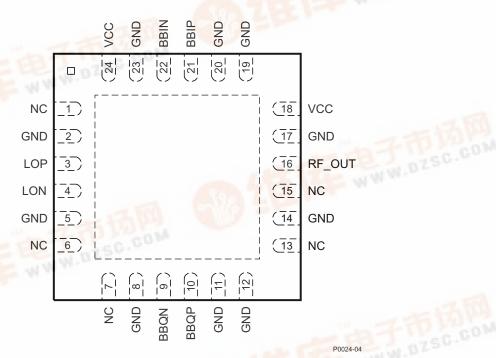


www.ti.com SLWS213 – JANUARY 2010

50-MHz TO 6-GHz QUADRATURE MODULATOR

Check for Samples: TRF370417


FEATURES

- 76-dBc Single-Carrier WCDMA ACPR at –8 dBm Channel Power
- Low Noise Floor: –162.3 dBm/Hz at 2140 MHz
- OIP3 of 26.5 dBm at 2140 MHz
- P1dB of 12 dBm at 2140 MHz
- Carrier Feedthrough of –38 dBm at 2140 MHz
- Side-Band Suppression of –50 dBc at 2140
 MHz
- Single Supply: 4.5-V-5.5-V Operation
- Silicon Germanium Technology
- 1.7-V CM at I, Q Baseband Inputs

APPLICATIONS

- Cellular Base Station Transceiver
- CDMA: IS95, UMTS, CDMA2000, TD-SCDMA
- TDMA: GSM, IS-136, EDGE/UWC-136
- Multicarrier GSM
- WiMAX: 802.16d/e
- 3GPP: LTE
- Point-to-Point (P2P) Microwave
- Wideband Software-Defined Radio
- Public Safety: TETRA/APC025
- Communication-System Testers
- Cable Modern Termination System (CMTS)

RGE PACKAGE (TOP VIEW)

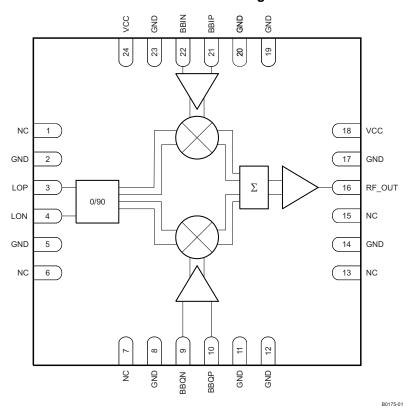
DESCRIPTION

The TRF370417 is a low-noise direct quadrature modulator, capable of converting complex modulated signals from baseband or IF directly up to RF. The TRF370417 is a high-performance, superior-linearity device that operates at RF frequencies of 50 MHz through 6 GHz. The modulator is implemented as a double-balanced mixer. The RF output block consists of a differential to single-ended converter and an RF amplifier capable of driving a single-ended $50-\Omega$ load without any need of external components. The TRF370417 requires a 1.7-V common-mode voltage for optimum linearity performance.

df.dzsc.com

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLMS243·PANUARY 2019·供应商


www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Functional Block Diagram

NOTE: NC = No connection

DEVICE INFORMATION

TERMINAL FUNCTIONS

TERMINAL NAME NO.		I/O	DECCRIPTION
		1/0	DESCRIPTION
BBIN	22	I	In-phase negative input
BBIP	21	1	In-phase positive input
BBQN	9	1	Quadrature-phase negative input
BBQP	10	1	Quadrature-phase positive input
GND	2, 5, 8, 11, 12, 14, 17, 19, 20, 23	-	Ground
LON	4	I	Local oscillator negative input
LOP	3	1	Local oscillator positive input
NC	1, 6, 7, 13, 15	-	No connect
RF_OUT	16	0	RF output
VCC	18, 24 –		Power supply

Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

SLWS213-JANUARY 2010

<u>₩豐簡[®]TRF370417"供应商</u>

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

		VALUE ⁽²⁾	UNIT
	Supply voltage range	−0.3 V to 6	V
TJ	Operating virtual junction temperature range	-40 to 150	°C
T _A	Operating ambient temperature range	-40 to 85	°C
T _{stg}	Storage temperature range	-65 to 150	°C
ESD Rating	НВМ	75	V
ESD Rating	CDM	75	V

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V_{CC}	Power-supply voltage	4.5	5	5.5	V

THERMAL CHARACTERISTICS

	PARAMETER	TEST CONDITIONS	VALUE	UNIT
$R_{\theta JA}$	Thermal resistance, junction-to-ambient	High-K board, still air	29.4	°C/W
$R_{\theta JC}$	Thermal resistance, junction-to-case		18.6	°C/W
$R_{\theta JB}$	Thermal resistance, junction-to-board		14	°C/W

ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	PARAMETER TEST CONDITIONS		TYP	MAX	UNIT
DC Para	meters		•			
I _{CC}	Total supply current (1.7 V CM)	T _A = 25°C		205	245	mA
LO Inpu	t (50-Ω, Single-Ended)					
	LO frequency range		0.05		6	GHz
f_{LO}	LO input power		-5	0	12	dBm
	LO port return loss			15		dB
Basebar	nd Inputs				*	
V_{CM}	I and Q input dc common voltage			1.7		
BW	1-dB input frequency bandwidth			1		GHz
7	Input impedance, resistance			5		kΩ
Z _{I(single} ended)	Input impedance, parallel capacitance	-		3		pF

Product Folder Link(s): TRF370417

⁽²⁾ All voltage values are with respect to network ground terminal.

RF OUTPUT PARAMETERS

over recommended operating conditions, power supply = 5 V, $T_A = 25$ °C, $V_{CM} = 1.7$ V, $V_{inBB} = 98$ mVrms single-ended in quadrature, $f_{BB} = 50$ kHz (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX UN	lIТ
f _{LO} = 7	0 MHz at 8 dBm			1	
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-8	dE	В
P1dB	Output compression point		7.3	dB	lm
IP3	Output IP3	f _{BB} = 4.5, 5.5 MHz; P _{out} = -8 dBm per tone	22	dB	3m
IP2	Output IP2	f _{BB} = 4.5, 5.5 MHz; P _{out} = -8 dBm per tone	69	dB	3m
	Carrier feedthrough	Unadjusted	-46	dB	3m
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-27.5	dB	3c
f _{LO} = 4	00 MHz at 8 dBm				
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-1.9	dE	В
P1dB	Output compression point		11	dB	3m
IP3	Output IP3	f _{BB} = 4.5, 5.5 MHz; P _{out} = -8 dBm per tone	24.5	dB	3m
IP2	Output IP2	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	68	dB	lm
	Carrier feedthrough	Unadjusted	-38	dB	3m
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-40	dB	3c
f _{LO} = 9	45.6 MHz at 8 dBm				
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-2.5	dE	В
P1dB	Output compression point		11	dB	3m
IP3	Output IP3	f _{BB} = 4.5, 5.5 MHz; P _{out} = -8 dBm per tone	25	dB	3m
IP2	Output IP2	f _{BB} = 4.5, 5.5 MHz; P _{out} = -8 dBm per tone	65	dB	3m
	Carrier feedthrough	Unadjusted	-40	dB	3m
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-42	dB	3c
	Output return loss		9	dE	В
	Output noise floor	≥13 MHz offset from f _{LO} ; P _{out} = −5 dBm	-161.2	dBm	ı/Hz
f _{LO} = 1	800 MHz at 8 dBm			•	
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-2.5	dE	В
P1dB	Output compression point		12	dB	3m
IP3	Output IP3	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	26	dB	3m
IP2	Output IP2	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	60	dB	3m
	Carrier feedthrough	Unadjusted	-40	dB	3m
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-50	dB	3c
	Output return loss		8	dE	В
	Output noise floor	≥13 MHz offset from f _{LO} ; P _{out} = −5 dBm	-161.5	dBm	ı/Hz

<u>****室物****</u>RF370417"供应商

RF OUTPUT PARAMETERS (continued)

over recommended operating conditions, power supply = 5 V, $T_A = 25$ °C, $V_{CM} = 1.7$ V, $V_{inBB} = 98$ mVrms single-ended in quadrature, $f_{BB} = 50$ kHz (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT	
f _{LO} = 19	960 MHz at 8 dBm					
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-2.5		dB	
P1dB	Output compression point		12		dBm	
IP3	Output IP3	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	26.5		dBm	
IP2	Output IP2	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	60		dBm	
	Carrier feedthrough	Unadjusted	-38		dBm	
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-50		dBc	
	Output return loss		8		dB	
	Output noise floor	≥13 MHz offset from f _{LO} ; P _{out} = −5 dBm	-162		dBm/Hz	
EVM	Error vector magnitude (rms)	1 EDGE signal, P _{out} = -5 dBm ⁽¹⁾	0.43%			
		1 WCDMA signal; P _{out} = -8 dBm ⁽²⁾	-76			
	A.P. and the second second section	1 WCDMA signal; P _{out} = -8 dBm ⁽³⁾	-74		-ID -	
	Adjacent-channel power ratio	2 WCDMA signals; P _{out} = -11 dBm per carrier ⁽³⁾	-68		dBc	
4 O D D		4 WCDMA signals; P _{out} = -14 dBm per carrier ⁽³⁾	-67			
ACPR	Alternate-channel power ratio	1 WCDMA signal; P _{out} = -8 dBm ⁽²⁾	-80			
		1 WCDMA signal; $P_{out} = -8 \text{ dBm}^{(3)}$ -78			alD a	
		2 WCDMA signals; P _{out} = -11 dBm per carrier ⁽³⁾	-72		dBc	
		4 WCDMA signals; P _{out} = -14 dBm per carrier ⁽³⁾	-69			
f _{LO} = 2	140 MHz at 8 dBm					
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-2.4		dB	
P1dB	Output compression point		12		dBm	
IP3	Output IP3	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	26.5		dBm	
IP2	Output IP2	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	66		dBm	
	Carrier feedthrough	Unadjusted	-38		dBm	
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-50		dBc	
	Output return loss		8.5		dB	
	Output noise floor	≥13 MHz offset from f _{LO} ; P _{out} = −5 dBm	-162.3		dBm/Hz	
		1 WCDMA signal; P _{out} = -8 dBm ⁽²⁾	-76			
	A diseased about a language and in	1 WCDMA signal; P _{out} = -8 dBm ⁽³⁾	-72		-ID -	
	Adjacent-channel power ratio	2 WCDMA signal; P _{out} = -11 dBm per carrier ⁽³⁾	-67		dBc	
4000		4 WCDMA signals; P _{out} = -14 dBm per carrier ⁽³⁾	-66			
ACPR		1 WCDMA signal; P _{out} = -8 dBm ⁽²⁾	-80			
	Altamata abanasi nawa = == C=	1 WCDMA signal; P _{out} = -8 dBm ⁽³⁾	-78		1	
	Alternate-channel power ratio	2 WCDMA signal; P _{out} = -11 dBm ⁽³⁾	-74		dBc	
		4 WCDMA signals; P _{out} = -14 dBm per carrier ⁽³⁾	-68			

⁽¹⁾ The contribution from the source of about 0.28% is not de-embedded from the measurement.

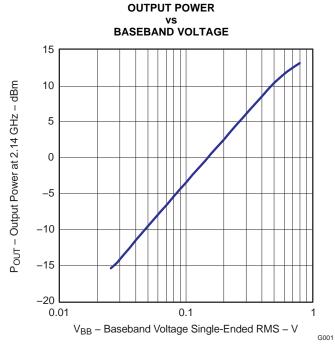
Copyright © 2010, Texas Instruments Incorporated

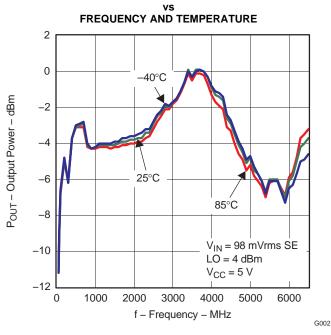
⁽²⁾ Measured with DAC5687 as source generator; with 2.5 MHz LPF.

⁽³⁾ Measured with DAC5687 as source generator; no external BB filters are used.

RF OUTPUT PARAMETERS (continued)

over recommended operating conditions, power supply = 5 V, $T_A = 25$ °C, $V_{CM} = 1.7$ V, $V_{inBB} = 98$ mVrms single-ended in quadrature, $f_{BB} = 50$ kHz (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
f _{LO} = 2	500 MHz at 8 dBm			
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-1.6	dB
P1dB	Output compression point		13	dBm
IP3	Output IP3	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	29	dBm
IP2	Output IP2	$f_{BB} = 4.5, 5.5 \text{ MHz}; P_{out} = -8 \text{ dBm per tone}$	65	dBm
	Carrier feedthrough	Unadjusted	-37	dBm
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	–47	dBc
E) // /	F	WiMAX 5-MHz carrier, P _{out} = -8 dBm ⁽⁴⁾	–47	dB
EVM	Error vector magnitude (rms)	WiMAX 5-MHz carrier, P _{out} = 0 dBm ⁽⁴⁾	–45	dB
f _{LO} = 3	500 MHz at 8 dBm			•
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	0.6	dB
P1dB	Output compression point		13.5	dBm
IP3	Output IP3	f _{BB} = 4.5, 5.5 MHz	25	dBm
IP2	Output IP2	f _{BB} = 4.5, 5.5 MHz	65	dBm
	Carrier feedthrough	Unadjusted	– 35	dBm
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-36	dBc
E) /8 4		WiMAX 5-MHz carrier, P _{out} = -8 dBm ⁽⁴⁾	–47	dB
EVM	Error vector magnitude (rms)	WiMAX 5-MHz carrier, P _{out} = 0 dBm ⁽⁴⁾	-43	dB
f _{LO} = 4	000 MHz at 8 dBm			
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	0.2	dB
P1dB	Output compression point		12	dBm
IP3	Output IP3	f _{BB} = 4.5, 5.5 MHz	22.5	dBm
IP2	Output IP2	f _{BB} = 4.5, 5.5 MHz	60	dBm
	Carrier feedthrough	Unadjusted	-36	dBm
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-36	dBc
f _{LO} = 5	800 MHz at 4 dBm			
G	Voltage gain	Output rms voltage over input I (or Q) rms voltage	-5.5	dB
P1dB	Output compression point		12.9	dBm
IP3	Output IP3	f _{BB} = 4.5, 5.5 MHz	25	dBm
IP2	Output IP2	f _{BB} = 4.5, 5.5 MHz	55	dBm
	Carrier feedthrough	Unadjusted	-31	dBm
	Sideband suppression	Unadjusted; f _{BB} = 4.5, 5.5 MHz	-36	dBc
EVM	Error-vector magnitude	WiMAX 5-MHz carrier, P _{out} = -12 dBm ⁽⁴⁾	-40	dB


⁽⁴⁾ Sideband suppression optimized with LO drive level; EVM contribution from instrument is not accounted for.

TYPICAL CHARACTERISTICS

 $V_{CM} = 1.7 \text{ V}$, $V_{inBB} = 98 \text{ mVrms}$ single-ended sine wave in quadrature, $V_{CC} = 5 \text{ V}$, LO power = 4 dBm (single-ended), $f_{BB} = 50 \text{ kHz}$ (unless otherwise noted).

OUTPUT POWER

Figure 1.

Figure 2.

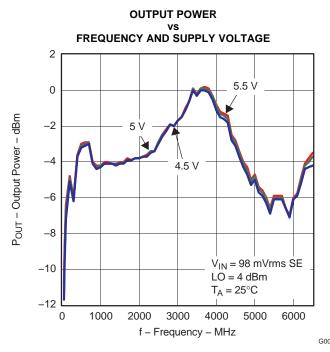


Figure 3.

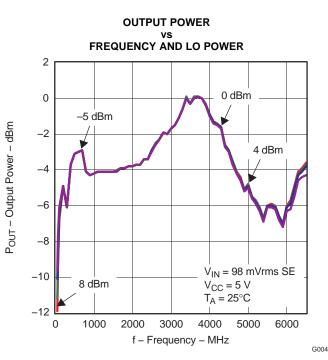
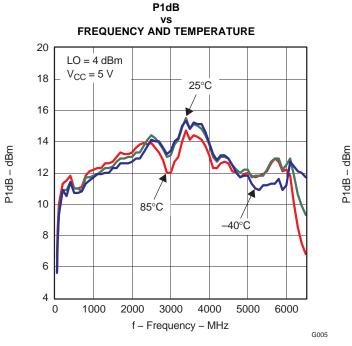



Figure 4.

Copyright © 2010, Texas Instruments Incorporated

 $V_{CM} = 1.7 \text{ V}$, $V_{inBB} = 98 \text{ mVrms}$ single-ended sine wave in quadrature, $V_{CC} = 5 \text{ V}$, LO power = 4 dBm (single-ended), $f_{BB} = 50 \text{ kHz}$ (unless otherwise noted).

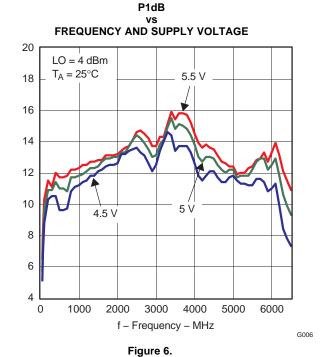
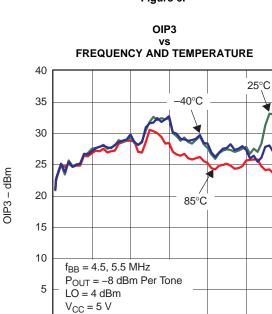



Figure 5.



Figure 7.

Figure 8.

3000

f - Frequency - MHz

4000

5000

6000

G008

0

1000

2000

 $V_{CM} = 1.7 \text{ V}$, $V_{inBB} = 98 \text{ mVrms}$ single-ended sine wave in quadrature, $V_{CC} = 5 \text{ V}$, LO power = 4 dBm (single-ended), $f_{BB} = 50 \text{ kHz}$ (unless otherwise noted).

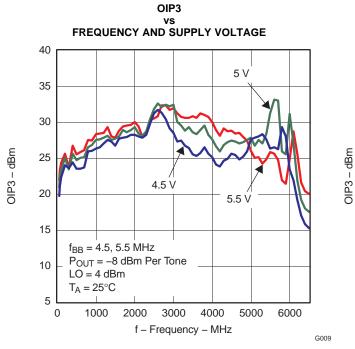


Figure 9.

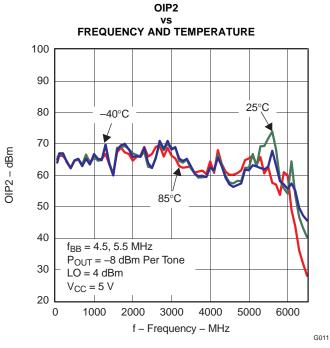


Figure 11.

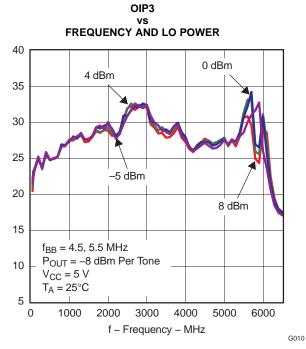
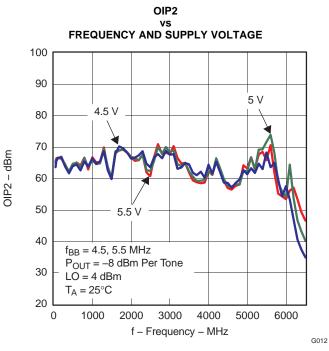
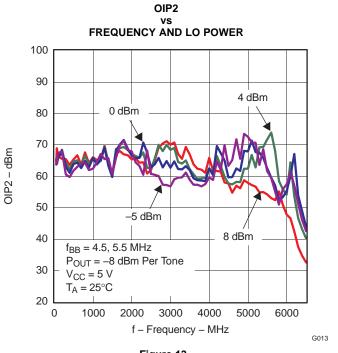
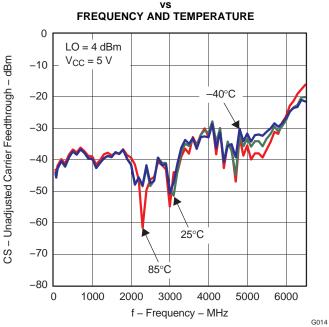


Figure 10.


Figure 12.

Copyright © 2010, Texas Instruments Incorporated

 $V_{CM} = 1.7 \text{ V}$, $V_{inBB} = 98 \text{ mVrms}$ single-ended sine wave in quadrature, $V_{CC} = 5 \text{ V}$, LO power = 4 dBm (single-ended), $f_{BB} = 50 \text{ kHz}$ (unless otherwise noted).

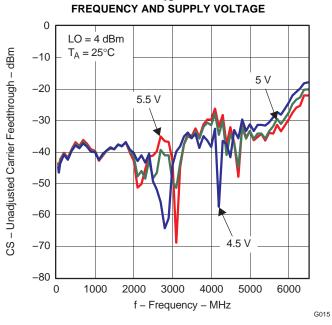

UNADJUSTED CARRIER FEEDTHROUGH

Figure 13.

UNADJUSTED CARRIER FEEDTHROUGH

UNADJUSTED CARRIER FEEDTHROUGH

Figure 14.

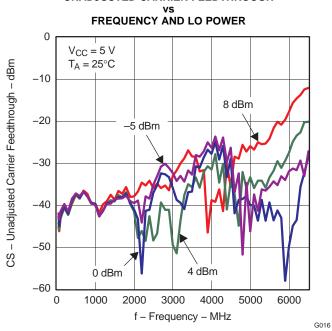


Figure 16.

 $V_{CM} = 1.7 \text{ V}$, $V_{inBB} = 98 \text{ mVrms}$ single-ended sine wave in quadrature, $V_{CC} = 5 \text{ V}$, LO power = 4 dBm (single-ended), $f_{BB} = 50 \text{ kHz}$ (unless otherwise noted).

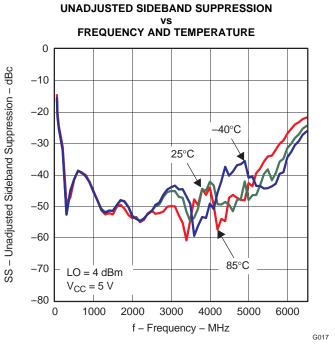
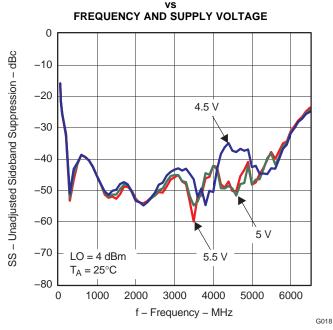



Figure 17.

UNADJUSTED SIDEBAND SUPPRESSION

Figure 18.

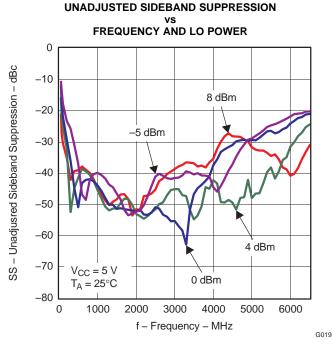


Figure 19.

NOISE AT 13-MHz OFFSET (dBm/Hz) vs FREQUENCY AND TEMPERATURE

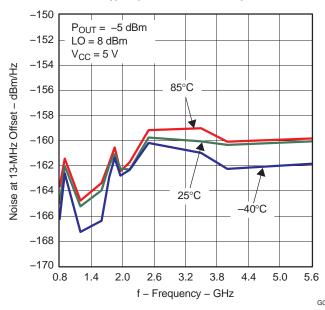


Figure 20.

 $V_{CM} = 1.7 \text{ V}$, $V_{inBB} = 98 \text{ mVrms}$ single-ended sine wave in quadrature, $V_{CC} = 5 \text{ V}$, LO power = 4 dBm (single-ended), $f_{BB} = 50 \text{ kHz}$ (unless otherwise noted).

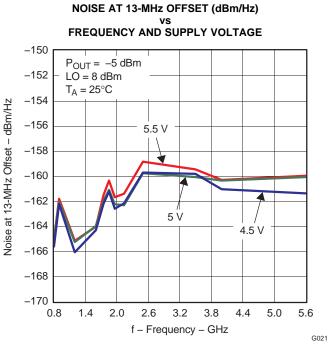


Figure 21.

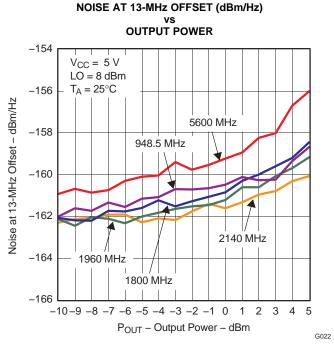


Figure 22.

ADJUSTED CARRIER FEEDTHROUGH vs FREQUENCY AND TEMPERATURE

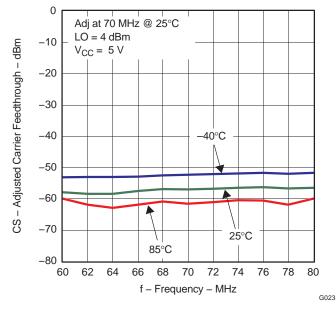


Figure 23.

ADJUSTED CARRIER FEEDTHROUGH vs FREQUENCY AND TEMPERATURE

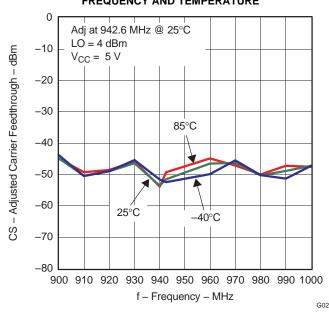


Figure 24.

 $V_{CM} = 1.7 \text{ V}$, $V_{inBB} = 98 \text{ mVrms}$ single-ended sine wave in quadrature, $V_{CC} = 5 \text{ V}$, LO power = 4 dBm (single-ended), $f_{BB} = 50 \text{ kHz}$ (unless otherwise noted).

ADJUSTED CARRIER FEEDTHROUGH FREQUENCY AND TEMPERATURE 0 Adj at 2140 MHz @ 25°C LO = 4 dBm-10 CS - Adjusted Carrier Feedthrough - dBm $V_{CC} = 5 V$ -20-40°C -3085°C -40 -50 -60 25°C -70 -80 2080 2120 2200 2240 2040 2160 f - Frequency - MHz G025

Figure 25.

vs FREQUENCY AND TEMPERATURE 0 Adj at 2500 MHz @ 25°C LO = 4 dBm-10 CS - Adjusted Carrier Feedthrough - dBm $V_{CC} = 5 V$ -20–40°C -30-40 -50 -60 25°C -70 85°C -80 2400 2440 2480 2600 2520 2560 f - Frequency - MHz

ADJUSTED CARRIER FEEDTHROUGH

Figure 26.

ADJUSTED CARRIER FEEDTHROUGH vs FREQUENCY AND TEMPERATURE

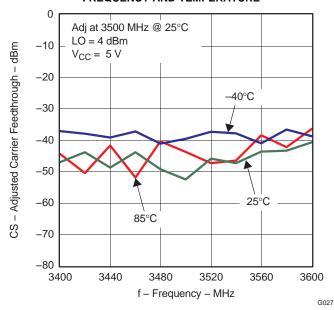


Figure 27.

ADJUSTED CARRIER FEEDTHROUGH vs

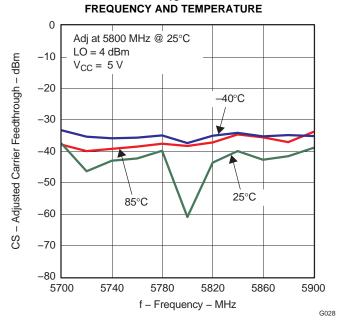


Figure 28.

Submit Documentation Feedback

G026

0

-70

-80

2040

TYPICAL CHARACTERISTICS (continued)

 $V_{CM} = 1.7 \text{ V}$, $V_{inBB} = 98 \text{ mVrms}$ single-ended sine wave in quadrature, $V_{CC} = 5 \text{ V}$, LO power = 4 dBm (single-ended), $f_{BB} = 50 \text{ mV}$ kHz (unless otherwise noted).

ADJUSTED SIDEBAND SUPPRESSION FREQUENCY AND TEMPERATURE 0 Adj at 70 MHz @ 25°C LO = 4 dBm-10 $V_{CC} = 5 V$ -20 -30-40 -50 85°C -60 25°C -40°C -70 -80 62 64 68 70 72 74 76 80 60 66 f - Frequency - MHz

ADJUSTED SIDEBAND SUPPRESSION

FREQUENCY AND TEMPERATURE

Adj at 2140 MHz @ 25°C

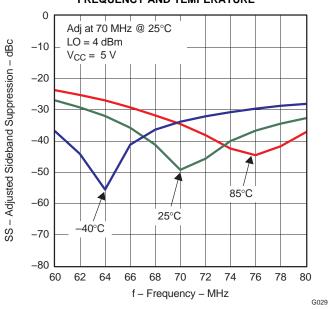


Figure 29.

LO = 4 dBmSS - Adjusted Sideband Suppression - dBc -10 $V_{CC} = 5 V$ -20 -30 -40 -40°C 85°C -50 -60

Figure 31.

f - Frequency - MHz

2120

25°C

2160

2200

2240

G031

ADJUSTED SIDEBAND SUPPRESSION FREQUENCY AND TEMPERATURE

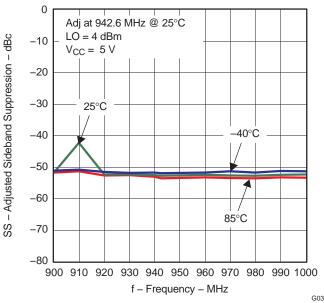


Figure 30.

ADJUSTED SIDEBAND SUPPRESSION

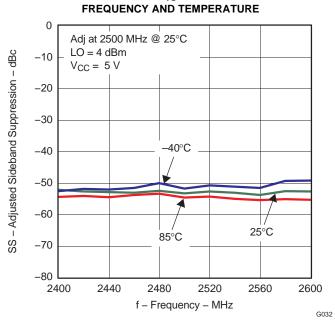


Figure 32.

Submit Documentation Feedback

2080

 $V_{CM} = 1.7 \text{ V}$, $V_{inBB} = 98 \text{ mVrms}$ single-ended sine wave in quadrature, $V_{CC} = 5 \text{ V}$, LO power = 4 dBm (single-ended), $f_{BB} = 50 \text{ mV}$ kHz (unless otherwise noted).

ADJUSTED SIDEBAND SUPPRESSION FREQUENCY AND TEMPERATURE 0 Adj at 3500 MHz @ 25°C LO = 4 dBmSS - Adjusted Sideband Suppression - dBc -10 $V_{CC} = 5 V$ -20 -30 -40°C -40 -50 -60 -70 85°C 25°C -80 3440 3400 3480 3520 3560 3600 f - Frequency - MHz G033

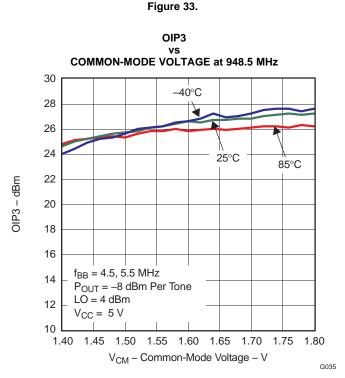
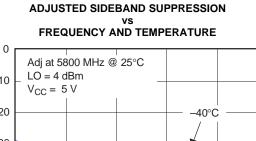



Figure 35.

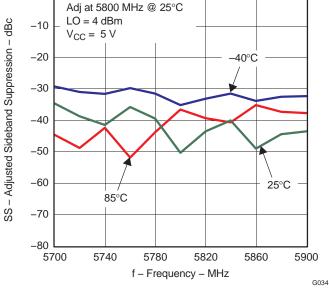


Figure 34.

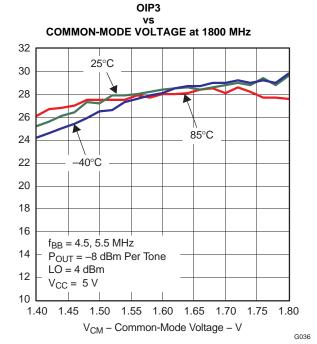


Figure 36.

Copyright © 2010, Texas Instruments Incorporated

 $V_{CM} = 1.7 \text{ V}$, $V_{inBB} = 98 \text{ mVrms}$ single-ended sine wave in quadrature, $V_{CC} = 5 \text{ V}$, LO power = 4 dBm (single-ended), $f_{BB} = 50 \text{ kHz}$ (unless otherwise noted).

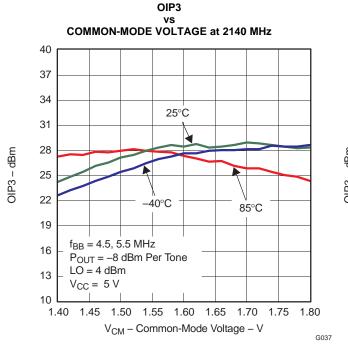
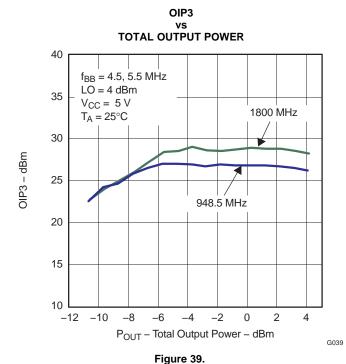



Figure 37.

OIP3 vs COMMON-MODE VOLTAGE at 5800 MHz

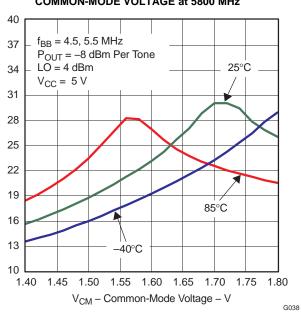


Figure 38.

ADJACENT CHANNEL POWER RATIO vs

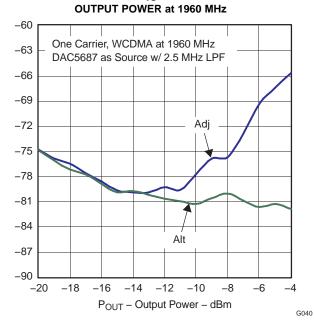


Figure 40.

ACPR - Adjacent Channel Power Ratio - dBc

 $V_{CM} = 1.7 \text{ V}$, $V_{inBB} = 98 \text{ mVrms}$ single-ended sine wave in quadrature, $V_{CC} = 5 \text{ V}$, LO power = 4 dBm (single-ended), $f_{BB} = 50 \text{ kHz}$ (unless otherwise noted).

Distribution – %

Distribution – %

ADJACENT CHANNEL POWER RATIO

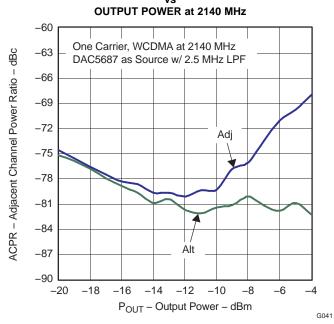


Figure 41.

OIP2 at 1960 MHz DISTRIBUTION

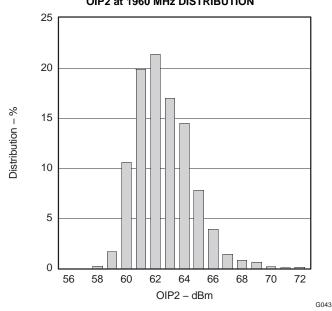


Figure 43.

OIP3 at 1960 MHz DISTRIBUTION

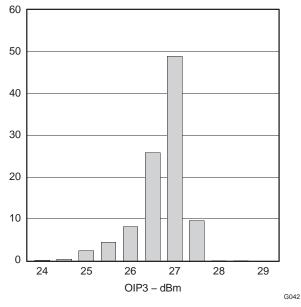


Figure 42.

UNADJUSTED CARRIER FEEDTHROUGH at 1960 MHz DISTRIBUTION

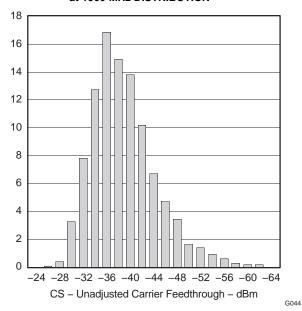
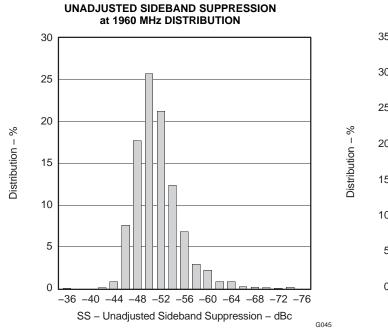



Figure 44.

 $V_{CM} = 1.7 \text{ V}$, $V_{inBB} = 98 \text{ mVrms}$ single-ended sine wave in quadrature, $V_{CC} = 5 \text{ V}$, LO power = 4 dBm (single-ended), $f_{BB} = 50 \text{ kHz}$ (unless otherwise noted).

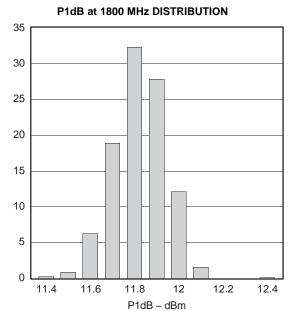


Figure 45.

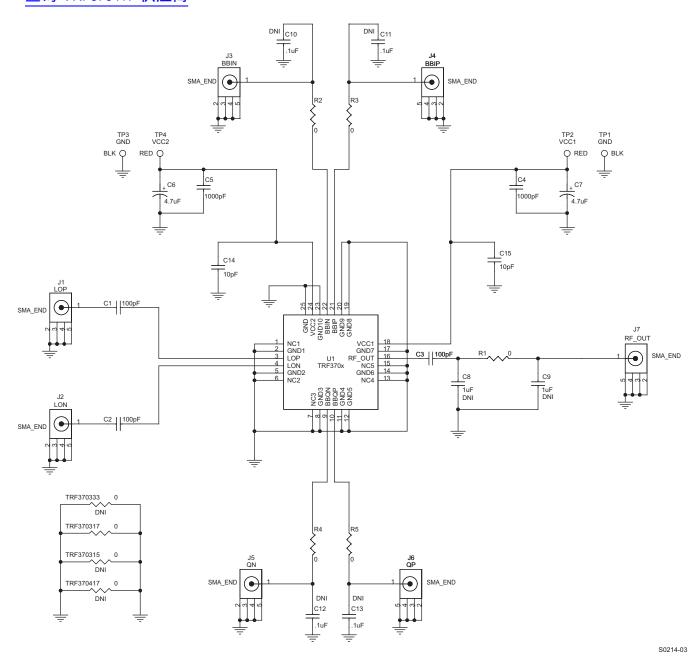
Figure 46.

APPLICATION INFORMATION AND EVALUATION BOARD

Basic Connections

- See Figure 47 for proper connection of the TRF3704 modulator.
- Connect a single power supply (4.5 V–5.5 V) to pins 18 and 24. These pins should be decoupled as shown on pins 4, 5, 6, and 7.
- Connect pins 2, 5, 8, 11, 12, 14, 17, 19, 20, and 23 to GND.
- Connect a single-ended LO source of desired frequency to LOP (amplitude between -5 dBm and 12 dBm).
 This should be ac-coupled through a 100-pF capacitor.
- Terminate the ac-coupled LON with 50 Ω to GND.
- Connect a baseband signal to pins 21 = I, 22 = I, 10 = Q, and 9 = Q.
- The differential baseband inputs should be set to the proper common-mode voltage of 1.7V.
- RF_OUT, pin 16, can be fed to a spectrum analyzer set to the desired frequency, LO ± baseband signal. This pin should also be ac-coupled through a 100-pF capacitor.
- · All NC pins can be left floating.

ESD Sensitivity


RF devices may be extremely sensitive to electrostatic discharge (ESD). To prevent damage from ESD, devices should be stored and handled in a way that prevents the build-up of electrostatic voltages that exceed the rated level. Rated ESD levels should also not be exceeded while the device is installed on a printed circuit board (PCB). Follow these guidelines for optimal ESD protection:

- Low ESD performance is not uncommon in RF ICs; see the *Absolute Maximum Ratings* table. Therefore, customers' ESD precautions should be consistent with these ratings.
- The device should be robust once assembled onto the PCB unless external inputs (connectors, etc.) directly
 connect the device pins to off-board circuits.

Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

NOTE: DNI = Do not install.

Figure 47. TRF3704 EVM Schematic

Figure 48 shows the top view of the TRF3704 EVM board.

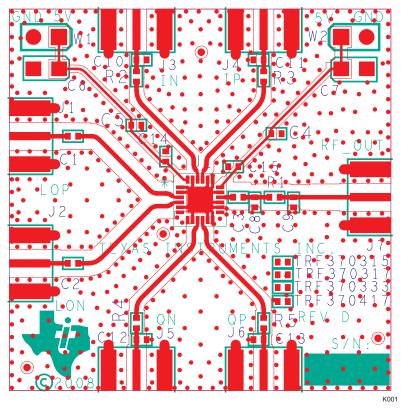


Figure 48. TRF3704 EVM Board Layout

Table 1. Bill of Materials for TRF370x EVM

Item Number	Quantity	Reference Designator	Value	PCB Footprint	Mfr. Name	Mfr. Part Number	Note
1	3	C1, C2, C3	100 pF	0402	PANASONIC	ECJ-0EC1H101J	
2	2	C4, C5	1000 pF	0402	PANASONIC	ECJ-0VC1H102J	
3	2	C6, C7	4.7 μF	TANT_A	KERMET	T491A475K016AS	
4	0	C8, C9	1 μF	0402	PANASONIC	ECJ- 0EC1H010C_DNI	DNI
5	0	C10, C11, C12, C13	0.1 μF	0402	PANASONIC	ECJ- 0EB1A104K_DNI	DNI
6	2	C14, C15	10 pF	0402	MURATA	GRM1555C1H100 JZ01D	
7	7	J1, J2, J3, J4, J5, J6, J7	LOP	SMA_SMEL_250x215	JOHNSON COMPONENTS	142-0711-821	
8	2	R1	0	0402	PANASONIC	ERJ-2GE0R00	OR EQUIVALENT
9	4	R2, R3, R4, R5	0	0402	PANASONIC	ERJ-2GE0R00	OR EQUIVALENT

<u>₩雪梅們RF370417"供应商</u>

SLWS213-JANUARY 2010

Table 1. Bill of Materials for TRF370x EVM (continued)

Item Number	Quantity	Reference Designator	Value	PCB Footprint	Mfr. Name	Mfr. Part Number	Note
			TRF370333	QFN_24_163x163_ 0p50mm	ТІ	TRF370333	For TRF370333 EVM, TI supplied
10			TRF370317	QFN_24_163x163_ 0p50mm	TI	TRF370317	For TRF370317 EVM, TI supplied
10	1	U1	TRF370315	QFN_24_163x163_ 0p50mm	TI	TRF370315	For TRF370315 EVM, TI supplied
			TRF370417	QFN_24_163x163_ 0p50mm	TI	TRF370417	For TRF370417 EVM, TI supplied
11	2	TP1, TP3	BLK	TP_THVT_100_RND	KEYSTONE	5001K	
12	2	TP2, TP4	RED	TP_THVT_100_RND	KEYSTONE	5000K	

GSM Applications

The TRF370417 is suited for GSM and multicarrier GSM applications because of its high linearity and low noise level over the entire recommended operating range. It also has excellent EVM performance, which makes it ideal for the stringent GSM/EDGE applications.

WCDMA Applications

The TRF370417 is also optimized for WCDMA applications where both adjacent-channel power ratio (ACPR) and noise density are critically important. Using Texas instruments' DAC568X series of high-performance digital-to-analog converters as depicted in Figure 49, excellent ACPR levels were measured with one-, two-, and four-WCDMA carriers. See *Electrical Characteristics*, $f_{LO} = 1960$ MHz and $f_{LO} = 2140$ MHz for exact ACPR values.

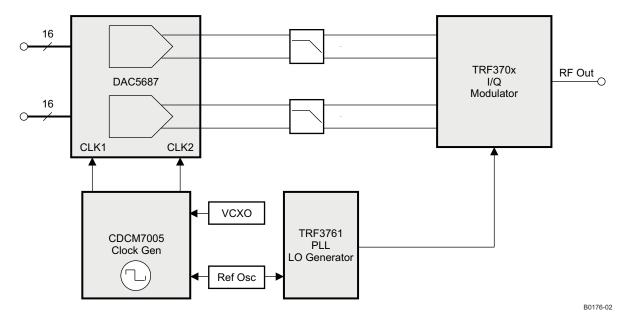
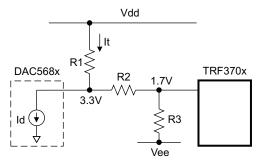
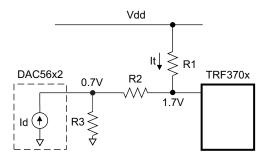


Figure 49. Typical Transmit Setup Block Diagram


DAC-to-Modulator Interface Network

For optimum linearity and dynamic range, the digital-to-analog converter (DAC) can interface directly with the modulator; however, the common-mode voltage of each device must be maintained. A passive interface circuit is used to transform the common-mode voltage of the DAC to the desired set-point of the modulator. The passive circuit invariably introduces some insertion loss between the two devices. In general, it is desirable to keep the insertion loss as low as possible to achieve the best dynamic range. Figure 50 shows the passive interconnect


Copyright © 2010, Texas Instruments Incorporated

circuit for two different topologies. One topology is used when the DAC (e.g., DAC568x) common mode is larger than the modulator. The voltage V_{ee} is nominally set to ground, but can be set to a negative voltage to reduce the insertion loss of the network. The second topology is used when the DAC (e.g., DAC56x2) common mode is smaller than the modulator. Note that this passive interconnect circuit is duplicated for each of the differential I/Q branches.

Topology 1: DAC Vcm > TRF370x Vcm

Topology 2: DAC Vcm < TRF370x Vcm

Figure 50. Passive DAC-to-Modulator Interface Network

Table 2. DAC-to-Modulator Interface Network Values

	Торо	logy 1	Tamalamı 0
	With Vee = 0 V	With Vee = −5 V	Topology 2
DAC Vcm [V]	3.3	3.3	0.7
TRF370x Vcm [V]	1.7	1.7	1.7
Vdd [V]	5	5	5
Vee [V]	Gnd	-5	N/A
R1 [Ω]	66	56	960
R2 [Ω]	100	80	290
R3 [Ω]	108	336	52
Insertion loss [dB]	5.8	1.9	2.3

堂街^{9™}RF370417"供应商

SLWS213-JANUARY 2010

DEFINITION OF SPECIFICATIONS

Unadjusted Carrier Feedthrough

This specification measures the amount by which the local oscillator component is suppressed in the output spectrum of the modulator. If the common mode voltage at each of the baseband inputs is exactly the same and there was no dc imbalance introduced by the modulator, the LO component would be naturally suppressed. DC offset imbalances in the device allow some of the LO component to feed through to the output. Because this phenomenon is independent of the RF output power and the injected LO input power, the parameter is expressed in absolute power, dBm.

Adjusted (Optimized) Carrier Feedthrough

This differs from the unadjusted suppression number in that the baseband input dc offsets are iteratively adjusted around their theoretical value of VCM to yield the maximum suppression of the LO component in the output spectrum. This is measured in dBm.

Unadjusted Sideband Suppression

This specification measures the amount by which the unwanted sideband of the input signal is suppressed in the output of the modulator, relative to the wanted sideband. If the amplitude and phase within the I and Q branch of the modulator were perfectly matched, the unwanted sideband (or image) would be naturally suppressed. Amplitude and phase imbalance in the I and Q branches results in the increase of the unwanted sideband. This parameter is measured in dBc relative to the desired sideband.

Adjusted (Optimized) Sideband Suppression

This differs from the unadjusted sideband suppression in that the gain and phase of the baseband inputs are iteratively adjusted around their theoretical values to maximize the amount of sideband suppression. This is measured in dBc.

Suppressions Over Temperature

This specification assumes that the user has gone though the optimization process for the suppression in question, and set the optimal settings for the I, Q inputs. This specification then measures the suppression when temperature conditions change after the initial calibration is done.

Figure 51 shows a simulated output and illustrates the respective definitions of various terms used in this data sheet.

Product Folder Link(s): TRF370417

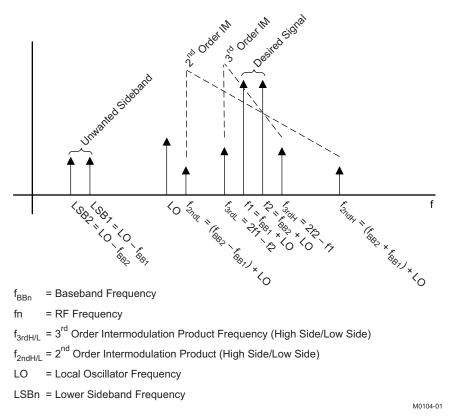


Figure 51. Graphical Illustration of Common Terms

PACKA

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/	MSL Pea
			Drawing				Ball Finish	
TRF370417IRGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-2600
TRF370417IRGET	ACTIVE	VQFN	RGE	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-2600

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.information and additional product content details.

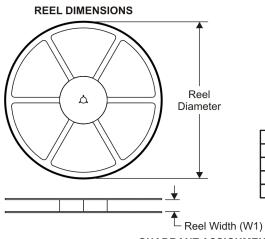
TBD: The Pb-Free/Green conversion plan has not been defined.

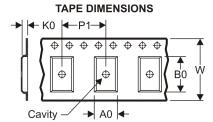
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retard in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

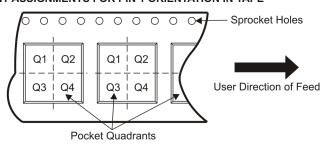
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate in continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical at TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Cu



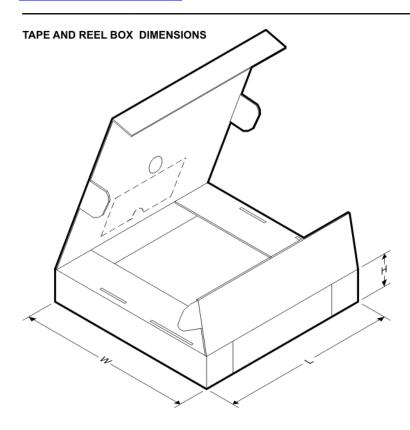
查询"JRF370417"供应商

20-Jul-2010


TAPE AND REEL INFORMATION

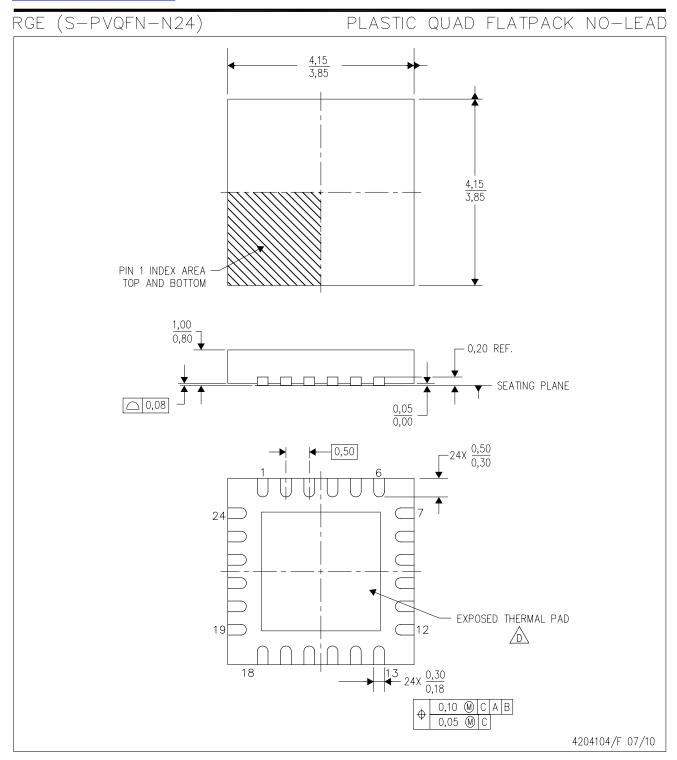
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRF370417IRGER	VQFN	RGE	24	3000	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q1
TRF370417IRGET	VQFN	RGE	24	250	330.0	12.4	4.3	4.3	1.5	8.0	12.0	Q1


查询"JRF370417"供应商

20-Jul-2010

*All dimensions are nominal

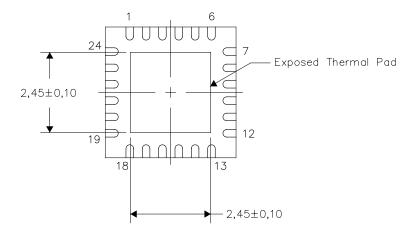
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRF370417IRGER	VQFN	RGE	24	3000	340.5	333.0	20.6
TRF370417IRGET	VQFN	RGE	24	250	340.5	333.0	20.6

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
 - B. This drawing is subject to change without notice.
 - C. Quad Flatpack, No-Leads (QFN) package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance.

See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

E. Falls within JEDEC MO-220.

RGE (S-PVQFN-N24)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

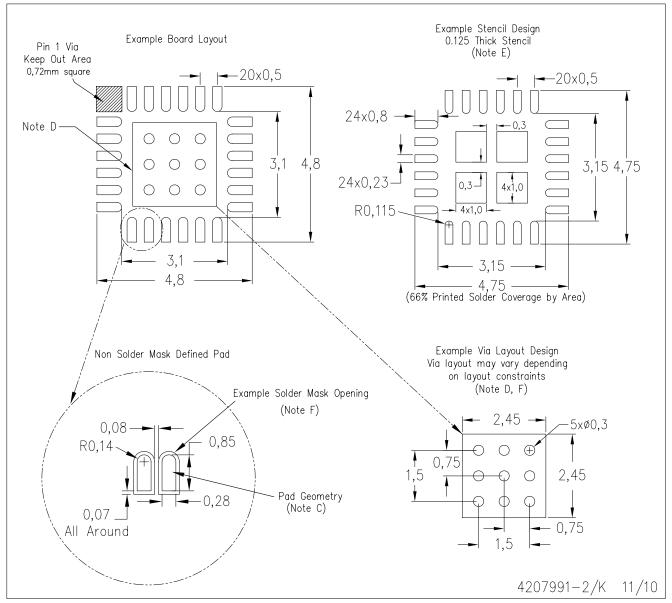
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Exposed Thermal Pad Dimensions

Bottom View


4206344-3/V 11/10

NOTES: A. All linear dimensions are in millimeters

RGE (S-PVQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

查询"TRF370417"供应商

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications			
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio		
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive		
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications		
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers		
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps		
Interface	interface.ti.com	Energy	www.ti.com/energy		
Logic	logic.ti.com	Industrial	www.ti.com/industrial		
Power Mgmt	power.ti.com	Medical	www.ti.com/medical		
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security		
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense		
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video		
		Wireless	www.ti.com/wireless-apps		