

Vishay Semiconductors

High Intensity LED in Ø 3 mm Tinted Diffused Package

DESCRIPTION

This series has been designed to meet the increasing demand for AllnGaP technology.

It is housed in a 3 mm tinted, diffused plastic package. The wide viewing angle of these devices provides a high brightness across a large field of view.

All packing units are categorized in luminous intensity and color groups. That allows users to assemble LEDs with uniform appearance.

PRODUCT GROUP AND PACKAGE DATA

Product group: LEDPackage: 3 mm

Document Number 83370

Rev. 1.0, 23-Nov-10

df.dzsc.com

Product series: standard

Angle of half intensity: ± 30°

FEATURES

- · AllnGaP technology
- Standard Ø 3 mm (T-1) package
- Small mechanical tolerances
- Suitable for DC and high peak current
- Wide viewing angle
- Very high intensity
- Luminous intensity and color categorized
- ESD-withstand voltage: up to 2 kV HBM according to JESD22-A114-B
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- Status lights
- Off/on indicator
- Background illumination
- · Readout lights
- Maintenance lights
- Legend light

PARTS TABLE				
PART	COLOR, LUMINOUS INTENSITY	TECHNOLOGY		
TLHF4400	Soft orange, I _V > 40 mcd	AllnGaP on GaAs		
TLHF4401	Soft orange, I _V = (100 to 360) mcd	AllnGaP on GaAs		

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage		V _R	5	V
DC forward current	T _{amb} ≤ 60 °C	I _F	30	mA
Surge forward current	t _p ≤ 10 μs	I _{FSM}	0.1	Α
Power dissipation	T _{amb} ≤ 60 °C	P _V	80	mW
Junction temperature	47/100	Tj	100	°C
Operating temperature range	TTP COM	T _{amb}	- 40 to + 100	°C
Storage temperature range	DZSU.	T _{stg}	- 55 to + 100	°C
Soldering temperature	t ≤ 5 s, 2 mm from body	T _{sd}	260	°C
Thermal resistance junction/ ambient		R _{thJA}	400	K/W

^{**} Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

COMPLIANT

GREEN

(5-2008)**

VinneyTSerrateOntalcotors

OPTICAL AND ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified) SOFT ORANGE, TLHF44							
PARAMETER	TEST CONDITION	PARTS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity ¹⁾ I _F = 10 r	L = 10 mΛ	TLHF4400	I _V	40	-	-	mcd
	IF = 10 IIIA	TLHF4401	I _V	100	200	360	mcd
Dominant wavelength	I _E = 10 mA	TLHF4400	λ_{d}	598	-	611	nm
	I _F = 10 IIIA	TLHF4401	λ_{d}	602	605	609	nm
Peak wavelength	I _F = 10 mA		λ_{p}		610		nm
Angle of half intensity	I _F = 10 mA		φ		± 30		deg
Forward voltage	I _F = 20 mA		V _F		1.9	2.6	V
Reverse voltage	I _R = 10 μA		V_R	5			V
Junction capacitance	V _R = 0, f = 1 MHz		C _i		15		pF

Note:

 $^{^{1)}}$ In one packing unit $I_{Vmin.}/I_{Vmax.} \leq 0.5$

LUMINOUS INTENSITY CLASSIFICATION			
GROUP	LIGHT INTENSITY (mcd)		
STANDARD	MIN.	MAX.	
U	40	80	
V	63	125	
W	100	200	
Х	130	260	
Y	180	360	

Note:

Luminous intensity is tested at a current pulse duration of 25 ms.

The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each bag (there will be no mixing of two groups on each bag).

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one bag. In order to ensure availability, single wavelength groups will not be orderable.

COLOR CLASSIFICATION				
	SOFT ORANGE DOM. WAVELENGTH (nm)			
GROUP				
	MIN.	MAX.		
1	598	601		
2	600	603		
3	602	605		
4	604	607		
5	606	609		
6	608	611		

Note:

Wavelengths are tested at a current pulse duration of 25 ms.

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

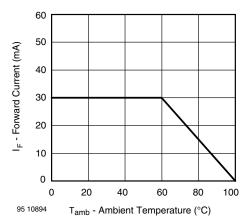


Figure 1. Forward Current vs. Ambient Temperature

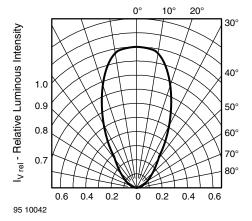


Figure 2. Rel. Luminous Intensity vs. Angular Displacement

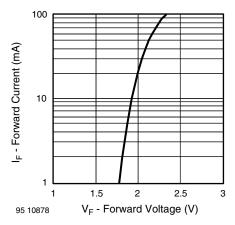
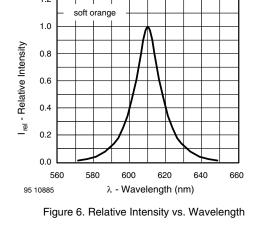



Figure 3. Forward Current vs. Forward Voltage

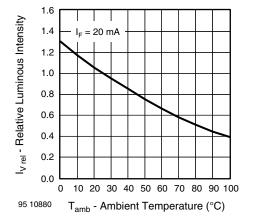


Figure 4. Rel. Luminous Intensity vs. Ambient Temperature

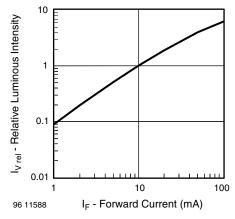
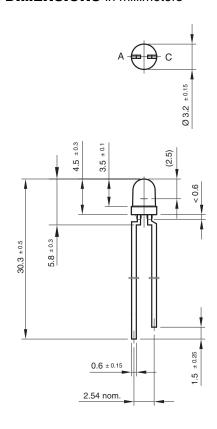



Figure 5. Relative Luminous Intensity vs. Forward Current

TLHF4400, TLHF4401

Vi**shay Semiloo hata to**rs

PACKAGE DIMENSIONS in millimeters

R 1.4 (sphere) Area not plane Ø 2.9 ± 0.15 $0.4^{\,+\,0.15}_{\,\,-\,0.05}$ according to DIN specifications

Drawing-No.: 6.544-5255.01-4 Issue: 7; 25.09.08 95 10913

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08

www.vishay.com