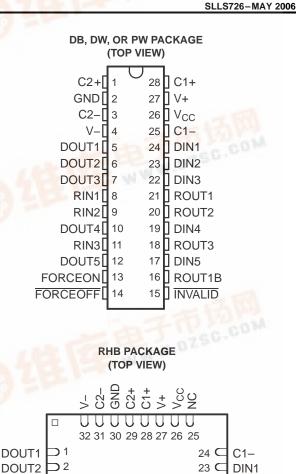
RUMENTS

SN65C3238E, SN75C3238E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVERS/RECEIVERS WITH ±15-kV ESD (HBM) PROTECTION


询₩\$₩\$5℃\$238F"供应商

FEATURES

- **RS-232 Bus-Pin ESD Protection Exceeds** ±15 kV Using Human-Body Model (HBM)
- Meet or Exceed the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operate With 3-V to 5.5-V V_{cc} Supply •
- Operate up to 1000 kbit/s •
- Five Drivers and Three Receivers .
- **Auto-Powerdown Plus Feature Enables Flexible Power-Down Mode**
- Low Standby Current . . . 1 µA Typical
- External Capacitors . . . $4 \times 0.1 \mu F$
- Accept 5-V Logic Input With 3.3-V Supply
- Always-Active Noninverting Receiver Output (ROUT1B)
- ESD Protection for RS-232 Interface Pins - ±15 kV - Human-Body Model (HBM)
 - $-\pm$ 8 kV IEC61000-4-2, Contact Discharge
 - ±15 kV IEC61000-4-2, Air-Gap Discharge

APPLICATIONS

- **Battery-Powered Systems**
- **PDAs**
- **Notebooks**
- Subnotebooks
- Laptops
- Palmtop PCs •
- **Hand-Held Equipment** .
- Modems
- **Printers**

9 10 11 12 13 14 15 16 \cap

INVALID

FORCEOFF

 \cap

FORCEON

DOUT5

 $\cap \cap \cap \cap$

S ROUT1B

DIN5

Ŷ

PRODUCT PREVIEW

DESCRIPTION/ORDERING INFORMATION

The SN65C3238E and SN75C3238E consist of five line drivers, three line receivers, and a dual charge-pump circuit with ±15-kV ESD (HBM) protection on the driver output (DOUT) and receiver input (RIN) terminals. The devices meet the requirements of TIA/EIA-232-F and provide the electrical interface between notebook and subnotebook computer applications. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, the devices include an always-active noninverting output (ROUT1B), which allows applications using the ring indicator to transmit data while the device is powered down. These devices operate at data signaling rates up to 1000 kbit/s.

-)4

5

 $\supset 6$

 $\supset 7$

08

RIN1

RIN2

RIN3

NC

DOUT4

df.dzsc.com

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

22 🖯

21 C

20 C

19 C

18 C

17 C

DIN2

DIN3

DIN4

ROUT1

ROUT2

ROUT3

st查摘 - MAI63063238E"供应商

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

Flexible control options for power management are featured when the serial port and driver inputs are inactive. The auto-powerdown plus feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the devices do not sense valid signal transitions on all receiver and driver inputs for approximately 30 s, the built-in charge pump and drivers are powered down, reducing the supply current to 1 µA. By disconnecting the serial port or placing the peripheral drivers off, auto-powerdown plus occurs if there is no activity in the logic levels for the driver inputs. Auto-powerdown plus can be disabled when FORCEON and FORCEOFF are high. With auto-powerdown plus enabled, the devices activate automatically when a valid signal is applied to any receiver or driver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 µs. INVALID is low (invalid data) if all receiver input voltages are between -0.3 V and 0.3 V for more than 30 μ s. Refer to Figure 5 for receiver input levels.

T _A	PAC	CKAGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP – DB	Tube of 50	SN75C3238EDB	75022285
	550P - DB	Reel of 2000	SN75C3238EDBR	- 7503238E
	TSSOP – PW	Tube of 50	SN75C3238EPW	Broviow
0°C to 70°C		SN75C3238EPWR	Fleview	
	SOIC – DW Tube of 50 SN75C3238EDW	SN75C3238EDW	75022205	
	50IC - DW	Reel of 2000	SN75C3238EDWR	TOP-SIDE MARKING75C3238EPreview75C3238EPreview65C3238EPreview65C3238EPreview65C3238EPreview
	QFN – RHB	Reel of 2000	SN75C3238ECRHBR	Preview
	SSOP – DB	Tube of 50	SN65C3238EDB	GEC 2228E
	330F - DB	Reel of 2000	SN65C3238EDBR	 Preview 75C3238E Preview 65C3238E Preview 65C3238E 65C3238E
	TSSOP – PW	Tube of 50	SN65C3238EPW	Draviau
–40°C to 85°C	1350P - PW	Reel of 2000	SN65C3238EPWR	Pieview
	SOIC - DW	Tube of 50	SN65C3238EDW	GEC 2228E
	3010 - DW	Reel of 2000	SN65C3238EDWR	75C3238E Preview 75C3238E Preview 65C3238E Preview 65C3238E
	QFN – RHB	Reel of 2000	SN65C3238EIRHBR	Preview

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SLLS726-MAY 2006

FUNCTION TABLES

Each Driver⁽¹⁾

		INPUTS		OUTPUT	
DIN	FORCEON	FORCEOFF	TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION	DOUT	DRIVER STATUS
Х	Х	L	Х	Z	Powered off
L	Н	Н	Х	Н	Normal operation with
н	Н	Н	X	L	auto-powerdown plus disabled
L	L	Н	<30 s	Н	Normal operation with
Н	L	Н	<30 s	L	auto-powerdown plus enabled
L	L	Н	>30 s	Z	Powered off by
н	L	Н	>30 s	Z	auto-powerdown plus feature

(1) H = high level, L = low level, X = irrelevant, Z = high impedance

EXAS

RUMENTS

ww.ti.com 1"SN65C3238E"供应商

Each Receiver⁽¹⁾

		INPUTS		OUT	PUTS	
RIN1	RIN2-RIN3	FORCEOFF	TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION	ROUT1B	ROUT2 AND ROUT3	RECEIVER STATUS
L	Х	L	Х	L	Z	Powered off while
н	Х	L	х	Н	Z	ROUT1B is active
L	L	Н	<30 s	L	Н	
L	Н	н	<30 s	L	L	Normal operation with
н	L	н	<30 s	Н	н	auto-powerdown plus
н	Н	н	<30 s	Н	L	disabled/enabled
Open	Open	н	<30 s	L	н	

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

LOGIC DIAGRAM (POSITIVE LOGIC) DIN1 _____ 5 DOUT1 DIN2 _____23 6 DOUT2 7 DOUT3 DIN3 _____ DIN4 _____ 10 DOUT4 DIN5 _____ 12 DOUT5 14 FORCEOFF -15 INVALID Auto-powerdown Plus 13 FORCEON -16 ROUT1B -П ROUT1 _____ 8 _____ RIN1 ROUT2 _____ 9 — RIN2 11 RIN3 Л

PRODUCT PREVIEW

4

SLLS726-MAY 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range ⁽²⁾		-0.3	6	V
V+	Positive-output supply voltage range ⁽²⁾		-0.3	7	V
V–	Negative-output supply voltage range ⁽²⁾		0.3	-7	V
V+ - V-	Supply voltage difference ⁽²⁾			13	V
M		Driver (FORCEOFF, FORCEON)	-0.3	6	V
VI	Input voltage range	Receiver	-25	25	V
	Output voltage range	Driver	-13.2	13.2	V
Vo		Receiver (INVALID)	-0.3	V _{CC} + 0.3	
		DB package		62	
0	Declars thermal impedance $(3)(4)$	DW package		46	°C/W
θ_{JA}	Package thermal impedance ⁽³⁾⁽⁴⁾	PW package		62	-0/00
		RHB package		TBD	
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltages are with respect to network GND. (2)

Maximum power dissipation is a function of $T_{I}(max)$, θ_{IA} , and T_{A} . The maximum allowable power dissipation at any allowable ambient (3) temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

The package thermal impedance is calculated in accordance with JESD 51-7. (4)

Recommended Operating Conditions⁽¹⁾

See Figure 6

				MIN	NOM	MAX	UNIT
	Supply voltage		$V_{CC} = 3.3 V$	3	3.3	3.6	V
	Supply voltage	N		4.5	5	5.5	v
v	Driver and control high level input voltage	DIN, FORCEOFF,	V _{CC} = 3.3 V	2		5.5	V
VIH	Driver and control high-level linput voltage		$V_{CC} = 5 V$	2.4		5.5	V
VIL	Driver and control low-level input voltage	DIN, FORCEOFF, FORC	CEON	0		0.8	V
VI	Receiver input voltage			-25		25	V
т	Operating free air temperature		SN75C3238E	0		70	°C
IA	Operating free-air temperature		SN65C3238E	-40		85	·C

(1) Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V ± 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARA	METER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I _I	Input leakage current	FORCEOFF, FORCEON			±0.01	±1	μΑ
		Auto-powerdown plus disabled	No load, FORCEOFF and FORCEON at V_{CC}		0.5	2	mA
Icc	Supply current	Powered off	No load, FORCEOFF at GND		1	10	
	$(T_A = 25^{\circ}C)$	Auto-powerdown plus enabled	No load, FORCEOFF at V _{CC} , FORCEON at GND, All RIN are open or grounded		1	10	μΑ

Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V ± 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.4 V ± 0.3 V; (1) and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

(2)

st查调=MN/68063238E"供应商

DRIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TE	ST CONDITIONS	6	MIN	TYP ⁽²⁾	MAX	UNIT	
V _{OH}	High-level output voltage	All DOUT at $R_L = 3 \ k\Omega$ to	GND		5	5.4		V	
V_{OL}	Low-level output voltage	All DOUT at $R_L = 3 \ k\Omega$ to	GND		-5	-5.4		V	
I _{IH}	High-level input current	$V_{I} = V_{CC}$				±0.01	±1	μΑ	
I _{IL}	Low-level input current	V _I at GND				±0.01	±1	μΑ	
		V _{CC} = 3.6 V,	$V_{O} = 0 V$			±35	±60		
IOS	Short-circuit output current ⁽³⁾	V _{CC} = 5.5 V,	$V_0 = 0 V$			±40	±100	mA	
r _o	Output resistance	V_{CC} , V+, and V- = 0 V,	$V_0 = \pm 2 V$		300	10M		Ω	
			$V_0 = \pm 12 V$,	V_{CC} = 3 V to 3.6 V			±25	۸	
I _{OZ}	Output leakage current	Output leakage current FORCEOFF = GND		$V_{O} = \pm 10 V$,	V_{CC} = 4.5 V to 5.5 V			±25	μA

(1) Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25^{\circ}C. (2)

(3) Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER		TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate (see Figure 1)	_	$C_{L} = 1000 \text{ pF}$		250			
		$R_L = 3 k\Omega$, One DOUT switching	C _L = 250 pF,	V_{CC} = 3 V to 4.5 V	1000			kbit/s
			$C_{L} = 1000 \text{ pF},$	V_{CC} = 4.5 V to 5.5 V	1000			
t _{sk(p)}	Pulse skew ⁽³⁾	$C_{L} = 150 \text{ pF} \text{ to } 2500 \text{ pF},$	$R_L = 3 \ k\Omega$ to 7 k Ω ,	See Figure 2		25		ns
SR(tr)	Slew rate, transition region (see Figure 1)	$C_{L} = 150 \text{ pF to } 1000 \text{ pF},$	$R_L = 3 k\Omega$ to 7 k Ω ,	V _{CC} = 3.3 V	18		150	V/µs

(1) Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μF at V_{CC} = 5 V \pm 0.5 V.

All typical values are at $V_{CC} = 3.3$ V or $V_{CC} = 5$ V, and $T_A = 25^{\circ}$ C. (2)

(3) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

ESD Protection

PARAMETER	TEST CONDITIONS	TYP	UNIT
	НВМ	±15	
DOUT	IEC 61000-4-2, Air-Gap Discharge	±15	kV
	IEC 61000-4-2, Contact Discharge	±8	

FXΔS TRUMENTS www.ti.com 甸"SN65C3238E"供应商

SN65C3238E, SN75C3238E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVERS/RECEIVERS WITH ±15-kV ESD (HBM) PROTECTION

SLLS726-MAY 2006

RECEIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	V _{CC} - 0.6	V _{CC} – 0.1		V
V _{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
V	Desitive going input threshold voltage	$V_{CC} = 3.3 V$		1.5		V
V _{IT+}	Positive-going input threshold voltage	$V_{CC} = 5 V$		1.8	2.4	v
V	Negative going input threshold voltage	$V_{CC} = 3.3 V$	0.6	1.2		V
V _{IT}	Negative-going input threshold voltage	$V_{CC} = 5 V$	0.8	1.5	0.4	v
V _{hys}	Input hysteresis (V _{IT+} – V _{IT–})			0.3		V
I _{OZ}	Output leakage current (except ROUT1B)	FORCEOFF = 0 V		±0.05	±10	μΑ
r _i	Input resistance	$V_1 = \pm 3 V$ to $\pm 25 V$	3	5	7	kΩ

(1) Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 V \pm 0.15 V; C1–C4 = 0.24 μ F at V_{CC} = 3.3 and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

(2)

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	$C_L = 150 \text{ pF}$, See Figure 3	150	ns
t _{PHL}	Propagation delay time, high- to low-level output	C _L = 150 pF, See Figure 3	150	ns
t _{en}	Output enable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega$, See Figure 4	200	ns
t _{dis}	Output disable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega$, See Figure 4	200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 3	50	ns

Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V ± 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0.3 V; and C1 = 0.047 μ F at V_{CC} = 3.3 V \pm 0. (1) and C2–C4 = 0.33 μF at V_{CC} = 5 V \pm 0.5 V.

(2) All typical values are at $V_{CC} = 3.3$ V or $V_{CC} = 5$ V, and $T_A = 25^{\circ}C$. (3) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

ESD Protection

PARAMETER	TEST CONDITIONS	TYP	UNIT
	HBM	±15	
RIN	IEC 61000-4-2, Air-Gap Discharge	±15	kV
	IEC 61000-4-2, Contact Discharge	±8	

st查福-MA/G2063238E"供应商

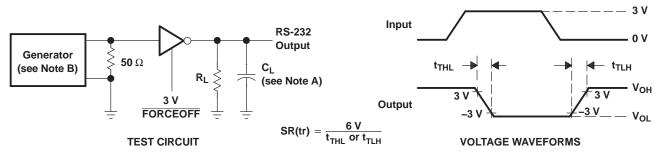
AUTO-POWERDOWN PLUS SECTION

Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{T+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, $\overline{FORCEOFF} = V_{CC}$		2.7	V
V _{T-(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, $\overline{FORCEOFF} = V_{CC}$	-2.7		V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND, $\overline{FORCEOFF} = V_{CC}$	-0.3	0.3	V
V _{OH}	INVALID high-level output voltage	$I_{OH} = -1 \text{ mA}$, FORCEON = GND, FORCEOFF = V _{CC}	V _{CC} – 0.6		V
V _{OL}	INVALID low-level output voltage	I_{OL} = 1.6 mA, FORCEON = GND, FORCEOFF = V _{CC}		0.4	V

Switching Characteristics

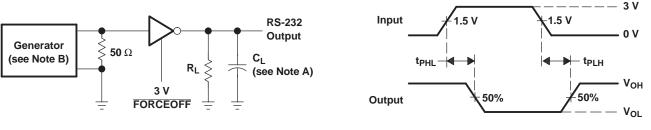

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{valid}	Propagation delay time, low- to high-level output		0.1		μs
t _{invalid}	Propagation delay time, high- to low-level output		50		μs
t _{en}	Supply enable time		25		μs
t _{dis}	Receiver or driver edge to auto-powerdown plus	15	30	60	S

(1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25 ^{\circ}C.

SLLS726-MAY 2006

PARAMETER MEASUREMENT INFORMATION

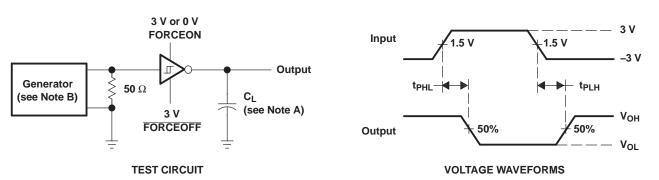

A. C_L includes probe and jig capacitance.

TRUMENTS

www.ti.com 旬"SN65C3238E"供应商

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 1. Driver Slew Rate



TEST CIRCUIT

VOLTAGE WAVEFORMS

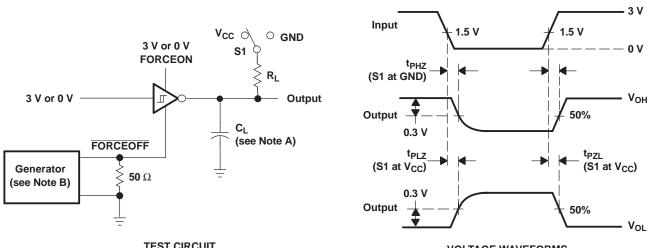

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: $Z_0 = 50 \ \Omega$, 50% duty cycle, $t_r \le 10 \text{ ns}$, $t_f \le 10 \text{ ns}$.

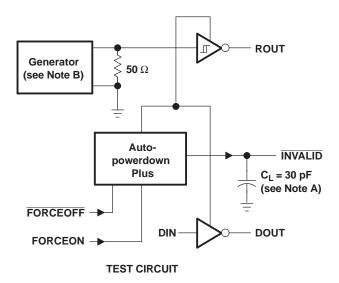
Figure 3. Receiver Propagation Delay Times

PARAMETER MEASUREMENT INFORMATION (continued)

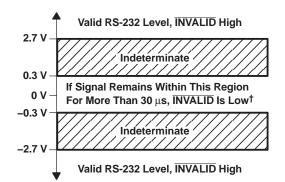
VOLTAGE WAVEFORMS

ji j

TEXAS


INSTRUMENTS www.ti.com

- C₁ includes probe and jig capacitance. Α.
- The pulse generator has the following characteristics: Z_O = 50 Ω , 50% duty cycle, $t_r \le$ 10 ns. $t_f \le$ 10 ns. В.
- t_{PLZ} and t_{PHZ} are the same as $t_{\mathsf{dis}}.$ C.
- t_{PZL} and t_{PZH} are the same as $t_{\text{en}}.$ D.


Figure 4. Receiver Enable and Disable Times

SLLS726-MAY 2006

PARAMETER MEASUREMENT INFORMATION (continued)

NOTES: A. CL includes probe and jig capacitance.

[†] Auto-powerdown plus disables drivers and reduces supply current to 1 μA.

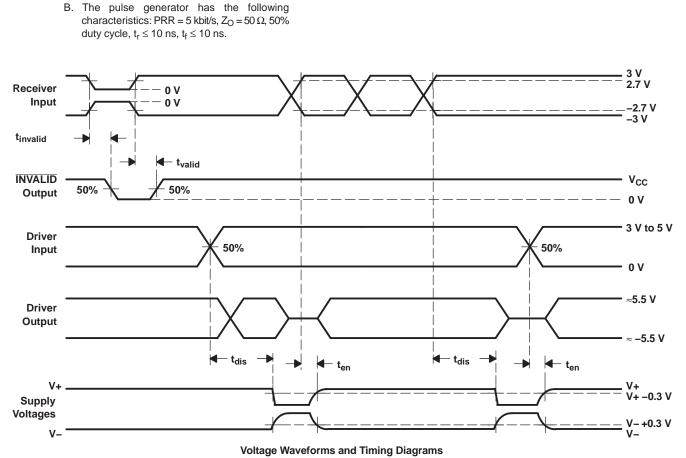
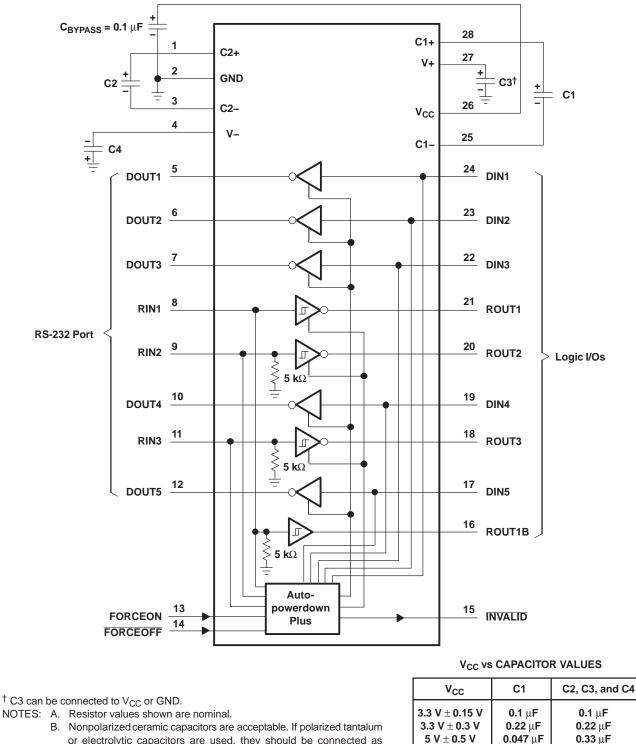



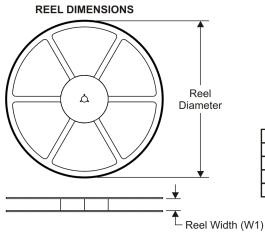
Figure 5. INVALID Propagation-Delay Times and Supply-Enabling Time

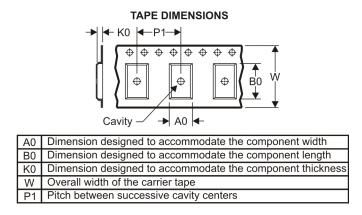
SN65C3238E, SN75C3238E 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVERS/RECEIVERS WITH $\pm 15\text{-kV}$ ESD (HBM) PROTECTION st查相=MA/68063238E"供应商

APPLICATION INFORMATION

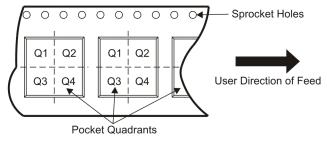
or electrolytic capacitors are used, they should be connected as shown.

Figure 6.	Typical Operating	Circuit and Capacitor Values	


3 V to 5.5 V

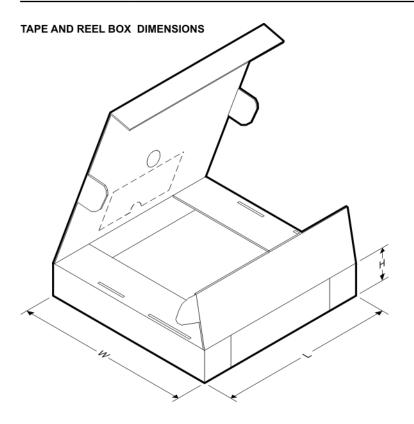

0.22 μ**F**

1 μ**F**


♥ Texas INSTRUMENTS 查询"%№65©3238E"供应商

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65C3238EDBR	SSOP	DB	28	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN65C3238EDWR	SOIC	DW	28	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1
SN75C3238EDBR	SSOP	DB	28	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN75C3238EDWR	SOIC	DW	28	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1

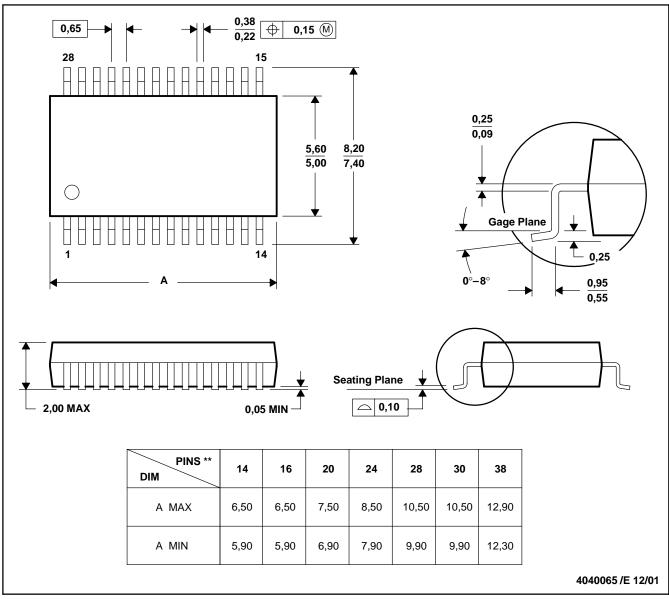
PACKAGE MATERIALS INFORMATION

11-Mar-2008

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65C3238EDBR	SSOP	DB	28	2000	346.0	346.0	33.0
SN65C3238EDWR	SOIC	DW	28	1000	346.0	346.0	49.0
SN75C3238EDBR	SSOP	DB	28	2000	346.0	346.0	33.0
SN75C3238EDWR	SOIC	DW	28	1000	346.0	346.0	49.0

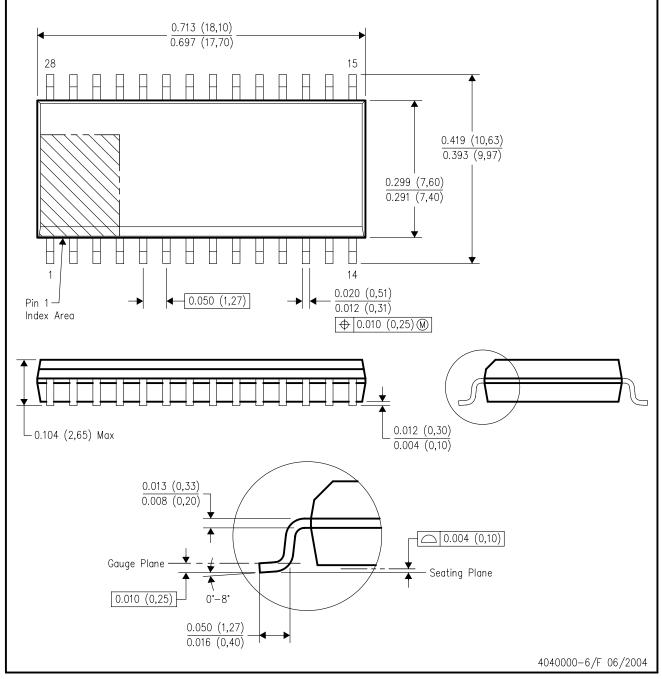
MECHANICAL DATA


MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

查询"SN65C3238E"供应商

DB (R-PDSO-G**)

28 PINS SHOWN


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

DW (R-PDSO-G28)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AE.

查询"SN65C3238E"供应商

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Broadband	www.ti.com/broadband
DSP	dsp.ti.com	Digital Control	www.ti.com/digitalcontrol
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Military	www.ti.com/military
Logic	logic.ti.com	Optical Networking	www.ti.com/opticalnetwork
Power Mgmt	power.ti.com	Security	www.ti.com/security
Microcontrollers	microcontroller.ti.com	Telephony	www.ti.com/telephony
RFID	www.ti-rfid.com	Video & Imaging	www.ti.com/video
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated