit GND terminal. Currents given are conventional current and positive when flowing into the referenced terminal.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.

6.1.2 Substitutability. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0525.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95728
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	16

APR 97

9004708 0036290 723

查询"5962R9572801VEC"供应商 64 <u>Comments</u>, Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0674.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.

6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

6.7 <u>Additional information</u>. When applicable, a copy of the following additional data shall be maintained and available from the device manufacturer:

- a. RHA upset levels.
- b. Test conditions (SEP).
- c. Number of upsets (SEP).
- d. Number of transients (SEP).
- e. Occurrence of latchup (SEP).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-95728
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL A	SHEET 17
DSCC FORM 2234 APR 97	·····		
900	4708 0036291	66T M	

查询"5962R9572801VEC"供应商

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 98-05-04

Approved sources of supply for SMD 5962-95728 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962R9572801VEC	34371	HCS151DMSR
5962R9572801VXC	34371	HCS151KMSR

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- 2/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE ______number___ Vendor name and address

34371

Harris Semiconductor P.O. Box 883 Melbourne, FL 32902-0883

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.

🖬 9004708 0036292 5T6 🛲

95881