Regarding the change of names mentioned in the document，such as Mitsubishi Electric and Mitsubishi XX，to Renesas Technology Corp．

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003．These operations include microcomputer，logic，analog and discrete devices，and memory chips other than DRAMs（flash memory，SRAMs etc．） Accordingly，although Mitsubishi Electric，Mitsubishi Electric Corporation，Mitsubishi Semiconductors，and other Mitsubishi brand names are mentioned in the document，these names have in fact all been changed to Renesas Technology Corp．Thank you for your understanding． Except for our corporate trademark，logo and corporate statement，no changes whatsoever have been made to the contents of the document，and these changes do not constitute any alteration to the contents of the document itself．

Note ：Mitsubishi Electric will continue the business operations of high frequency \＆optical devices and power devices．

Renesas Technology Corp． Customer Support Dept．

April 1， 2003

MITSUBISHI MICROCOMPUTERS 3851 Group （Built－in 16 KB ROM）

 16 KB ROM．SINGLE－CHIP 8－BIT CMOS MICROCOMPUTER

DESCRIPTION

The 3851 group is the 8 －bit microcomputer based on the 740 fam－ ily core technology．
The 3851 group is designed for the household products and office automation equipment and includes serial I／O functions，8－bit timer，A－D converter，and $I^{2} \mathrm{C}$－bus interface．

FEATURES

－Basic machine－language instructions71
－Minimum instruction execution time $0.5 \mu \mathrm{~s}$
（at 8 MHz oscillation frequency）
－Memory size
ROM 16 Kbytes
RAM 512 bytes
－Programmable input／output ports 34
－Interrupts 16 sources， 16 vectors
－Timers

\qquad 8 －bit $\times 4$
－Serial I／O

\qquad
8 －bit $\times 1$（UART or Clock－synchronized）
－Multi－master $\mathrm{I}^{2} \mathrm{C}$－bus interface（option） 1 channel
－PWM8－bit $\times 1$
－A－D converter 0 －bit $\times 5$ channels
－Watchdog timer16 －bit $\times 1$
－Clock generating circuit
Built－in 2 circuits
－Power source voltage
In high－speed mode ．． 4.0 to 5.5 V
（at 8 MHz oscillation frequency）
In high－speed mode
2.7 to 5.5 V
（at 4 MHz oscillation frequency）
In middle－speed mode．
2.7 to 5.5 V
（at 8 MHz oscillation frequency）
In low－speed mode 2.7 to 5.5 V
（at 32 kHz oscillation frequency）
－Power dissipation
In high－speed mode
34 mW
（at 8 MHz oscillation frequency，at 5 V power source voltage）
In low－speed mode
$60 \mu \mathrm{~W}$
（at 32 kHz oscillation frequency，at 3 V power source voltage）
－Operating temperature range．
-20 to $85^{\circ} \mathrm{C}$

APPLICATION

Office automation equipment，FA equipment，Household products， Consumer electronics，etc．

PIN CONFIGURATION（TOP VIEW）

Vcc 1	\checkmark	$42 \longleftrightarrow \mathrm{P} 30 / \mathrm{ANo}$
VReF $\longrightarrow 2$		$41 \longleftrightarrow \mathrm{P}_{1} / \mathrm{AN}_{1}$
AVss $\longrightarrow 3$		$40 \longleftrightarrow \mathrm{P3} 2 / \mathrm{AN} 2$
P44／INT3／PWM $\longrightarrow 4$		$39 \longrightarrow \mathrm{P}_{3} / \mathrm{AN}_{3}$
$\mathrm{P} 43 / \mathrm{INT} 2 \longrightarrow 5$		$38 \longleftrightarrow \mathrm{P} 34 / \mathrm{AN} 4$
P42／INT $1 \longleftrightarrow 6$		$37 \longrightarrow \mathrm{POO}$
P41／INT0 $\longrightarrow 7$	$\leq \leq$	$36 \longrightarrow \mathrm{PO}_{1}$
P4o／CNTR $1 \longrightarrow 8$	ω	$35 \longrightarrow \mathrm{PO}_{2}$
P27／CNTRo／$\overline{\text { SRDY }} \longleftrightarrow 9$	心	$34 \longleftrightarrow \mathrm{PO}_{3}$
P26／Sclk $\longrightarrow 10$	$\vec{\omega} \vec{\omega}$	$33 \longrightarrow \mathrm{PO}_{4}$
$\mathrm{P} 25 / \mathrm{SCL} 2 / \mathrm{TxD} \longrightarrow 11$		$32 \longrightarrow \mathrm{PO}_{5}$
$\mathrm{P} 24 / \mathrm{SDA} 2 / \mathrm{RxD} \longrightarrow 12$	¢	$31 \longrightarrow \mathrm{PO} 6$
$\mathrm{P} 23 / \mathrm{SCL}_{1} \longrightarrow 13$		$30 \longrightarrow \mathrm{PO}{ }_{7}$
$\mathrm{P}_{2} / \mathrm{SDA}_{1} \longrightarrow 14$		$29 \longrightarrow \mathrm{P} 10$
CNVss $\longrightarrow 15$	$x \times$	$28 \longrightarrow \mathrm{P}_{1}$
$\mathrm{P} 21 / \mathrm{XCIN} \longrightarrow 16$	0	$27 \longrightarrow \mathrm{P}_{12}$
$\mathrm{P} 20 / \mathrm{XcOUT} \longrightarrow 17$		$26 \longrightarrow \mathrm{P} 13 /($ LED 0$)$
RESET $\longrightarrow 18$		$25 \longleftrightarrow$ P14／（LED1）
XIN $\longrightarrow 19$		$24 \longleftrightarrow \mathrm{P} 15 /($ LED 2$)$
Xout -20		$23 \longrightarrow \mathrm{P} 16 /($ LED 3$)$
Vss $\longrightarrow 21$		$22 \longrightarrow \mathrm{P} 17 /($ LED 4$)$

Package type：FP
42P2R－A／E（42－pin plastic－molded SSOP）
Package type：SP 42P4B（42－pin shrink plastic－molded DIP）

Fig． 1 M38513M4－XXXFP／SP pin configuration

FUNCTIONAL BLOCK

Fig． 2 Functional block diagram

PIN DESCRIPTION

Table 1 Pin description

Pin	Name	Functions	Function except a port function
Vcc，Vss	Power source	－Apply voltage of 2．7 V－5．5 V to Vcc，and 0 V to Vss．	
CNVss	CNVss input	－This pin controls the operation mode of the chip． －Normally connected to Vss．	
Vref	Reference voltage input	－Reference voltage input pin for A－D converter．	
AVss	Analog power source input	－Analog power source input pin for A－D converter． －Connect to Vss．	
RESET	Reset input	－Reset input pin for active＂L．＂	
XIN	Clock input	－Input and output pins for the clock generating circuit． －Connect a ceramic resonator or quartz－crystal oscillator between the XIN and Xout pins to set the oscillation frequency．	
Xout	Clock output	－When an external clock is used，connect the clock source to the Xin pin and leave the Xout pin open．	
P00－P07	I／O port P0	－8－bit CMOS I／O port． －I／O direction register allows each pin to be individually programmed as either input or output． －CMOS compatible input level． －CMOS 3－state output structure． －P13 to P17（5 bits）are enabled to output large current for LED drive．	
P10－P17	I／O port P1		
$\begin{aligned} & \text { P20/XCOUT } \\ & \text { P21/XCIN } \end{aligned}$	I／O port P2	－8－bit CMOS I／O port． －I／O direction register allows each pin to be individually programmed as either input or output． －CMOS compatible input level． －P22 to P25 can be switched between CMOS compat－ ible input level or SMBUS input level in the $1^{2} C$－BUS interface function． －P20，P21，P24 to P27：CMOS3－state output structure． －P24，P25：N－channel open－drain structure in the $I^{2} \mathrm{C}$－ BUS interface function． －P22，P23：N－channel open－drain structure．	－Sub－clock generating circuit I／O pins（connect a resonator）
$\begin{aligned} & \mathrm{P} 22 / \mathrm{SDA} 1 \\ & \mathrm{P} 23 / \mathrm{SCL} 1 \end{aligned}$			－$I^{2} \mathrm{C}$－BUS interface function pins
$\begin{aligned} & \mathrm{P} 24 / \mathrm{SDA} 2 / \mathrm{RxD} \\ & \mathrm{P} 25 / \mathrm{SCL} 2 / \mathrm{TxD} \end{aligned}$			－${ }^{2} \mathrm{C}$－BUS interface function pin／ Serial I／O function pins
P26／Sclk			－Serial I／O function pin
$\frac{\text { P27/CNTRo/ }}{\text { SRDY }}$			－Serial I／O function pin／ Timer X function pin
$\begin{aligned} & \text { P3o/AN0- } \\ & \text { P34/AN4 } \end{aligned}$	I／O port P3	－8－bit CMOS I／O port with the same function as port PO． －CMOS compatible input level． －CMOS 3－state output structure．	－A－D converter input pin
P40／CNTR1	I／O port P4	－8－bit CMOS I／O port with the same function as port P0． －CMOS compatible input level． －CMOS 3－state output structure．	－Timer Y function pin
$\begin{aligned} & \text { P41/INT0- } \\ & \text { P43/INT2 } \end{aligned}$			－Interrupt input pins
P44／INT3／PWM			－Interrupt input pin －PWM output pin

GROUP EXPANSION

Mitsubishi plans to expand the 3851 group as follows：
Memory Type
Support for mask ROM and One Time PROM versions．

Memory Size

ROM／PROM size
RAM size 512 bytes

Packages

42P2R－A ．．42－pin plastic molded SSOP
42P4B．
42－pin shrink plastic－molded DIP

Memory Expansion Plan

Fig． 3 Memory expansion plan

FUNCTIONAL DESCRIPTION

CENTRAL PROCESSING UNIT（CPU）

The 3851 group uses the standard 740 Family instruction set．Re－ fer to the table of 740 Family addressing modes and machine instructions or the 740 Family Software Manual for details on the instruction set．
Machine－resident 740 Family instructions are as follows：
The FST and SLW instructions cannot be used．
The STP，WIT，MUL，and DIV instructions can be used．

［CPU Mode Register（CPUM）］003B16

The CPU mode register contains the stack page selection bit，etc． The CPU mode register is allocated at address 003B16．

Fig． 4 Structure of CPU mode register

MEMORY

Special Function Register（SFR）Area

The Special Function Register area in the zero page contains con－ trol registers such as I／O ports and timers．

RAM

RAM is used for data storage and for stack area of subroutine calls and interrupts．

ROM

The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs．

Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors．

Zero Page

Access to this area with only 2 bytes is possible in the zero page addressing mode．

Special Page

Access to this area with only 2 bytes is possible in the special page addressing mode．

RAM area

RAM size （bytes）	Address XXXX16
192	00FF16
256	013F16
384	01BF16
512	023F16
640	02BF16
768	033F16
896	03BF16
1024	043F16
1536	063F16
2048	083F16
3072	0C3F16
4032	0FFF16

ROM area

ROM size （bytes）	Address YYYY16	Address ZZZZ16
4096	F00016	F08016
8192	E00016	E08016
12288	D00016	D08016
16384	C00016	C08016
20480	B00016	B08016
24576	A00016	A08016
28672	900016	908016
32768	800016	808016
36864	700016	708016
40960	600016	608016
45056	500016	508016
49152	400016	408016
53248	300016	308016
57344	200016	208016
61440	100016	108016

Fig． 5 Memory map diagram

Fig． 6 Memory map of special function register（SFR）

I／O PORTS

The I／O ports have direction registers which determine the input／ output direction of each individual pin．Each bit in a direction reg－ ister corresponds to one pin，and each pin can be set to be input port or output port．
When＂ 0 ＂is written to the bit corresponding to a pin，that pin be－ comes an input pin．When＂ 1 ＂is written to that bit，that pin becomes an output pin．
If data is read from a pin which is set to output，the value of the port output latch is read，not the value of the pin itself．Pins set to input are floating．If a pin set to input is written to，only the port output latch is written to and the pin remains floating．
Table 2 I／O port function

Pin	Name	Input／Output	I／O Structure	Non－Port Function	Related SFRs	Ref．No．
P00－P07	Port P0	Input／output， individual bits	CMOS compatible input level CMOS 3－state output			
P10－P17	Port P1					1）
$\begin{aligned} & \text { P20/Xcout } \\ & \text { P21/XcIn } \end{aligned}$	Port P2			Sub－clock generating circuit	CPU mode register	$\begin{aligned} & \text { (2) } \\ & \text { (3) } \end{aligned}$
$\begin{aligned} & \text { P22/SDA1 } \\ & \text { P23/SCL1 } \end{aligned}$			CMOS compatible input level CMOS／SMBUS input level（when selecting $\mathrm{I}^{2} \mathrm{C}$－BUS interface function） N －channel open－drain output	${ }^{2}{ }^{2} \mathrm{C}$－BUS interface func－ tion I／O	$\mathrm{I}^{2} \mathrm{C}$ control register	$\begin{aligned} & (4) \\ & (5) \end{aligned}$
$\begin{aligned} & \text { P24/SDA2/RxD } \\ & \text { P25/SCL2/TxD } \end{aligned}$			CMOS compatible input level CMOS／SMBUS input level（when selecting $\mathrm{I}^{2} \mathrm{C}$－BUS interface function） CMOS 3－state output N －channel open－drain output（when selecting $\mathrm{I}^{2} \mathrm{C}$－BUS interface function）	$1^{2} \mathrm{C}$－BUS interface func－ tion I／O Serial I／O function I／O	$\mathrm{I}^{2} \mathrm{C}$ control register Serial I／O control register	（6） （7）
P26／Sclk			CMOS compatible input level CMOS 3－state output	Serial I／O function I／O	Serial I／O control register	（8）
P27／CNTR0／$\overline{\text { SRDY }}$				Serial I／O function I／O Timer X function I／O	Serial I／O control register Timer XY mode register	（9）
$\begin{aligned} & \text { P3o/AN0- } \\ & \text { P34/AN4 } \end{aligned}$	Port P3			A－D conversion input	A－D control register	（10）
P40／CNTR1	Port P4			Timer Y function I／O	Timer XY mode register	（11）
P41／INT0－ P43／INT2				External interrupt input	Interrupt edge selection register	（12）
P44／INT3／PWM				External interrupt input PWM output	Interrupt edge selection register PWM control register	（13）

（3）Port P21

（5）Port P23

（7）Port P25

（2）Port P20

（4）Port P22

（6）Port P24

（8）Port P26

Fig． 7 Port block diagram（1）

Fig． 8 Port block diagram（2）

INTERRUPTS

Interrupts occur by 16 sources among 16 sources：seven external， eight internal，and one software．

Interrupt Control

Each interrupt is controlled by an interrupt request bit，an interrupt enable bit，and the interrupt disable flag except for the software in－ terrupt set by the BRK instruction．An interrupt occurs if the corresponding interrupt request and enable bits are＂ 1 ＂and the in－ terrupt disable flag is＂ 0 ＂．
Interrupt enable bits can be set or cleared by software．
Interrupt request bits can be cleared by software，but cannot be set by software．
The BRK instruction cannot be disabled with any flag or bit．The I （interrupt disable）flag disables all interrupts except the BRK in－ struction interrupt．
When several interrupts occur at the same time，the interrupts are received according to priority．

Interrupt Operation

By acceptance of an interrupt，the following operations are auto－ matically performed：
1．The contents of the program counter and the processor status register are automatically pushed onto the stack．
2．The interrupt disable flag is set and the corresponding interrupt request bit is cleared．
3．The interrupt jump destination address is read from the vector table into the program counter．

Notes

When setting the followings，the interrupt request bit may be set to ＂1＂．
－When setting external interrupt active edge
Related register：Interrupt edge selection register（address 3A16） Timer XY mode register（address 2316）
－When switching interrupt sources of an interrupt vector address where two or more interrupt sources are allocated
Related register：Interrupt edge selection register（address 3A16） When not requiring for the interrupt occurrence synchronized with these setting，take the following sequence．
（1）Set the corresponding interrupt enable bit to＂0＂（disabled）．
（2）Set the interrupt edge select bit or the interrupt source select bit．
（3）Set the corresponding interrupt request bit to＂ 0 ＂after 1 or more instructions have been executed．
（4）Set the corresponding interrupt enable bit to＂1＂（enabled）．

Table 3 Interrupt vector addresses and priority

Interrupt Source	Priority	Vector Addresses（Note 1）		Interrupt Request Generating Conditions	Remarks
		High	Low		
Reset（Note 2）	1	FFFD16	FFFC16	At reset	Non－maskable
INT0	2	FFFB16	FFFA16	At detection of either rising or falling edge of INTo input	External interrupt （active edge selectable）
SCL，SDA	3	FFF916	FFF816	At detection of either rising or falling edge of SCL or SDA input	External interrupt （active edge selectable）
INT1	4	FFF716	FFF616	At detection of either rising or falling edge of INT1 input	External interrupt （active edge selectable）
INT2	5	FFF516	FFF416	At detection of either rising or falling edge of INT2 input	External interrupt （active edge selectable）
INT3	6	FFF316	FFF216	At detection of either rising or falling edge of INT3 input	External interrupt （active edge selectable）
$\mathrm{I}^{2} \mathrm{C}$	7	FFF116	FFF016	At completion of data transfer	
Timer X	8	FFEF16	FFEE16	At timer X underflow	
Timer Y	9	FFED16	FFEC16	At timer Y underflow	
Timer 1	10	FFEB16	FFEA16	At timer 1 underflow	STP release timer underflow
Timer 2	11	FFE916	FFE816	At timer 2 underflow	
Serial I／O reception	12	FFE716	FFE616	At completion of serial I／O data reception	Valid when serial I／O is selected
Serial I／O Transmission	13	FFE516	FFE416	At completion of serial I／O trans－ fer shift or when transmission buffer is empty	Valid when serial I／O is selected
CNTRo	14	FFE316	FFE216	At detection of either rising or falling edge of CNTRo input	External interrupt （active edge selectable）
CNTR1	15	FFE116	FFE016	At detection of either rising or falling edge of CNTR1 input	External interrupt （active edge selectable）
A－D converter	16	FFDF16	FFDE16	At completion of A－D conversion	
BRK instruction	17	FFDD16	FFDC16	At BRK instruction execution	Non－maskable software interrupt

Notes 1：Vector addresses contain interrupt jump destination addresses．
2：Reset function in the same way as an interrupt with the highest priority．

Fig． 9 Interrupt control

Fig． 10 Structure of interrupt－related registers（1）

MITSUBISHI MICROCOMPUTERS
 3851 Group

查询＂3851＂供应商

TIMERS

The 3851 group has four timers：timer X ，timer Y ，timer 1，and timer 2.
The division ratio of each timer or prescaler is given by $1 /(n+1)$ ， where n is the value in the corresponding timer or prescaler latch． All timers are count down．When the timer reaches＂0016＂，an un－ derflow occurs at the next count pulse and the corresponding timer latch is reloaded into the timer and the count is continued． When a timer underflows，the interrupt request bit corresponding to that timer is set to＂ 1 ＂．

Fig． 11 Structure of timer XY mode register

Fig． 12 Structure of timer count source selection register

Timer 1 and Timer 2

The count source of prescaler 12 is the oscillation frequency di－ vided by 16 ．The output of prescaler 12 is counted by timer 1 and timer 2，and a timer underflow sets the interrupt request bit．

Timer \mathbf{X} and Timer \mathbf{Y}

Timer X and Timer Y can each select in one of four operating modes by setting the timer XY mode register．

（1）Timer Mode

The timer counts the count source selected by Timer count source selection bit．

（2）Pulse Output Mode

The timer counts the count source selected by Timer count source selection bit．Whenever the contents of the timer reach＂ 0016 ＂，the signal output from the CNTRo（or CNTR1）pin is inverted．If the CNTR0（or CNTR1）active edge selection bit is＂ 0 ＂，output begins at＂ H ＂．
If it is＂ 1 ＂，output starts at＂L＂．When using a timer in this mode，set the corresponding port P27（ or port P40）direction register to out－ put mode．

（3）Event Counter Mode

Operation in event counter mode is the same as in timer mode，ex－ cept that the timer counts signals input through the CNTRo or CNTR1 pin．
When the CNTRo（or CNTR1）active edge selection bit is＂ 0 ＂，the rising edge of the CNTRo（or CNTR1）pin is counted．
When the CNTRo（or CNTR1）active edge selection bit is＂ 1 ＂，the falling edge of the CNTR0（or CNTR1）pin is counted．

（4）Pulse Width Measurement Mode

If the CNTR0（or CNTR1）active edge selection bit is＂ 0 ＂，the timer counts the selected signals by the count source selection bit while the CNTR0（or CNTR1）pin is at＂H＂．If the CNTR0（or CNTR1）ac－ tive edge selection bit is＂ 1 ＂，the timer counts it while the CNTRo （or CNTR1）pin is at＂ L ＂．

The count can be stopped by setting＂ 1 ＂to the timer X （or timer Y ） count stop bit in any mode．The corresponding interrupt request bit is set each time a timer overflows．

Note

When switching the count source by the timer 12，X and Y count source bit，the value of timer count is altered in unconsiderable amount owing to generating of a thin pulses in the count input signals．
Therefore，select the timer count source before set the value to the prescaler and the timer．

Fig． 13 Block diagram of timer X，timer Y，timer 1，and timer 2

MITSUBISHI MICROCOMPUTERS
 3851 Group
 (Built-in 16 KB ROM)

SERIAL I/O

Serial I/O can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer is also provided for baud rate generation.

(1) Clock Synchronous Serial I/O Mode

Clock synchronous serial I/O mode can be selected by setting the serial I/O mode selection bit of the serial I/O control register (bit 6 of address 001A16) to "1".
For clock synchronous serial I/O, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the TB/RB.

Fig. 14 Block diagram of clock synchronous serial I/O

Fig. 15 Operation of clock synchronous serial I/O function

（2）Asynchronous Serial I／O（UART）Mode

Clock asynchronous serial I／O mode（UART）can be selected by clearing the serial I／O mode selection bit（b6）of the serial I／O con－ trol register to＂0＂．
Eight serial data transfer formats can be selected，and the transfer formats used by a transmitter and receiver must be identical．
The transmit and receive shift registers each have a buffer，but the
two buffers have the same address in memory．Since the shift reg－ ister cannot be written to or read from directly，transmit data is written to the transmit buffer register，and receive data is read from the receive buffer register．
The transmit buffer register can also hold the next data to be transmitted，and the receive buffer register can hold a character while the next character is being received．

Fig． 16 Block diagram of UART serial I／O

Fig． 17 Operation of UART serial I／O function

［Transmit Buffer Register／Receive Buffer Register（TB／RB）］ 001816

The transmit buffer register and the receive buffer register are lo－ cated at the same address．The transmit buffer is write－only and the receive buffer is read－only．If a character bit length is 7 bits，the MSB of data stored in the receive buffer is＂ 0 ＂．

［Serial I／O Status Register（SIOSTS）］ 001916

The read－only serial I／O status register consists of seven flags （bits 0 to 6 ）which indicate the operating status of the serial I／O function and various errors．
Three of the flags（bits 4 to 6 ）are valid only in UART mode．
The receive buffer full flag（bit 1 ）is cleared to＂ 0 ＂when the receive buffer register is read．
If there is an error，it is detected at the same time that data is transferred from the receive shift register to the receive buffer reg－ ister，and the receive buffer full flag is set．A write to the serial I／O status register clears all the error flags OE，PE，FE，and SE（bit 3 to bit 6，respectively）．Writing＂ 0 ＂to the serial I／O enable bit SIOE （bit 7 of the serial I／O control register）also clears all the status flags，including the error flags．
Bits 0 to 6 of the serial I／O status register are initialized to＂ 0 ＂at re－ set，but if the transmit enable bit（bit 4）of the serial I／O control register has been set to＂ 1 ＂，the transmit shift completion flag（bit 2 ）and the transmit buffer empty flag（bit 0 ）become＂ 1 ＂．

［Serial I／O Control Register（SIOCON）］001A16

The serial I／O control register consists of eight control bits for the serial I／O function．

［UART Control Register（UARTCON）］001B16

The UART control register consists of four control bits（bits 0 to 3 ） which are valid when asynchronous serial I／O is selected and set the data format of an data transfer and one bit（bit 4）which is al－ ways valid and sets the output structure of the $\mathrm{P} 25 / \mathrm{TxD}$ pin．

［Baud Rate Generator（BRG）］001C16

The baud rate generator determines the baud rate for serial trans－ fer．
The baud rate generator divides the frequency of the count source by $1 /(n+1)$ ，where n is the value written to the baud rate genera－ tor．

－Notes on Serial I／O

1．When using the serial I／O，clear the $I^{2} C$－BUS interface enable bit to＂ 0 ＂or the SCL／SDA interrupt pin selection bit to＂ 0 ＂．
2．When setting the transmit enable bit of serial I／O to＂ 1 ＂，the serial I／O transmit interrupt request bit is automatically set to＂ 1 ＂． When not requiring the interrupt occurrence synchronized with the transmission enalbed，take the following sequence．
（1）Set the serial I／O transmit interrupt enable bit to＂0＂（disabled）． （2）Set the transmit enable bit to＂ 1 ＂．
（3）Set the serial I／O transmit interrupt request bit to＂ 0 ＂after 1 or more instructions have been executed．
（4）Set the serial I／O transmit interrupt enable bit to＂1＂（enabled）．

Fig． 18 Structure of serial I／O control registers

MULTI－MASTER I ${ }^{2} \mathrm{C}$－BUS INTERFACE

The multi－master ${ }^{2} \mathrm{C}$－BUS interface is a serial communications cir－ cuit，conforming to the Philips $I^{2} \mathrm{C}$－BUS data transfer format．This interface，offering both arbitration lost detection and a synchro－ nous functions，is useful for the multi－master serial communications．
Figure 19 shows a block diagram of the multi－master $\mathrm{I}^{2} \mathrm{C}$－BUS in－ terface and Table 4 lists the multi－master $\mathrm{I}^{2} \mathrm{C}$－BUS interface functions．
This multi－master ${ }^{2}$ C C －BUS interface consists of the $\mathrm{I}^{2} \mathrm{C}$ address register，the $\mathrm{I}^{2} \mathrm{C}$ data shift register，the $\mathrm{I}^{2} \mathrm{C}$ clock control register， the $\mathrm{I}^{2} \mathrm{C}$ control register，the $\mathrm{I}^{2} \mathrm{C}$ status register，the $\mathrm{I}^{2} \mathrm{C}$ start／stop condition control register and other control circuits．
When using the multi－master $\mathrm{I}^{2} \mathrm{C}$－BUS interface，set 1 MHz or more to ϕ ．

Note：Mitsubishi Electric Corporation assumes no responsibility for in－ fringement of any third－party＇s rights or originating in the use of the connection control function between the $\mathrm{I}^{2} \mathrm{C}$－BUS interface and the ports SCL1，SCL2，SDA1 and SDA2 with the bit 6 of $I^{2} \mathrm{C}$ control regis－ ter（002E16）．

Table 4 Multi－master $I^{2} C$－BUS interface functions

Item	Function
Format	In conformity with Philips $I^{2} \mathrm{C}$－BUS standard： 10－bit addressing format 7－bit addressing format High－speed clock mode Standard clock mode
	In conformity with Philips I ${ }^{2} \mathrm{C}$－BUS standard： Master transmission Master reception Slave transmission Slave reception
	16.1 kHz to 400 kHz （at $\phi=4 \mathrm{MHz})$

System clock $\phi=f($ XIN $) / 2$（high－speed mode）

$$
\phi=\mathrm{f}(\mathrm{XIN}) / 8 \text { (middle-speed mode) }
$$

Fig． 19 Block diagram of multi－master $I^{2} \mathrm{C}$－BUS interface
＊：Purchase of MITSUBISHI ELECTRIC CORPORATIONS $I^{2} \mathrm{C}$ components conveys a license under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent Rights to use these components an $\mathrm{I}^{2} \mathrm{C}$ system，provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips．

［ $I^{2} \mathrm{C}$ Data Shift Register（S0）］002B16

The $I^{2} \mathrm{C}$ data shift register（S0 ：address 002 B 16 ）is an 8 －bit shift register to store receive data and write transmit data．
When transmit data is written into this register，it is transferred to the outside from bit 7 in synchronization with the SCL clock，and each time one－bit data is output，the data of this register are shifted by one bit to the left．When data is received，it is input to this register from bit 0 in synchronization with the SCL clock，and each time one－bit data is input，the data of this register are shifted by one bit to the left．The minimum 2 machine cycles are required from the rising of the SCL clock until input to this register．
The $I^{2} \mathrm{C}$ data shift register is in a write enable status only when the $1^{2} \mathrm{C}$－BUS interface enable bit（ESO bit ：bit 3 of address 002E16）of the $I^{2} \mathrm{C}$ control register is＂ 1 ＂．The bit counter is reset by a write in－ struction to the $I^{2} \mathrm{C}$ data shift register．When both the ESO bit and the MST bit of the ${ }^{2} \mathrm{C}$ status register（address 002D16）are＂ 1 ，＂the SCL is output by a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ data shift register． Reading data from the ${ }^{2} \mathrm{C}$ data shift register is always enabled re－ gardless of the ESO bit value．

［ $I^{2} \mathrm{C}$ Address Register（SOD）］002C16

The $I^{2} \mathrm{C}$ address register（address 002 C 16 ）consists of a 7 －bit slave address and a read／write bit．In the addressing mode，the slave address written in this register is compared with the address data to be received immediately after the START condition is de－ tected．
－Bit 0：Read／write bit（RWB）
This is not used in the 7－bit addressing mode．In the 10－bit ad－ dressing mode，the first address data to be received is compared with the contents（SAD6 to SAD0＋RWB）of the $\mathrm{I}^{2} \mathrm{C}$ address reg－ ister．
The RWB bit is cleared to＂ 0 ＂automatically when the stop condi－ tion is detected．

－Bits 1 to 7：Slave address（SAD0－SAD6）

These bits store slave addresses．Regardless of the 7－bit address－ ing mode and the 10－bit addressing mode，the address data transmitted from the master is compared with the contents of these bits．

Fig． 20 Structure of $I^{2} \mathrm{C}$ address register

［ ${ }^{2}$ C Clock Control Register（S2）］002F16

The $\mathrm{I}^{2} \mathrm{C}$ clock control register（address 002F16）is used to set ACK control，SCL mode and SCL frequency．

－Bits 0 to 4：SCL frequency control bits（CCRO－CCR4）

These bits control the SCL frequency．Refer to Table 5.
－Bit 5：SCL mode specification bit（FAST MODE）
This bit specifies the SCL mode．When this bit is set to＂ 0 ，＂the standard clock mode is selected．When the bit is set to＂ 1, ，＂the high－speed clock mode is selected．
When connecting the bus of the high－speed mode $\mathrm{I}^{2} \mathrm{C}$ bus stan－ dard（maximum $400 \mathrm{kbits} / \mathrm{s}$ ），use 8 MHz or more oscillation frequency $\mathrm{f}(\mathrm{XIN})$ and 2 division clock．

－Bit 6：ACK bit（ACK BIT）

This bit sets the SDA status when an ACK clock＊is generated． When this bit is set to＂ 0 ，＂the ACK return mode is selected and SDA goes to＂ L ＂at the occurrence of an ACK clock．When the bit is set to＂ 1, ＂the ACK non－return mode is selected．The SDA is held in the＂H＂status at the occurrence of an ACK clock．
However，when the slave address agree with the address data in the reception of address data at ACK BIT＝＂ 0 ，＂the SDA is auto－ matically made＂L＂（ACK is returned）．If there is a disagreement between the slave address and the address data，the SDA is auto－ matically made＂H＂（ACK is not returned）．

＊ACK clock：Clock for acknowledgment

－Bit 7：ACK clock bit（ACK）

This bit specifies the mode of acknowledgment which is an ac－ knowledgment response of data transfer．When this bit is set to ＂ 0 ，＂the no ACK clock mode is selected．In this case，no ACK clock occurs after data transmission．When the bit is set to＂ 1, ＂the ACK clock mode is selected and the master generates an ACK clock each completion of each 1－byte data transfer．The device for transmitting address data and control data releases the SDA at the occurrence of an ACK clock（makes SDA＂ H ＂）and receives the ACK bit generated by the data receiving device．

Note：Do not write data into the $\mathrm{I}^{2} \mathrm{C}$ clock control register during transfer．If data is written during transfer，the $\mathrm{I}^{2} \mathrm{C}$ clock generator is reset，so that data cannot be transferred normally．

Fig． 21 Structure of $I^{2} \mathrm{C}$ clock control register
Table 5 Set values of $I^{2} C$ clock control register and SCL frequency

Setting value of CCR4－CCR0					SCL frequency （at $\phi=4 \mathrm{MHz}$ ，unit ： kHz ）		
CCR4	CCR3	CCR2	CCR1	CCR0	Standard clock mode	High－speed clock mode	
0	0	0	0	0	Setting disabled	Setting disabled	
0	0	0	0	1	Setting disabled	Setting disabled	
0	0	0	1	0	Setting disabled	Setting disabled	
0	0	0	1	1	- （Note 2）	333	
0	0	1	0	0	－（Note 2）	250	
0	0	1	0	1	100	400 （Note 3）	
0	0	1	1	0	83.3	166	
\vdots	\vdots	\vdots	\vdots	\vdots	500／CCR value （Note 3）	$1000 /$ CCR value （Note 3）	
1	1	1	0	1	17.2	34.5	
1	1	1	1	0	16.6	33.3	
1	1	1	1	1	16.1	32.3	

Notes 1：Duty of SCL clock output is 50% ．The duty becomes 35 to 45% only when the high－speed clock mode is selected and CCR value $=5(400 \mathrm{kHz}$ ，at $\phi=4 \mathrm{MHz})$ ．＂ H ＂duration of the clock fluctuates from -4 to +2 machine cycles in the standard clock mode，and fluctuates from -2 to +2 machine cycles in the high－speed clock mode．In the case of negative fluctuation，the frequency does not increase because＂ L ＂duration is extended instead of＂ H ＂duration reduction．
These are value when SCL clock synchronization by the synchro－ nous function is not performed．CCR value is the decimal notation value of the SCL frequency control bits CCR4 to CCRO．
2：Each value of SCL frequency exceeds the limit at $\phi=4 \mathrm{MHz}$ or more．When using these setting value，use ϕ of 4 MHz or less．
3：The data formula of ScL frequency is described below： $\phi /(8 \times$ CCR value）Standard clock mode $\phi /(4 \times$ CCR value）High－speed clock mode（CCR value $=5$ ） $\phi /(2 \times$ CCR value）High－speed clock mode（CCR value $=5)$ Do not set 0 to 2 as CCR value regardless of ϕ frequency． Set 100 kHz （max．）in the standard clock mode and 400 kHz （max．）in the high－speed clock mode to the SCL frequency by set－ ting the SCL frequency control bits CCR4 to CCRO．

［ ${ }^{2} \mathrm{C}$ Control Register（S1D）］002E16

The $I^{2} \mathrm{C}$ control register（address 002E16）controls data communi－ cation format．

－Bits 0 to 2：Bit counter（ $\mathrm{BCO}-\mathrm{BC} 2$ ）

These bits decide the number of bits for the next 1－byte data to be transmitted．The $\mathrm{I}^{2} \mathrm{C}$ interrupt request signal occurs immediately after the number of count specified with these bits（ACK clock is added to the number of count when ACK clock is selected by ACK clock bit（bit 7 of address 002F16））have been transferred，and BC 0 to BC 2 are returned to＂0002＂．
Also when a START condition is received，these bits become ＂0002＂and the address data is always transmitted and received in 8 bits．

－Bit 3： $\mathrm{I}^{2} \mathrm{C}$ interface enable bit（ESO）

This bit enables to use the multi－master $\mathrm{I}^{2} \mathrm{C}$－BUS interface．When this bit is set to＂ 0 ，＂the use disable status is provided，so that the SDA and the SCL become high－impedance．When the bit is set to ＂1，＂use of the interface is enabled．
When ES0＝＂ 0 ，＂the following is performed．
－ $\mathrm{PIN}=" 1, " \mathrm{BB}=" 0$＂and $\mathrm{AL}=" 0$＂are set（which are bits of the $\mathrm{I}^{2} \mathrm{C}$ status register at address 002D16 ）．
－Writing data to the $\mathrm{I}^{2} \mathrm{C}$ data shift register（address 002B16）is dis－ abled．
－Bit 4：Data format selection bit（ALS）
This bit decides whether or not to recognize slave addresses． When this bit is set to＂ 0 ，＂the addressing format is selected，so that address data is recognized．When a match is found between a slave address and address data as a result of comparison or when a general call（refer to＂${ }^{2} \mathrm{C}$ Status Register，＂bit 1）is received， transfer processing can be performed．When this bit is set to＂ 1 ，＂ the free data format is selected，so that slave addresses are not recognized．
－Bit 5：Addressing format selection bit（10BIT SAD）
This bit selects a slave address specification format．When this bit is set to＂ 0 ，＂the 7 －bit addressing format is selected．In this case， only the high－order 7 bits（slave address）of the $\mathrm{I}^{2} \mathrm{C}$ address regis－ ter（address $002 \mathrm{C}_{16}$ ）are compared with address data．When this bit is set to＂1，＂the 10－bit addressing format is selected，and all the bits of the $I^{2} \mathrm{C}$ address register are compared with address data．
－Bit 6：SDA／SCL pin selection bit
This bit selects the input／output pins of SCL and SDA of the multi－ master $\mathrm{I}^{2} \mathrm{C}$－BUS interface．

－Bit 7： $\mathbf{I}^{2} C$－BUS interface pin input level selection bit

This bit selects the input level of the SCL and SDA pins of the multi－master $\mathrm{I}^{2} \mathrm{C}$－BUS interface．

Fig． 22 SDA／SCL pin selection bit

Fig． 23 Structure of $\mathrm{I}^{2} \mathrm{C}$ control register

［ ${ }^{2} \mathrm{C}$ Status Register（S1）］002D16

The $I^{2} \mathrm{C}$ status register（address 002D16）controls the $I^{2} \mathrm{C}$－BUS in－ terface status．The low－order 4 bits are read－only bits and the high－order 4 bits can be read out and written to．
Set＂00002＂to the low－order 4 bits，because these bits become the reserved bits at writing．

－Bit 0：Last receive bit（LRB）

This bit stores the last bit value of received data and can also be used for ACK receive confirmation．If ACK is returned when an ACK clock occurs，the LRB bit is set to＂ 0 ．＂If ACK is not returned， this bit is set to＂1．＂Except in the ACK mode，the last bit value of received data is input．The state of this bit is changed from＂ 1 ＂to ＂ 0 ＂by executing a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ data shift register （address 002B16）．

－Bit 1：General call detecting flag（AD0）

When the ALS bit is＂ 0 ＂，this bit is set to＂ 1 ＂when a general call＊ whose address data is all＂ 0 ＂is received in the slave mode．By a general call of the master device，every slave device receives con－ trol data after the general call．The ADO bit is set to＂ 0 ＂by detecting the STOP condition or START condition，or reset．
＊General call：The master transmits the general call address＂ 0016 ＂to all slaves．

－Bit 2：Slave address comparison flag（AAS）

This flag indicates a comparison result of address data when the ALS bit is＂ 0 ＂．
（1）In the slave receive mode，when the 7－bit addressing format is selected，this bit is set to＂ 1 ＂in one of the following conditions：
－The address data immediately after occurrence of a START condition agrees with the slave address stored in the high－or－ der 7 bits of the $\mathrm{I}^{2} \mathrm{C}$ address register（address 002C16）．
－A general call is received．
（2）In the slave receive mode，when the 10－bit addressing format is selected，this bit is set to＂ 1 ＂with the following condition：
－When the address data is compared with the $I^{2} \mathrm{C}$ address reg－ ister（ 8 bits consisting of slave address and RWB bit），the first bytes agree．
（3）This bit is set to＂ 0 ＂by executing a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ data shift register（address 002B16）when ESO is set to＂ 1 ＂or reset．
－Bit 3：Arbitration lost＊detecting flag（AL）
In the master transmission mode，when the SDA is made＂L＂by any other device，arbitration is judged to have been lost，so that this bit is set to＂1．＂At the same time，the TRX bit is set to＂0，＂so that immediately after transmission of the byte whose arbitration was lost is completed，the MST bit is set to＂ 0 ．＂The arbitration lost can be detected only in the master transmission mode．When ar－ bitration is lost during slave address transmission，the TRX bit is set to＂ 0 ＂and the reception mode is set．Consequently，it becomes possible to detect the agreement of its own slave address and ad－ dress data transmitted by another master device．
＊Arbitration lost ：The status in which communication as a master is dis－ abled．

－Bit 4：SCL pin low hold bit（PIN）

This bit generates an interrupt request signal．Each time 1－byte data is transmitted，the PIN bit changes from＂ 1 ＂to＂ 0 ．＂At the same time，an interrupt request signal occurs to the CPU．The PIN bit is set to＂ 0 ＂in synchronization with a falling of the last clock（in－ cluding the ACK clock）of an internal clock and an interrupt request signal occurs in synchronization with a falling of the PIN bit．When the PIN bit is＂ 0 ，＂the SCL is kept in the＂ 0 ＂state and clock generation is disabled．Figure 25 shows an interrupt request signal generating timing chart．
The PIN bit is set to＂ 1 ＂in one of the following conditions：
－Executing a write instruction to the $I^{2} \mathrm{C}$ data shift register（ad－ dress 002B16）．（This is the only condition which the prohibition of the internal clock is released and data can be communicated ex－ cept for the start condition detection．）
－When the ESO bit is＂ 0 ＂
－At reset
－When writing＂ 1 ＂to the PIN bit by software
The conditions in which the PIN bit is set to＂ 0 ＂are shown below：
－Immediately after completion of 1－byte data transmission（includ－ ing when arbitration lost is detected）
－Immediately after completion of 1－byte data reception
－In the slave reception mode，with ALS＝＂ 0 ＂and immediately af－ ter completion of slave address agreement or general call address reception
－In the slave reception mode，with ALS＝＂ 1 ＂and immediately af－ ter completion of address data reception

－Bit 5：Bus busy flag（BB）

This bit indicates the status of use of the bus system．When this bit is set to＂ 0, ＂this bus system is not busy and a START condition can be generated．The BB flag is set／reset by the SCL，SDA pins input signal regardless of master／slave．This flag is set to＂ 1 ＂by detecting the start condition，and is set to＂ 0 ＂by detecting the stop condition．The condition of these detecting is set by the start／stop condition setting bits（SSC4－SSC0）of the $\mathrm{I}^{2} \mathrm{C}$ start／stop condition control register（address 003016）．When the ESO bit of the $\mathrm{I}^{2} \mathrm{C}$ control register（address 002E16）is＂ 0 ＂or reset，the BB flag is set to＂0．＂
For the writing function to the BB flag，refer to the sections ＂START Condition Generating Method＂and＂STOP Condition Gen－ erating Method＂described later．

－Bit 6：Communication mode specification bit（transfer direc－ tion specification bit：TRX）

This bit decides a direction of transfer for data communication． When this bit is＂ 0 ，＂the reception mode is selected and the data of a transmitting device is received．When the bit is＂ 1 ，＂the transmis－ sion mode is selected and address data and control data are output onto the SDA in synchronization with the clock generated on the ScL．
This bit is set／reset by software and hardware．About set／reset by hardware is described below．This bit is set to＂ 1 ＂by hardware when all the following conditions are satisfied：
－When ALS is＂0＂
－In the slave reception mode or the slave transmission mode
－When the R／W bit reception is＂ 1 ＂
This bit is set to＂ 0 ＂in one of the following conditions：
－When arbitration lost is detected．
－When a STOP condition is detected．
－When writing＂ 1 ＂to this bit by software is invalid by the START condition duplication preventing function（Note）．
－With MST＝＂ 0 ＂and when a START condition is detected．
－With MST＝＂ 0 ＂and when ACK non－return is detected．
－At reset
－Bit 7：Communication mode specification bit（master／slave specification bit：MST）
This bit is used for master／slave specification for data communica－ tion．When this bit is＂ 0 ，＂the slave is specified，so that a START condition and a STOP condition generated by the master are re－ ceived，and data communication is performed in synchronization with the clock generated by the master．When this bit is＂ 1 ，＂the master is specified and a START condition and a STOP condition are generated．Additionally，the clocks required for data communi－ cation are generated on the SCL．
This bit is set to＂ 0 ＂in one of the following conditions．
－Immediately after completion of 1－byte data transfer when arbi－ tration lost is detected
－When a STOP condition is detected．
－Writing＂ 1 ＂to this bit by software is invalid by the START condi－ tion duplication preventing function（Note）．
－At reset

Note：START condition duplication preventing function
The MST，TRX，and BB bits is set to＂ 1 ＂at the same time after con－ firming that the BB flag is＂ 0 ＂in the procedure of a START condition occurrence．However，when a START condition by another master device occurs and the BB flag is set to＂ 1 ＂immediately after the con－ tents of the BB flag is confirmed，the START condition duplication preventing function makes the writing to the MST and TRX bits in－ valid．The duplication preventing function becomes valid from the rising of the BB flag to reception completion of slave address．

Fig． 24 Structure of $\mathrm{I}^{2} \mathrm{C}$ status register

Fig． 25 Interrupt request signal generating timing

START Condition Generating Method

When writing＂ 1 ＂to the MST，TRX，and BB bits of the $\mathrm{I}^{2} \mathrm{C}$ status register（address 002D16）at the same time after writing the slave address to the $I^{2} \mathrm{C}$ data shift register（address 002B16）with the condition in which the ESO bit of the $\mathrm{I}^{2} \mathrm{C}$ control register（address 002E16）and the BB flag are＂0＂，a START condition occurs．After that，the bit counter becomes＂0002＂and an SCL for 1 byte is out－ put．The START condition generating timing is different in the standard clock mode and the high－speed clock mode．Refer to Figure 26，the START condition generating timing diagram，and Table 6，the START condition generating timing table．

Fig． 26 START condition generating timing diagram

Table 6 START condition generating timing table

Item	Standard clock mode	High－speed clock mode
Setup time	$5.0 \mu \mathrm{~s}(20$ cycles $)$	$2.5 \mu \mathrm{~s}(10$ cycles $)$
Hold time	$5.0 \mu \mathrm{~s}(20$ cycles $)$	$2.5 \mu \mathrm{~s}(10$ cycles $)$

Note：Absolute time at $\phi=4 \mathrm{MHz}$ ．The value in parentheses denotes the number of ϕ cycles．

STOP Condition Generating Method

When the ES0 bit of the $I^{2} \mathrm{C}$ control register（address 002E16）is ＂ 1 ，＂write＂ 1 ＂to the MST and TRX bits，and write＂ 0 ＂to the BB bit of the $\mathrm{I}^{2} \mathrm{C}$ status register（address 002D16）simultaneously．Then a STOP condition occurs．The STOP condition generating timing is different in the standard clock mode and the high－speed clock mode．Refer to Figure 27，the STOP condition generating timing diagram，and Table 7，the STOP condition generating timing table．

Fig． 27 STOP condition generating timing diagram

Table 7 STOP condition generating timing table

Item	Standard clock mode	High－speed clock mode
Setup time	$5.0 \mu \mathrm{~s}$（ 20 cycles $)$	$3.0 \mu \mathrm{~s}$（12 cycles）
Hold time	$4.5 \mu \mathrm{~s}$（18 cycles）	$2.5 \mu \mathrm{~s}$（10 cycles）

Note：Absolute time at $\phi=4 \mathrm{MHz}$ ．The value in parentheses denotes the number of ϕ cycles．

START／STOP Condition Detecting Operation

The START／STOP condition detection operations are shown in Figures 28，29，and Table 8．The START／STOP condition is set by the START／STOP condition set bit．
The START／STOP condition can be detected only when the input signal of the SCL and SDA pins satisfy three conditions：SCL re－ lease time，setup time，and hold time（see Table 8）．
The BB flag is set to＂ 1 ＂by detecting the START condition and is reset to＂ 0 ＂by detecting the STOP condition．
The BB flag set／reset timing is different in the standard clock mode and the high－speed clock mode．Refer to Table 8，the BB flag set／ reset time．

Note：When a STOP condition is detected in the slave mode（MST $=0$ ），an interrupt request signal＂IICIRQ＂occurs to the CPU．

Fig． 28 START condition detecting timing diagram

Fig． 29 STOP condition detecting timing diagram

Table 8 START condition／STOP condition detecting conditions

	Standard clock mode	High－speed clock mode
ScL release time	SSC value +1 cycle $(6.25 \mu \mathrm{~s})$	4 cycles $(1.0 \mu \mathrm{~s})$
Setup time	$\frac{\text { SSC value }+1}{2}$ cycle $<4.0 \mu \mathrm{~s}(3.125 \mu \mathrm{~s})$	2 cycles $(1.0 \mu \mathrm{~s})$
Hold time	$\frac{\text { SSC value }+1}{2}$ cycle $<4.0 \mu \mathrm{~s}(3.125 \mu \mathrm{~s})$	2 cycles $(0.5 \mu \mathrm{~s})$
BB flag set／ reset time	$\frac{\text { SSC value }-1}{2}+2$ cycles $(3.375 \mu \mathrm{~s})$	3.5 cycles $(0.875 \mu \mathrm{~s})$

Note：Unit ：Cycle number of system clock ϕ
SSC value is the decimal notation value of the START／STOP condi－ tion set bits SSC4 to SSC0．Do not set＂0＂or an odd number to SSC value．The value in parentheses is an example when the $\mathrm{I}^{2} \mathrm{C}$ START／ STOP condition control register is set to＂ 1816 ＂at $\phi=4 \mathrm{MHz}$ ．

［ ${ }^{2}$ C START／STOP Condition Control Register （S2D）］ 003016

The I ${ }^{2} \mathrm{C}$ START／STOP condition control register（address 003016） controls START／STOP condition detection．
－Bits 0 to 4：START／STOP condition set bit（SSC4－SSCO）
SCL release time，setup time，and hold time change the detection condition by value of the main clock divide ratio selection bit and the oscillation frequency $f($ XIN $)$ because these time are measured by the internal system clock．Accordingly，set the proper value to the START／STOP condition set bits（SSC4 to SSC0）in considered of the system clock frequency．Refer to Table 8.
Do not set＂ 000002 ＂or an odd number to the START／STOP condi－ tion set bit（SSC4 to SSC0）．
Refer to Table 9，the recommended set value to START／STOP condition set bits（SSC4－SSC0）for each oscillation frequency．

－Bit 5：SCL／SDA interrupt pin polarity selection bit（SIP）

An interrupt can occur when detecting the falling or rising edge of the SCL or SDA pin．This bit selects the polarity of the SCL or SDA pin interrupt pin．

－Bit 6：SCL／SDA interrupt pin selection bit（SIS）

This bit selects the pin of which interrupt becomes valid between the SCL pin and the SDA pin．
Note：When changing the setting of the SCL／SDA interrupt pin polarity se－ lection bit，the Scl／Sda interrupt pin selection bit，or the $I^{2} \mathrm{C}$－BUS interface enable bit ESO，the SCL／SDA interrupt request bit may be set．When selecting the SCL／SDA interrupt source，disable the inter－ rupt before the SCL／SDA interrupt pin polarity selection bit，the SCL／ SDA interrupt pin selection bit，or the $\mathrm{I}^{2} \mathrm{C}$－BUS interface enable bit ESO is set．Reset the request bit to＂ 0 ＂after setting these bits，and enable the interrupt．

Address Data Communication

There are two address data communication formats，namely，7－bit addressing format and 10 －bit addressing format．The respective address communication formats are described below．
（1）7－bit addressing format
To adapt the 7 －bit addressing format，set the 10BIT SAD bit of the $I^{2} \mathrm{C}$ control register（address 002 E 16 ）to＂ 0 ．＂The first 7 －bit address data transmitted from the master is compared with the high－order 7 －bit slave address stored in the $\mathrm{I}^{2} \mathrm{C}$ address register （address 002 C 16 ）．At the time of this comparison，address com－ parison of the RWB bit of the $I^{2} \mathrm{C}$ address register（address 002 C 16 ）is not performed．For the data transmission format when the 7 －bit addressing format is selected，refer to Figure 31， （1）and（2）．
（2）10－bit addressing format
To adapt the 10 －bit addressing format，set the 10BIT SAD bit of the $\mathrm{I}^{2} \mathrm{C}$ control register（address 002 E 16 ）to＂1．＂An address comparison is performed between the first－byte address data transmitted from the master and the 8 －bit slave address stored in the ${ }^{2} \mathrm{C}$ address register（address 002 C 16 ）．At the time of this comparison，an address comparison between the RWB bit of the $\mathrm{I}^{2} \mathrm{C}$ address register（address 002 C 16 ）and the $\mathrm{R} / \overline{\mathrm{W}}$ bit which is the last bit of the address data transmitted from the master is made．In the 10 －bit addressing mode，the RWB bit which is the last bit of the address data not only specifies the direction of communication for control data，but also is pro－ cessed as an address data bit．
When the first－byte address data agree with the slave address， the AAS bit of the ${ }^{2} \mathrm{C}$ status register（address 002D16）is set to ＂1．＂After the second－byte address data is stored into the $\mathrm{I}^{2} \mathrm{C}$ data shift register（address 002B16），perform an address com－ parison between the second－byte data and the slave address by software．When the address data of the 2 bytes agree with the slave address，set the RBW bit of the $\mathrm{I}^{2} \mathrm{C}$ address register （address 002 C 16 ）to＂1＂by software．This processing can make the 7 －bit slave address and $\mathrm{R} / \overline{\mathrm{W}}$ data agree，which are re－ ceived after a RESTART condition is detected，with the value of the $\mathrm{I}^{2} \mathrm{C}$ address register（address 002 C 16 ）．For the data trans－ mission format when the 10 －bit addressing format is selected， refer to Figure 31，（3）and（4）．

Fig． 30 Structure of $I^{2} \mathrm{C}$ START／STOP condition control register
Table 9 Recommended set value to START／STOP condition set bits（SSC4－SSC0）for each oscillation frequency

$\begin{aligned} & \text { Oscillation } \\ & \text { frequency } \\ & \text { f(XIN) (MHz) } \end{aligned}$	Main clock divide ratio	System clock ϕ （MHz）	START／STOP condition control register	SCL release time （ $\mu \mathrm{s}$ ）	Setup time （ $\mu \mathrm{s}$ ）	Hold time （ $\mu \mathrm{s}$ ）
8	2	4	XXX11010	$6.75 \mu \mathrm{~s}$（27 cycles）	$3.375 \mu \mathrm{~s}$（ 13.5 cycles）	$3.375 \mu \mathrm{~s}$（ 13.5 cycles）
			XXX11000	$6.25 \mu \mathrm{~s}$（ 25 cycles）	$3.125 \mu \mathrm{~s}$（ 12.5 cycles）	$3.125 \mu \mathrm{~s}$（ 12.5 cycles）
8	8	1	XXX00100	$5.0 \mu \mathrm{~s}$（5 cycles）	$2.5 \mu \mathrm{~s}$（2．5 cycles）	$2.5 \mu \mathrm{~s}$（2．5 cycles）
4	2	2	XXX01100	$6.5 \mu \mathrm{~s}$（13 cycles）	$3.25 \mu \mathrm{~s}$（ 6.5 cycles）	$3.25 \mu \mathrm{~s}$（6．5 cycles）
			XXX01010	$5.5 \mu \mathrm{~s}$（11 cycles）	$2.75 \mu \mathrm{~s}$（ 5.5 cycles）	$2.75 \mu \mathrm{~s}$（5．5 cycles）
2	2	1	XXX00100	$5.0 \mu \mathrm{~s}$（5 cycles）	$2.5 \mu \mathrm{~s}$（2．5 cycles）	$2.5 \mu \mathrm{~s}$（2．5 cycles）

Note：Do not set an odd number to the START／STOP condition set bit（SSC4 to SSC0）．

Fig． 31 Address data communication format

Example of Master Transmission

An example of master transmission in the standard clock mode，at the SCL frequency of 100 kHz and in the ACK return mode is shown below．
（1）Set a slave address in the high－order 7 bits of the $\mathrm{I}^{2} \mathrm{C}$ address register（address 002C16）and＂0＂into the RWB bit．
（2）Set the ACK return mode and $\mathrm{SCL}=100 \mathrm{kHz}$ by setting＂ 8516 ＂ in the $\mathrm{I}^{2} \mathrm{C}$ clock control register（address 002F16）．
（3）Set＂0016＂in the $\mathrm{I}^{2} \mathrm{C}$ status register（address 002D16）so that transmission／reception mode can become initializing condition．
（4）Set a communication enable status by setting＂ 0816 ＂in the $\mathrm{I}^{2} \mathrm{C}$ control register（address 002E16）．
（5）Confirm the bus free condition by the BB flag of the $\mathrm{I}^{2} \mathrm{C}$ status register（address 002D16）．
（6）Set the address data of the destination of transmission in the high－order 7 bits of the $I^{2} \mathrm{C}$ data shift register（address 002B16） and set＂ 0 ＂in the least significant bit．
（7）Set＂F016＂in the $\mathrm{I}^{2} \mathrm{C}$ status register（address 002D16）to gener－ ate a START condition．At this time，an SCL for 1 byte and an ACK clock automatically occur．
（8）Set transmit data in the $\mathrm{I}^{2} \mathrm{C}$ data shift register（address 002B16）． At this time，an SCL and an ACK clock automatically occur．
（9）When transmitting control data of more than 1 byte，repeat step （8）．
（10）Set＂D016＂in the $\mathrm{I}^{2} \mathrm{C}$ status register（address 002D16）to gener－ ate a STOP condition if ACK is not returned from slave reception side or transmission ends．

Example of Slave Reception

An example of slave reception in the high－speed clock mode，at the SCL frequency of 400 kHz ，in the ACK non－return mode and using the addressing format is shown below．
（1）Set a slave address in the high－order 7 bits of the $\mathrm{I}^{2} \mathrm{C}$ address register（address 002C16）and＂ 0 ＂in the RWB bit．
（2）Set the no ACK clock mode and SCL $=400 \mathrm{kHz}$ by setting ＂ 6516 ＂in the $\mathrm{I}^{2} \mathrm{C}$ clock control register（address 002F16）．
（3）Set＂ 0016 ＂in the $\mathrm{I}^{2} \mathrm{C}$ status register（address 002D16）so that transmission／reception mode can become initializing condition．
（4）Set a communication enable status by setting＂ 0816 ＂in the $\mathrm{I}^{2} \mathrm{C}$ control register（address 002E16）．
（5）When a START condition is received，an address comparison is performed．
（6）－When all transmitted addresses are＂ 0 ＂（general call）：
AD0 of the $I^{2} \mathrm{C}$ status register（address 002D16）is set to＂ 1 ＂ and an interrupt request signal occurs．
－When the transmitted addresses agree with the address set in（1）：
ASS of the $\mathrm{I}^{2} \mathrm{C}$ status register（address 002D16）is set to＂ 1 ＂ and an interrupt request signal occurs．
－In the cases other than the above ADO and AAS of the $\mathrm{I}^{2} \mathrm{C}$ sta－ tus register（address 002D16）are set to＂ 0 ＂and no interrupt request signal occurs．
（7）Set dummy data in the $I^{2} \mathrm{C}$ data shift register（address 002B16）．
（8）When receiving control data of more than 1 byte，repeat step（7）．
（9）When a STOP condition is detected，the communication ends．

Precautions when using multi－master $I^{2} \mathrm{C}$－ BUS interface

（1）Read－modify－write instruction
The precautions when the read－modify－write instruction such as SEB，CLB etc．is executed for each register of the multi－master $\mathrm{I}^{2} \mathrm{C}$－BUS interface are described below．
－$I^{2} \mathrm{C}$ data shift register（S0：address 002B16）
When executing the read－modify－write instruction for this regis－ ter during transfer，data may become a value not intended．
－ $\mathrm{I}^{2} \mathrm{C}$ address register（S0D：address 002C16）
When the read－modify－write instruction is executed for this regis－ ter at detecting the STOP condition，data may become a value not intended．It is because H／W changes the read／write bit （RBW）at the above timing．
－$I^{2} \mathrm{C}$ status register（S1：address 002D16）
Do not execute the read－modify－write instruction for this register because all bits of this register are changed by H／W．
－$I^{2} \mathrm{C}$ control register（S1D：address 002E16）
When the read－modify－write instruction is executed for this regis－ ter at detecting the START condition or at completing the byte transfer，data may become a value not intended．Because H／W changes the bit counter（ $\mathrm{BC} 0-\mathrm{BC} 2$ ）at the above timing．
－ $\mathrm{I}^{2} \mathrm{C}$ clock control register（S2：address 002F16）
The read－modify－write instruction can be executed for this regis－ ter．
－$I^{2} \mathrm{C}$ START／STOP condition control register（S2D：address 003016）
The read－modify－write instruction can be executed for this regis－ ter．
（2）START condition generating procedure using multi－master
1．Procedure example（The necessary conditions of the generat－ ing procedure are described as the following 2 to 5 ．
！
LDA－（Taking out of slave address value）
SEI（Interrupt disabled）
BBS 5，S1，BUSBUSY（BB flag confirming and branch pro－
cess）
BUSFREE：
STA S0（Writing of slave address value）
LDM \＃\＄F0，S1
CLI
BUSBUSY：
CLI
（Interrupt enabled）
\vdots
2．Use＂Branch on Bit Set＂of＂BBS 5，\＄002D，－＂for the BB flag confirming and branch process．
3．Use＂STA \＄2B，STX \＄2B＂or＂STY \＄2B＂of the zero page ad－ dressing instruction for writing the slave address value to the $\mathrm{I}^{2} \mathrm{C}$ data shift register．
4．Execute the branch instruction of above 2 and the store instruc－ tion of above 3 continuously shown the above procedure example．

5．Disable interrupts during the following three process steps：
－BB flag confirming
－Writing of slave address value
－Trigger of START condition generating
When the condition of the BB flag is bus busy，enable interrupts immediately．
（3）RESTART condition generating procedure
1．Procedure example（The necessary conditions of the generat－ ing procedure are described as the following 2 to 4．）
Execute the following procedure when the PIN bit is＂ 0 ．＂ \vdots

LDM \＃\＄00，S1	（Select slave receive mode）
LDA－	（Taking out of slave address value）
SEI	（Interrupt disabled）
STA S0	（Writing of slave address value）
LDM \＃\＄F0，S1	（Trigger of RESTART condition generating）
CLI	（Interrupt enabled）

2．Select the slave receive mode when the PIN bit is＂ 0 ．＂Do not write＂ 1 ＂to the PIN bit．Neither＂ 0 ＂nor＂ 1 ＂is specified for the writing to the BB bit．
The TRX bit becomes＂ 0 ＂and the SDA pin is released．
3．The SCL pin is released by writing the slave address value to the $I^{2} \mathrm{C}$ data shift register．
4．Disable interrupts during the following two process steps：
－Writing of slave address value
－Trigger of RESTART condition generating
（4）Writing to $I^{2} C$ status register
Do not execute an instruction to set the PIN bit to＂ 1 ＂from＂0＂and an instruction to set the MST and TRX bits to＂ 0 ＂from＂ 1 ＂simulta－ neously．It is because it may enter the state that the SCL pin is released and the SDA pin is released after about one machine cycle．Do not execute an instruction to set the MST and TRX bits to＂ 0 ＂from＂ 1 ＂simultaneously when the PIN bit is＂ 1 ．＂It is because it may become the same as above．
（5）Process of after STOP condition generating
Do not write data in the $I^{2} \mathrm{C}$ data shift register S 0 and the $\mathrm{I}^{2} \mathrm{C}$ sta－ tus register S1 until the bus busy flag BB becomes＂ 0 ＂after generating the STOP condition in the master mode．It is because the STOP condition waveform might not be normally generated． Reading to the above registers do not have the problem．

PULSE WIDTH MODULATION（PWM）

The 3851 group has a PWM function with an 8 －bit resolution， based on a signal that is the clock input XIN or that clock input di－ vided by 2 ．

Data Setting

The PWM output pin also functions as port P44．Set the PWM pe－ riod by the PWM prescaler，and set the＂H＂term of output pulse by the PWM register．
If the value in the PWM prescaler is n and the value in the PWM register is m（where $n=0$ to 255 and $m=0$ to 255）：
PWM period $=255 \times(n+1) / f(X I N)$
$=31.875 \times(n+1) \mu \mathrm{s}($ when $f(X I N)=8 \mathrm{MHz}$ ，count source $=$ f（XIN））
Output pulse＂H＂term $=$ PWM period $\times \mathrm{m} / 255$

$$
\begin{aligned}
= & 0.125 \times(n+1) \times m \mu s \\
& (\text { when } f(X I N)=8 \mathrm{MHz}, \text { count source }=f(X I N))
\end{aligned}
$$

PWM Operation

When bit 0 （PWM enable bit）of the PWM control register is set to ＂1＂，operation starts by initializing the PWM output circuit，and pulses are output starting at an＂H＂．
If the PWM register or PWM prescaler is updated during PWM output，the pulses will change in the cycle after the one in which the change was made．

m ：Contents of PWM register
n ：Contents of PWM prescaler
$T: P W M$ period $($ when $f(X I N)=8 \mathrm{MHz}$ ，count source $=f(X I N))$

Fig． 32 Timing of PWM period

Fig． 33 Block diagram of PWM function

Fig． 34 Structure of PWM control register

Fig． 35 PWM output timing when PWM register or PWM prescaler is changed

MITSUBISHI MICROCOMPUTERS
 3851 Group

查询＂3851＂供应商

A－D CONVERTER
 ［A－D Conversion Registers（ADL，ADH）］ 003516， 003616

The A－D conversion registers are read－only registers that store the result of an A－D conversion．Do not read these registers during an A－D conversion

［AD Control Register（ADCON）］ 003416

The AD control register controls the A－D conversion process．Bits 0 to 2 select a specific analog input pin．Bit 4 indicates the completion of an A－D conversion．The value of this bit remains at ＂ 0 ＂during an A－D conversion and changes to＂ 1 ＂when an A－D conversion ends．Writing＂ 0 ＂to this bit starts the A－D conversion．

Comparison Voltage Generator

The comparison voltage generator divides the voltage between AVSS and VREF into 1024 and outputs the divided voltages．

Channel Selector

The channel selector selects one of ports P3o／ANo to P34／AN4 and inputs the voltage to the comparator．

Comparator and Control Circuit

The comparator and control circuit compare an analog input volt－ age with the comparison voltage，and the result is stored in the A－D conversion registers．When an A－D conversion is completed， the control circuit sets the A－D conversion completion bit and the A－D interrupt request bit to＂ 1 ＂．
Note that because the comparator consists of a capacitor cou－ pling，set $f(\mathrm{XIN})$ to 500 kHz or more during an A－D conversion．

Fig． 36 Structure of AD control register

10－bit reading
（Read address 003616 before 003516）

| （Address 003616） |
| :--- | | | b 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note ：The high－order 6 bits of address 003616 become＂ 0 ＂ at reading．

8 －bit reading（Read only address 003516 ）
（Address 003516） $\begin{array}{lll}\mathrm{by} 7 & \mathrm{~b}|\mathrm{~b} 8| \mathrm{b} 7|\mathrm{~b} 6| \mathrm{b} 5|\mathrm{~b} 4| \mathrm{b} 3 \mid \mathrm{b} 2 \\ & \end{array}$

Fig． 37 Structure of A－D conversion registers

Fig． 38 Block diagram of A－D converter

MITSUBISHI MICROCOMPUTERS
 3851 Group

查询＂3851＂供应商

WATCHDOG TIMER

The watchdog timer gives a mean of returning to the reset status when a program cannot run on a normal loop（for example，be－ cause of a software run－away）．The watchdog timer consists of an 8 －bit watchdog timer L and an 8－bit watchdog timer H ．

Standard Operation of Watchdog Timer

When any data is not written into the watchdog timer control reg－ ister（address 003916）after resetting，the watchdog timer is in the stop state．The watchdog timer starts to count down by writing an optional value into the watchdog timer control register（address 003916）and an internal reset occurs at an underflow of the watch－ dog timer H ．
Accordingly，programming is usually performed so that writing to the watchdog timer control register（address 003916）may be started before an underflow．When the watchdog timer control reg－ ister（address 003916）is read，the values of the high－order 6 bits of the watchdog timer H，STP instruction disable bit，and watch－ dog timer H count source selection bit are read．

Olnitial value of watchdog timer

At reset or writing to the watchdog timer control register（address 003916），each watchdog timer H and L is set to＂FF16．＂

－Watchdog timer H count source selection bit operation

Bit 7 of the watchdog timer control register（address 003916）per－ mits selecting a watchdog timer H count source．When this bit is set to＂ 0 ＂，the count source becomes the underflow signal of watchdog timer L ．The detection time is set to 131.072 ms at $f(\mathrm{XIN})$ $=8 \mathrm{MHz}$ frequency and 32.768 s at $\mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz}$ frequency． When this bit is set to＂ 1 ＂，the count source becomes the signal divided by 16 for $f(X I N)$（or $f(X C I N)$ ）．The detection time in this case is set to $512 \mu \mathrm{~s}$ at $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ frequency and 128 ms at $\mathrm{f}(\mathrm{XCIN})$ $=32 \mathrm{kHz}$ frequency．This bit is cleared to＂ 0 ＂after resetting．

－Operation of STP instruction disable bit

Bit 6 of the watchdog timer control register（address 003916）per－ mits disabling the STP instruction when the watchdog timer is in operation．
When this bit is＂ 0 ＂，the STP instruction is enabled．
When this bit is＂ 1 ＂，the STP instruction is disabled，once the STP instruction is executed，an internal reset occurs．When this bit is set to＂ 1 ＂，it cannot be rewritten to＂ 0 ＂by program．This bit is cleared to＂0＂after resetting．

Note：Any one of high－speed，middle－speed or low－speed mode is selected by bits 7 and 6 of the CPU mode register．

Fig． 39 Block diagram of Watchdog timer

Fig． 40 Structure of Watchdog timer control register

RESET CIRCUIT

To reset the microcomputer，$\overline{\text { RESET }}$ pin must be held at an＂L＂ level for 20 cycles or more of XIN．Then the RESET pin is returned to an＂H＂level（the power source voltage must be between 2.7 V and 5.5 V ，and the oscillation must be stable），reset is released． After the reset is completed，the program starts from the address contained in address FFFD16（high－order byte）and address FFFC16（low－order byte）．Make sure that the reset input voltage is less than 0.54 V for Vcc of 2.7 V ．

Fig． 41 Reset circuit example

Fig． 42 Reset sequence

Fig． 43 Internal status at reset

CLOCK GENERATING CIRCUIT

The 3851 group has two built－in oscillation circuits：main clock XIN－XOUT oscillation circuit and sub clock Xcin－Xcout oscillation circuit．An oscillation circuit can be formed by connecting a reso－ nator between XIN and XoUT（XCIN and XCOUT）．Use the circuit constants in accordance with the resonator manufacturer＇s recom－ mended values．No external resistor is needed between XIN and Xout since a feed－back resistor exists on－chip．However，an exter－ nal feed－back resistor is needed between XCIN and Xcout． Immediately after power on，only the XIN oscillation circuit starts oscillating，and XCIN and Xcout pins function as I／O ports．

Frequency Control

（1）Middle－speed mode
The internal clock ϕ is the frequency of XIN divided by 8．After re－ set is released，this mode is selected．

（2）High－speed mode

The internal clock ϕ is half the frequency of XIN．

（3）Low－speed mode

The internal clock ϕ is half the frequency of XCIN．

note

If you switch the mode between middle／high－speed and low－ speed，stabilize both XIN and XCIN oscillations．The sufficient time is required for the sub－clock to stabilize，especially immediately af－ ter power on and at returning from the stop mode．When switching the mode between middle／high－speed and low－speed，set the fre－ quency on condition that $f(X I N)>3 \cdot f(X C I N)$ ．

（4）Low power dissipation mode

The low power consumption operation can be realized by stopping the main clock XIN in low－speed mode．To stop the main clock，set bit 5 of the CPU mode register to＂ 1 ．＂When the main clock XIN is restarted（by setting the main clock stop bit to＂0＂），set sufficient time for oscillation to stabilize．
The sub－clock XCIN－XcOUT oscillation circuit can not directly input clocks that are generated externally．Accordingly，make sure to cause an external resonator to oscillate．

Oscillation Control

（1）Stop mode

If the STP instruction is executed，the internal clock ϕ stops at an ＂H＂level，and XIN and XCIN oscillation stops．When the oscillation stabilizing time set after STP instruction released bit is＂ 0 ，＂the prescaler 12 is set to＂FF16＂and timer 1 is set to＂ 0116 ．＂When the oscillation stabilizing time set after STP instruction released bit is ＂1，＂set the sufficient time for oscillation of used oscillator to stabi－ lize since nothing is set to the prescaler 12 and timer 1.
Either XIN or XCIN divided by 16 is input to the prescaler 12 as count source．Oscillator restarts when an external interrupt is re－ ceived，but the internal clock ϕ is not supplied to the CPU（remains at＂H＂）until timer 1 underflows．The internal clock ϕ is supplied for the first time，when timer 1 underflows．This ensures time for the clock oscillation using the ceramic resonators to be stabilized． $\overline{\text { When the oscillator is restarted by reset，apply＂L＂level to the }}$

RESET pin until the oscillation is stable since a wait time will not be generated．

（2）Wait mode

If the WIT instruction is executed，the internal clock ϕ stops at an ＂H＂level，but the oscillator does not stop．The internal clock ϕ re－ starts at reset or when an interrupt is received．Since the oscillator does not stop，normal operation can be started immediately after the clock is restarted．

To ensure that the interrupts will be received to release the STP or WIT state，their interrupt enable bits must be set to＂ 1 ＂before ex－ ecuting of the STP or WIT instruction．
When releasing the STP state，the prescaler 12 and timer 1 will start counting the clock XIN divided by 16．Accordingly，set the timer 1 interrupt enable bit to＂0＂before executing the STP instruc－ tion．

note

When using the oscillation stabilizing time set after STP instruction released bit set to＂1＂，evaluate time to stabilize oscillation of the used oscillator and set the value to the timer 1 and prescaler 12.

Fig． 44 Ceramic resonator circuit

Fig． 45 External clock input circuit

Fig． 46 Structure of MISRG

Fig． 47 System clock generating circuit block diagram（Single－chip mode）

Notes 1: Switch the mode by the allows shown between the mode blocks. (Do not switch between the modes directly without an allow.)
2 : The all modes can be switched to the stop mode or the wait mode and return to the source mode when the stop mode or the wait mode is ended.
3: Timer operates in the wait mode.
4: When bit 0 of MISRG is " 0 " and the stop mode is ended, a delay of approximately 1 ms occurs by connecting timer 1 in middle/high-speed mode.
5 : When bit 0 of MISRG is " 0 " and the stop mode is ended, the following is performed.
(1) After the clock is restarted, a delay of approximately 256 ms occurs in low-speed mode if Timer 12 count source selection bit is " 0 ".
(2) After the clock is restarted, a delay of approximately 16 ms occurs in low-speed mode if Timer 12 count source selection bit is " 1 ".

6 : Wait until oscillation stabilizes after oscillating the main clock XIN before the switching from the low-speed mode to middle/high-speed mode.
7 : The example assumes that 8 MHz is being applied to the XIN pin and 32 kHz to the XCIN pin. ϕ indicates the internal clock.
Fig. 48 State transitions of system clock

NOTES ON PROGRAMMING

Processor Status Register

The contents of the processor status register（PS）after a reset are undefined，except for the interrupt disable flag（I）which is＂1．＂Af－ ter a reset，initialize flags which affect program execution．In particular，it is essential to initialize the index X mode (T) and the decimal mode（D）flags because of their effect on calculations．

Interrupts

The contents of the interrupt request bits do not change immedi－ ately after they have been written．After writing to an interrupt request register，execute at least one instruction before perform－ ing a BBC or BBS instruction．

Decimal Calculations

－To calculate in decimal notation，set the decimal mode flag（D） to＂1＂，then execute an ADC or SBC instruction．After executing an ADC or SBC instruction，execute at least one instruction be－ fore executing a SEC，CLC，or CLD instruction．
－In decimal mode，the values of the negative（ N ），overflow（ V ）， and zero（ Z ）flags are invalid．

Timers

If a value n（between 0 and 255）is written to a timer latch，the fre－ quency division ratio is $1 /(n+1)$ ．

Multiplication and Division Instructions

－The index X mode（ T ）and the decimal mode（D）flags do not af－ fect the MUL and DIV instruction．
－The execution of these instructions does not change the con－ tents of the processor status register．

Ports

The contents of the port direction registers cannot be read．The following cannot be used：
－The data transfer instruction（LDA，etc．）
－The operation instruction when the index X mode flag (T) is＂ 1 ＂
－The addressing mode which uses the value of a direction regis－ ter as an index
－The bit－test instruction（BBC or BBS，etc．）to a direction register
－The read－modify－write instructions（ROR，CLB，or SEB，etc．）to a direction register．
Use instructions such as LDM and STA，etc．，to set the port direc－ tion registers．

Serial I／O

In clock synchronous serial I／O，if the receive side is using an ex－ ternal clock and it is to output the $\overline{\text { SRDY }}$ signal，set the transmit enable bit，the receive enable bit，and the $\overline{\text { SRDY }}$ output enable bit to＂1．＂
Serial I／O continues to output the final bit from the TXD pin after transmission is completed．
When an external clock is used as synchronous clock in serial I／O， write transmission data to the transmit buffer register while the transfer clock is＂H．＂

A－D Converter

The comparator uses internal capacitors whose charge will be lost if the clock frequency is too low．
Therefore，make sure that $f(X I N)$ is at least on 500 kHz during an A－D conversion．
Do not execute the STP instruction during an A－D conversion．

Instruction Execution Time

The instruction execution time is obtained by multiplying the fre－ quency of the internal clock ϕ by the number of cycles needed to execute an instruction．
The number of cycles required to execute an instruction is shown in the list of machine instructions．
The frequency of the internal clock ϕ is half of the XIN frequency in high－speed mode．

NOTES ON USAGE

Handling of Source Pins

In order to avoid a latch－up occurrence，connect a capacitor suit－ able for high frequencies as bypass capacitor between power source pin（Vcc pin）and GND pin（Vss pin）and between power source pin（Vcc pin）and analog power source input pin（AVss pin）．Besides，connect the capacitor to as close as possible．For bypass capacitor which should not be located too far from the pins to be connected，a ceramic capacitor of $0.01 \mu \mathrm{~F}-0.1 \mu \mathrm{~F}$ is recom－ mended．

EPROM Version／One Time PROM Version

The CNVss pin is connected to the internal memory circuit block by a low－ohmic resistance，since it has the multiplexed function to be a programmable power source pin（VPP pin）as well．
To improve the noise reduction，connect a track between CNVss pin and Vss pin or Vcc pin with 1 to $10 \mathrm{k} \Omega$ resistance．
The mask ROM version track of CNVss pin has no operational in－ terference even if it is connected to Vss pin or Vcc pin via a resistor．

Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCUs

There are differences in electric characteristics，operation margin， noise immunity，and noise radiation between Mask ROM and One Time PROM version MCUs due to the differences in the manufac－ turing processes．
When manufacturing an application system with the One Time PROM version and then switching to use of the Mask ROM ver－ sion，please perform sufficient evaluations for the commercial samples of the Mask ROM version．

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM produc－ tion：
1．Mask ROM Order Confirmation Form＊
2．Mark Specification Form＊
3．Data to be written to ROM，in EPROM form（three identical cop－ ies）

DATA REQUIRED FOR ROM WRITING ORDERS

The following are necessary when ordering a ROM writing：
1．ROM Writing Confirmation Form＊
2．Mark Specification Form＊（only special mark with customer＇s trade mark logo）
3．Data to be written to ROM，in EPROM form（three identical cop－ ies）
＊For the mask ROM confirmation and the mark specifications，re－ fer to the＂Mitsubishi MCU Technical Information＂Homepage （http：／／www．infomicom．maec．co．jp／indexe．htm）．

ROM PROGRAMMING METHOD

The built－in PROM of the blank One Time PROM version and built－ in EPROM version can be read or programmed with a general－purpose PROM programmer using a special programming adapter．Set the address of PROM programmer in the user ROM area．

Table 10 Programming adapter

Package	Name of Programming Adapter
$42 P 2 R-A$	PCA4738F－42A
$42 P 4 B$	PCA4738S－42A

The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes．To en－ sure proper operation after programming，the procedure shown in Figure 49 is recommended to verify programming．

Caution ：The screening temperature is far higher than the storage temperature．Never expose to $150^{\circ} \mathrm{C}$ exceeding 100 hours．

Fig． 49 Programming and testing of One Time PROM version

ELECTRICAL CHARACTERISTICS

Table 11 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage	All voltages are based on Vss． Output transistors are cut off．	－0．3 to 7.0	V
VI	Input voltage $\mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 17, \mathrm{P} 20, \mathrm{P} 21$, $\mathrm{P} 24-\mathrm{P} 27, \mathrm{P} 30-\mathrm{P} 34, \mathrm{P} 40-\mathrm{P} 44$, VREF		-0.3 to Vcc +0.3	V
VI	Input voltage P22，P23		－0．3 to 5.8	V
VI	Input voltage RESET，XIN		-0.3 to Vcc +0.3	V
VI	Input voltage CNVss		－0．3 to 13	V
Vo	Output voltage P00－P07，P10－P17，P20，P21， P24－P27，P30－P34，P40－P44， XOUT		－0．3 to Vcc +0.3	V
Vo	Output voltage P22，P23		－0．3 to 5.8	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	1000 （Note）	mW
Topr	Operating temperature		－20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		－40 to 125	${ }^{\circ} \mathrm{C}$

Note ：The rating becomes 300 mW at the 42P2R－A／E package．
Table 12 Recommended operating conditions（1）
（Vcc＝ 2.7 to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$ ，unless otherwise noted）

Symbol	Parameter	Limits			Unit
		Min．	Typ．	Max．	
Vcc	Power source voltage（At 8 MHz ）	4.0	5.0	5.5	V
	Power source voltage（At 4 MHz ）	2.7	5.0	5.5	
Vss	Power source voltage		0		V
Vref	A－D convert reference voltage	2.0		Vcc	V
AVss	Analog power source voltage		0		V
VIA	Analog input voltage AN0－AN4	AVss		Vcc	V
VIH	＂H＂input voltage P00－P07，P10－P17，P20－P27，P30－P34，P40－P44	0.8 Vcc		Vcc	V
VIH	＂ H ＂input voltage（when $\mathrm{I}^{2} \mathrm{C}$－BUS input level is selected） SdA1，Scl1	0．7Vcc		5.8	V
VIH	＂ H ＂input voltage（when $\mathrm{I}^{2} \mathrm{C}$－BUS input level is selected） SdA2，Scl2	0．7Vcc		Vcc	V
VIH	＂ H ＂input voltage（when SMBUS input level is selected） SdA1，Scl1	1.4		5.8	V
VIH	＂ H ＂input voltage（when SMBUS input level is selected） SDA2，ScL2	1.4		Vcc	V
VIH	＂H＂input voltage $\overline{\text { RESET，XIN，CNVss }}$	0.8 Vcc		Vcc	V
VIL	＂L＂input voltage P00－P07，P10－P17，P20－P27，P30－P34，P40－P44	0		0.2 Vcc	V
VIL	＂L＂input voltage（when $\mathrm{I}^{2} \mathrm{C}$－BUS input level is selected） Sda1，Sda2，Scl1，Scl2	0		0．3Vcc	V
VIL	＂L＂input voltage（when SMBUS input level is selected） SdA1，SdA2，SCL1，ScL2	0		0.6	V
VIL	＂L＂input voltage $\overline{\text { RESET，CNVss }}$	0		0.2 Vcc	V
VIL	＂L＂input voltage XIN	0		0.16 Vcc	V
ElOH（peak）	＂H＂total peak output current P00－P07，P10－P17，P30－P34（Note）			－80	mA
ऽlOH（peak）	＂H＂total peak output current P20，P21，P24－P27，P40－P44（Note）			－80	mA
ミlOL（peak）	＂L＂total peak output current P00－P07，P10－P12，P30－P34（Note）			80	mA
ミlOL（peak）	＂L＂total peak output current P13－P17（Note）			80	mA
ミIOL（peak）	＂L＂total peak output current P20－P27，P40－P44（Note）			80	mA
ElOH（avg）	＂H＂total average output current P00－P07，P10－P17，P30－P34（Note）			－40	mA
ElOH（avg）	＂H＂total average output current P20，P21，P24－P27，P40－P44（Note）			－40	mA
EloL（avg）	＂L＂total average output current P00－P07，P10－P12，P30－P34（Note）			40	mA
ElOL（avg）	＂L＂total average output current $\mathrm{P} 13-\mathrm{P} 17$（Note）			40	mA
EloL（avg）	＂L＂total average output current P20－P27，P40－P44（Note）			40	mA

Note：The total output current is the sum of all the currents flowing through all the applicable ports．The total average current is an average value measured over 100 ms ．The total peak current is the peak value of all the currents．

Table 13 Recommended operating conditions（2）
（Vcc＝ 2.7 to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$ ，unless otherwise noted）

Symbol	Parameter		Limits			Unit
			Min．	Typ．	Max．	
IOH （peak）	＂H＂peak output current	$\begin{aligned} & \text { P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, } \\ & \text { P40-P44 (Note 1) } \end{aligned}$			－10	mA
IOL（peak）	＂L＂peak output current	$\begin{array}{r} \hline \text { P00-P07, P10-P12, P20-P27, P30-P34, P40-P44 } \\ \text { (Note 1) } \end{array}$			10	mA
IOL（peak）	＂L＂peak output current	P13－P17（Note 1）			20	mA
$\mathrm{IOH}(\mathrm{avg})$	＂H＂average output current	$\begin{aligned} & \hline \mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 17, \mathrm{P} 20, \mathrm{P} 21, \mathrm{P} 24-\mathrm{P} 27, \text { P30-P34, } \\ & \mathrm{P} 40-\mathrm{P} 44 \text { (Note 2) } \end{aligned}$			－5	mA
IOL（avg）	＂L＂average output current	$\begin{array}{r} \text { P00-P07, P10-P12, P20-P27, P30-P34, P40-P44 } \\ \text { (Note 2) } \end{array}$			5	mA
IOL（avg）	＂L＂peak output current	P13－P17（Note 2）			15	mA
$f(X I N)$	Internal clock oscillation frequency（Vcc $=4.0$ to 5.5 V ）（Note 3）				8	MHz
$f(X I N)$	Internal clock oscillation frequency（Vcc $=2.7$ to 5．5V）（Note 3）				4	kHz

Notes 1：The peak output current is the peak current flowing in each port．
2：The average output current $\operatorname{loL}(\mathrm{avg}), \mathrm{IOH}(\mathrm{avg})$ are average value measured over 100 ms ．
3：When the oscillation frequency has a duty cycle of 50% ．

Table 14 Electrical characteristics
（ $\mathrm{Vcc}=2.7$ to 5.5 V ，Vss $=0 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $85^{\circ} \mathrm{C}$ ，unless otherwise noted）

Symbol	Parameter	Test conditions	Limits			Unit
			Min．	Typ．	Max．	
VOH	＂H＂output voltage P00－P07，P10－P17，P20，P21， P24－P27，P30－P34，P40－P44 （Note）	$\begin{aligned} & \mathrm{IOH}=-10 \mathrm{~mA} \\ & \mathrm{VCC}=4.0-5.5 \mathrm{~V} \end{aligned}$	Vcc－2．0			V
		$\begin{aligned} & \mathrm{IOH}=-1.0 \mathrm{~mA} \\ & \mathrm{VCC}=2.7-5.5 \mathrm{~V} \end{aligned}$	Vcc－1．0			V
VOL	$\begin{aligned} & \text { "L" output voltage } \\ & \text { P00-P07, P10-P12, P20-P27 } \\ & \text { P30-P34, P40-P44 } \end{aligned}$	$\begin{aligned} & \mathrm{IOL}=10 \mathrm{~mA} \\ & \mathrm{VCC}=4.0-5.5 \mathrm{~V} \end{aligned}$			2.0	V
		$\begin{aligned} & \mathrm{IOL}=1.0 \mathrm{~mA} \\ & \mathrm{VCC}=2.7-5.5 \mathrm{~V} \end{aligned}$			1.0	V
Vol	＂L＂output voltage P13－P17	$\begin{aligned} & \mathrm{IOL}=20 \mathrm{~mA} \\ & \mathrm{VCC}=4.0-5.5 \mathrm{~V} \end{aligned}$			2.0	V
		$\begin{aligned} & \mathrm{IOL}=10 \mathrm{~mA} \\ & \mathrm{VCC}=2.7-5.5 \mathrm{~V} \end{aligned}$			1.0	V
$\mathrm{V}_{\text {＋}+ \text {－}} \mathrm{V}^{-}$	Hysteresis CNTRo，CNTR1，INT0－INT3			0.4		V
$\mathrm{V}^{+}+\mathrm{V}^{-}$	Hysteresis RxD，Sclk			0.5		V
$\mathrm{V}^{+}+\mathrm{V}^{-}$	Hysteresis $\overline{\mathrm{RESET}}$			0.5		V
IIH	$\begin{aligned} & \text { "H" input current } \\ & \text { P00-P07, P10-P17, P20, P21, } \\ & \text { P24-P27, P30-P34, P40-P44 } \end{aligned}$	$\mathrm{VI}=\mathrm{Vcc}$			5.0	$\mu \mathrm{A}$
IIH	＂H＂input current $\overline{\text { RESET，CNVss }}$	$\mathrm{VI}=\mathrm{Vcc}$			5.0	$\mu \mathrm{A}$
IIH	＂H＂input current XIN	$\mathrm{VI}=\mathrm{Vcc}$		4		$\mu \mathrm{A}$
IIL	$\begin{aligned} & \text { "L" input current } \\ & \text { P00-P07, P10-P17, P20-P27 } \\ & \text { P30-P34, P40-P44 } \end{aligned}$	$\mathrm{VI}=\mathrm{VSS}$			-5.0	$\mu \mathrm{A}$
IIL	＂L＂input current RESET，CNVss	$\mathrm{VI}=\mathrm{VSS}$			－5．0	$\mu \mathrm{A}$
IIL	＂L＂input current XIN	$\mathrm{VI}=\mathrm{VSS}$		－4		$\mu \mathrm{A}$
VRam	RAM hold voltage	When clock stopped	2.0		5.5	V

Note：P25 is measured when the P25／TxD P－channel output disable bit of the UART control register（bit 4 of address 001B16）is＂ 0 ＂．

Table 15 Electrical characteristics
（Vcc＝ 2.7 to 5.5 V ，Vss $=0 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $85^{\circ} \mathrm{C}$ ，unless otherwise noted）

Symbol	Parameter	Test conditions		Limits			Unit
				Min．	Typ．	Max．	
ICC	Power source current	High－speed mode $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ $\mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz}$ Output transistors＂off＂			6.8	13	mA
		$\begin{aligned} & \text { High-speed mode } \\ & \mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz} \text { (in WIT state) } \\ & \mathrm{f}(\mathrm{XIN})=32.768 \mathrm{kHz} \\ & \text { Output transistors "off" } \end{aligned}$			1.6		mA
		Low－speed mode $\mathrm{f}(\mathrm{XIN})=$ stopped $\mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz}$ Output transistors＂off＂			60	200	$\mu \mathrm{A}$
		Low－speed mode $\mathrm{f}(\mathrm{XIN})=$ stopped $\mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz}$（in WIT state） Output transistors＂off＂			20	40	$\mu \mathrm{A}$
		$\begin{aligned} & \text { Low-speed mode }(\mathrm{VcC}=3 \mathrm{~V}) \\ & \mathrm{f}(\mathrm{XIN})=\text { stopped } \\ & \mathrm{f}(\mathrm{XCIIN})=32.768 \mathrm{kHz} \\ & \text { Output transistors "off" } \\ & \hline \end{aligned}$			20	55	$\mu \mathrm{A}$
		$\begin{aligned} & \text { Low-speed mode }(\mathrm{VCC}=3 \mathrm{~V}) \\ & \mathrm{f}(\mathrm{XIN})=\text { stopped } \\ & \mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz} \text { (in WIT state) } \\ & \text { Output transistors "off" } \\ & \hline \end{aligned}$			5.0	10.0	$\mu \mathrm{A}$
		Middle－speed mode $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ f（XCIN）＝stopped Output transistors＂off＂			4.0	7.0	mA
		$\begin{aligned} & \text { Middle-speed mode } \\ & \mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz} \text { (in WIT state) } \\ & \mathrm{f}(\mathrm{XCIN})=\text { stopped } \\ & \text { Output transistors "off" } \end{aligned}$			1.5		mA
		Increment when A－D conversion is executed$f(\mathrm{XIN})=8 \mathrm{MHz}$			800		$\mu \mathrm{A}$
		All oscillation stopped （in STP state） Output transistors＂off＂	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$
			$\mathrm{Ta}=85^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$

Table 16 A－D converter characteristics
（Vcc＝2．7 to 5．5 V，Vss＝AVss＝ $0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}, \mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ ，unless otherwise noted）

Symbol	Parameter	Test conditions	Limits			Unit
			Min．	Typ．	Max．	
－	Resolution				10	bit
－	Absolute accuracy（excluding quantization error）				± 4	LSB
tconv	Conversion time				61	tc（ ϕ ）
Rladder	Ladder resistor			35		$\mathrm{k} \Omega$
IVREF	Reference power source input current	VREF $=5.0 \mathrm{~V}$	50	150	200	$\mu \mathrm{A}$
II（AD）	A－D port input current			0.5	5.0	$\mu \mathrm{A}$

TIMING REQUIREMENTS

Table 17 Timing requirements（1）
（ $\mathrm{Vcc}=4.0$ to 5.5 V ，Vss $=0 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $85^{\circ} \mathrm{C}$ ，unless otherwise noted）

Symbol	Parameter	Limits			Unit
		Min．	Typ．	Max．	
tw（ $\overline{\text { RESET }}$ ）	Reset input＂L＂pulse width	20			XIN cycle
tc（XIN）	External clock input cycle time	125			ns
twh（XIN）	External clock input＂H＂pulse width	50			ns
twL（XIN）	External clock input＂L＂pulse width	50			ns
tc（CNTR）	CNTR0，CNTR1 input cycle time	200			ns
twh（CNTR）	CNTR0，CNTR1，INT0－INT3 input＂H＂pulse width	80			ns
twL（CNTR）	CNTRo，CNTR1，INT0－INT3 input＂L＂pulse width	80			ns
tc（Sclk）	Serial I／O clock input cycle time（Note）	800			ns
twh（SCLK）	Serial I／O clock input＂H＂pulse width（Note）	370			ns
twL（ScLK）	Serial I／O clock input＂L＂pulse width（Note）	370			ns
tsu（RxD－ScLK）	Serial I／O input setup time	220			ns
th（ScLK－RxD）	Serial I／O input hold time	100			ns

Note ：When $f($ XIN $)=8 \mathrm{MHz}$ and bit 6 of address 001A16 is＂ 1 ＂（clock synchronous）．
Divide this value by four when $f(X I N)=8 \mathrm{MHz}$ and bit 6 of address 001A16 is＂ 0 ＂（UART）．

Table 18 Timing requirements（2）
（Vcc＝2．7 to 4．0 V，Vss＝ $0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$ ，unless otherwise noted）

Symbol	Parameter	Limits			Unit
		Min．	Typ．	Max．	
tw（RESET）	Reset input＂L＂pulse width	20			XIN cycle
tc（XIN）	External clock input cycle time	250			ns
twh（XIN）	External clock input＂H＂pulse width	100			ns
twL（XIN）	External clock input＂L＂pulse width	100			ns
tc（CNTR）	CNTR0，CNTR1 input cycle time	500			ns
twh（CNTR）	CNTRo，CNTR1，INT0－INT3 input＂H＂pulse width	230			ns
twL（CNTR）	CNTRo，CNTR1，INT0－INT3 input＂L＂pulse width	230			ns
tc（SCLK）	Serial I／O clock input cycle time（Note）	2000			ns
twh（SCLK）	Serial I／O clock input＂H＂pulse width（Note）	950			ns
tWL（SCLK）	Serial I／O clock input＂L＂pulse width（Note）	950			ns
tsu（RxD－ScLK）	Serial I／O input setup time	400			ns
th（ScLK－RxD）	Serial I／O input hold time	200			ns

Note ：When $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ and bit 6 of address 001A16 is＂1＂（clock synchronous）．
Divide this value by four when $f(X I N)=8 \mathrm{MHz}$ and bit 6 of address 001 A 16 is＂ 0 ＂（UART）．

Table 19 Switching characteristics 1
（ $\mathrm{Vcc}=4.0$ to 5.5 V ，Vss $=0 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $85^{\circ} \mathrm{C}$ ，unless otherwise noted）

Symbol	Parameter	Limits			Unit
		Min．	Typ．	Max．	
twh（SCLK）	Serial I／O clock output＂H＂pulse width	tc（SCLK）／2－30			ns
twL（SCLK）	Serial I／O clock output＂L＂pulse width	tc（SCLK）／2－30			ns
td（SCLK－TxD）	Serial I／O output delay time（Note 1）			140	ns
tv（ScLk－TxD）	Serial I／O output valid time（Note 1）	－30			ns
tr（SCLK）	Serial I／O clock output rising time			30	ns
tf（SCLK）	Serial I／O clock output falling time			30	ns
tr（CMOS）	CMOS output rising time（Note 2）		10	30	ns
tf（CMOS）	CMOS output falling time（Note 2）		10	30	ns

Notes 1：For twh（SCLK），twL（ScLK），when the P51／TxD P－channel output disable bit of the UART control register（bit 4 of address 001B16）is＂ 0 ＂．
2：The Xout pin is excluded．

Table 20 Switching characteristics 2
（ $\mathrm{Vcc}=2.7$ to 4.0 V ，Vss $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$ ，unless otherwise noted）

Symbol	Parameter	Limits		Unit
		Min．	Typ．	

Notes 1：For twh（SCLK），twL（SCLK），when the P51／TXD P－channel output disable bit of the UART control register（bit 4 of address 001B16）is＂ 0 ＂．
2：The Xout pin is excluded．

Fig． 50 Circuit for measuring output switching characteris－ tics（1）

Fig． 51 Circuit for measuring output switching characteris－ tics（2）

RESET

Fig． 52 Timing diagram

MULTI－MASTER ${ }^{2}$ ²－BUS BUS LINE CHARACTERISTICS

Table 21 Multi－master $I^{2} \mathrm{C}$－BUS bus line characteristics

Symbol	Parameter	Standard clock mode		High－speed clock mode		Unit
		Min．	Max．	Min．	Max．	
tBuF	Bus free time	4.7		1.3		$\mu \mathrm{s}$
thD；STA	Hold time for START condition	4.0		0.6		$\mu \mathrm{s}$
tLow	Hold time for ScL clock＝＂0＂	4.7		1.3		$\mu \mathrm{s}$
tR	Rising time of both ScL and SdA signals		1000	$20+0.1 \mathrm{Cb}$	300	ns
thD；DAT	Data hold time	0		0	0.9	$\mu \mathrm{s}$
tHIGH	Hold time for SCL clock＝＂1＂	4.0		0.6		$\mu \mathrm{s}$
tF	Falling time of both SCL and SDA signals		300	$20+0.1 \mathrm{Cb}$	300	ns
tSU；DAT	Data setup time	250		100		ns
tSU；STA	Setup time for repeated START condition	4.7		0.6		$\mu \mathrm{s}$
tsu；STO	Setup time for STOP condition	4.0		0.6		$\mu \mathrm{s}$

Note： $\mathrm{Cb}=$ total capacitance of 1 bus line

Fig． 53 Timing diagram of multi－master $\mathrm{I}^{2} \mathrm{C}$－BUS

PACKAGE OUTLINE

42P4B

Plastic 42pin 600mil SDIP

RenesasTechnologyCorp．
 Nippon Bldg．，6－2，Otemachi 2－chome，Chiyoda－ku，Tokyo，100－0004 Japan

－Keep safety first in your circuit designs！
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable，but there is always the possibility that trouble may occur with them．Trouble with semiconductors may lead to personal injury，fire or property damage．Remember to give due consideration to safety when making your circuit designs，with appropriate measures such as（i）placement of substitutive，auxiliary circuits，（ii）use of non－liammable material or（iii）prevention against any malfunction or mishap．
－Notes regarding these materials
－These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer＇s application；they do not convey any license under any intellectual property rights，or any other rights，belonging to Mitsubishi Electric Corporation or a third party．
Mitsubishi Electric Corporation assumes no responsibility for any damage，or infringement of any third－party＇s rights，originating in the use of any product data，diagrams，charts，programs，algorithms，or circuit application examples contained in these materials．
All information contained in these materials，including product data，diagrams，charts，programs and algorithms represents information on products at the time of publication of these materials，and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons．It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product The information described here information before purchasing a product listed herein．
Please also pay attention to informy contain technical inaccuracies or typographical errors．Mitsubishi Electric Corporation assumes no responsibility for any damage，liability，or other loss rising from these inaccuracies or errors． When using any or all of the information contained by Mitsubishi Electric Corporation by various means，including the Mitsubishi Semiconductor home page（http：／／www．mitsubishichips．com）．
 on the applicability of the information and products．Mitsubishi Electric Corporation assumes no responsibility for any damage，liability or other loss resulting from the information contained herein．
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake．Please
Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes，such as apparatus or systems for transportation，vehicular，medical aerospace，nuclear，or undersea repeater use．
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials．
If these products or technologies are subject to the Japanese export control restrictions，they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination．
Any diversion or reexport contrary to the export control laws and regulations of Japan and／or the country of destination is prohibited．
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein．

REVISION HISTORY				3851 GROUP（built－in 16 KB ROM）DATA SHEET
Rev．	Date	Description		
		Page	Summary	
1.0	05／15／98		First Edition	
1.1	07／26／02		Group name is changed． Figure 1 is partly revised． Table 1 is partly added． Figure 3 is partly revised． Figure 6 is partly revised． Figure 8 is partly revised． －Notes is revised． Figure 10 is partly revised． ＂ 2 ＂of \quad Notes on Serial I／O is added． Figure 19 is partly revised． Explanations of＂${ }^{2} \mathrm{C}$ C Address Register（SOD）］＂is partly revised． Explanations of＂•Bit 2：Slave address comparison flag（AAS）＂of＂［12 ${ }^{2}$ C Status Register（ S 1 ）］＂is partly revised． Figure name of Figure 28 is revised． Table 8 is partly revised． Explanations of＂Data Setting＂are partly revised． Figure 32 is partly revised． Explanations of＂Comparator and Control Circuit＂is partly eliminated． Explanations of＂RESET CIRCUIT＂is partly revised． Figure 42 is partly revised． Figure 43 is partly revised． Explanations of＂CLOCK GENERATING CIRCUIT＂are partly added． Explanations of＂（1）Middle－speed mode＂are partly revised． Figure 47 is partly revised． Figure 49 is partly revised． Explanations of＂A－D Converter＂of＂NOTES ON PROGRAMMING＂are partly revised． ＂NOTES ON USAGE＂is added． Explanations of＂DATA REQUIRED FOR ROM WRITING ORDERS＂are partly added． Table 11 is partly revised． Table 14 is partly revised． Table 17 is partly revised． Table 18 is partly revised． PACKAGE OUTLINE is partly revised． Pages 52－58 in Rev．1．0 are eliminated．	

