

LXMG1611-01

Digital Dimming CCFL Inverter Module

PRODUCTION DATA SHEET

DESCRIPTION

RangeMAX[™] Wide Range Dimming, Single Output Inverter. The LXMG1611 series of Direct DriveTM CCFL (Cold Cathode Fluorescent Lamp) Inverter Modules are specifically designed for driving LCD backlight lamps.

Similar to the LXM1610, the LXMG1611 excels in applications where critical parameters include very wide range fail-safe design in a small form factor.

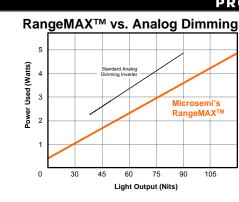
dimming CCFL inverters, the LXMG1611 provides the designer a vastly superior display brightness range. virtually any LCD display. Our wide range dimming provides exceptional display readability at less than 1% of full brightness, allowing both power savings and low ambient light operating capability (i.e. "night readable").

The LXMG1611 is recommended for on the lamp return wire.

RangeMAXTM Digital Dimming Technique. Digital dimming provides flicker free brightness control in any widerange dimming application. Dimming ratios greater than 100:1 can be achieved. Incorporation of a video synchronization feature allows wide ratio dimming without the display disturbances and interference seen with competitive products.

The modules are equipped with a dimming input that permits brightness control from an external potentiometer or DC voltage source. The resultant "burst drive" that energizes the lamp was designed specifically to ensure that no premature lamp degradation occurs. (See "How RangeMAXTM Works" Section)

Wide Input Voltage Range. The modules dimmability, high efficiency and reliable convert unregulated DC voltage from the system battery or AC adapter directly to Unlike the LXM1610 or any traditional high frequency, high-voltage waves required to ignite and operate CCFL lamps.


Direct Drive Technology. The module 100:1+ design is based on a new Direct Drive brightness range is achievable with topology, which provides a number of cost and performance advantages. The LXMG1611-01 series Direct DriveTM inverters eliminate the classic resonant inductor and capacitors, thus reducing cost and allowing a 30% reduction in module size.

Additional Features. Other benefits of use in panels with low-voltage insulation this new topology are fixed-frequency operation and secondary-side strike-voltage regulation.

Strike-voltage regulation minimizes corona discharge in the output transformer and related circuitry, providing longer life and higher reliability. All LXMG1611 modules feature both open and shorted lamp protection.

The LXMG1611 is fully customizable (electronically and mechanically) to specific customer requirements.

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com Protected by U.S. Patents: 5,923,129; 5,930,121; Patents Pending

Copyright © 1999

Rev. 1.0b, 2006-11-10

PRODUCT HIGHLIGHT

- RangeMAX[™] technology allows the designer to operate in a lower "brightness" and therefore at lower "power consumption" than can be reached using traditional analog dimming inverters.
- Dotted line indicates area where panel variations and parasitics will impact minimum light level with analog dimmina.
- Data presented for a RangeMAX[™] inverter driving a 13.3" LCD with a 1.2 Nit to 120 Nit brightness range. The minimum power levels were 0.4 watts (RangeMAX[™]) vs. 2.1 watts (analog dimming) for a power consumption savings of 1.7 watts

■ RangeMAX[™] Wide Range Dimmina

8V to 18V Input Voltage Range 30% Smaller Than CS-ZVS

KEY FEATURES

- Models Easy to Use Brightness Control
- MicroAmp SLEEP Mode
- **Output Short-Circuit Protection** and Automatic Strike-Voltage Regulation
- 7.3mm Maximum Module Height, 16mm Module Width
 - **Fixed Frequency Operation**
- **RoHS** Compliant
- UL 60950 E175910

APPLICATIONS

- Notebook and Sub-Notebook Computers
- Portable Instrumentation
- Desktop Displays
- Low Ambient Light Conditions (i.e. Aircraft Cabins, Automobile)

BENEFITS

- High Efficiency and Sleep mode Feature Extends Computer Battery Life
- Smooth, Flicker Free 1-100% Full-Range Brightness Control Gives Product a High Quality Image
- Output Open Circuit Voltage Regulation Minimizes Corona Discharge for Long Life and High Reliability
- Power Efficient, "Low Brightness" Capability Allows for Advanced **Power Management**

XMG1611-01

PACKAGE ORDER INFO LXMG1611-01

LXMG1611-01

Digital Dimming CCFL Inverter Module

PRODUCTION DATA SHEET

ABSOLUTE MAXIMUM RATINGS

Input Supply Voltage (VIN)	-0.3V to 18V
Output Voltage, no load	
Output Current	
Output Power	
Input Signal Voltage (BRITE Input)	
Input Signal Voltage (SLEEP , V _{SYNC(-)} , V _{SYNC(+)} Inputs)	
Ambient Operating Temperature Range	
Storage Temperature Range	40°C to +85°C

Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal.

RECOMMENDED OPERATING CONDITIONS

This module has been designed to operate over a wide range of input and output conditions. However, bet efficiency and performance will be obtained if the module is operated under the condition listed in the 'R.C.' column. Min. and Max. columns indicate values beyond which the inverter, although operational, will function optimally.

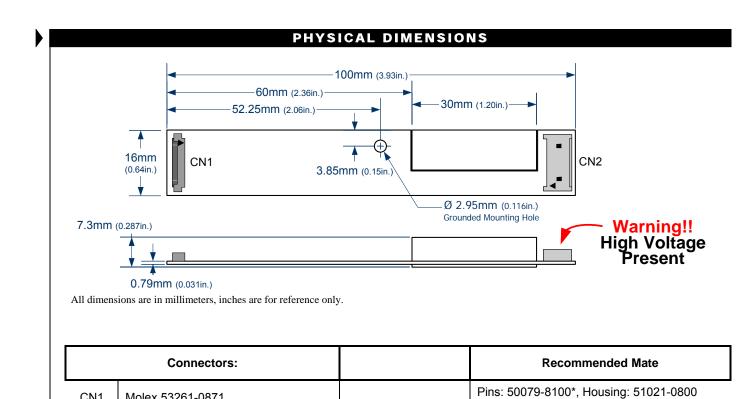
Parameter	Symbol	LXMG1611-01			Units
r al allietei	Symbol	Min	R.C.	Max	Units
Input Supply Voltage Range (Functional)	V _{IN}	8	12	18	V
Input Supply Voltage (Fully Regulated Lamp Current)		9	12	16	V
Output Power	Po		4	5	W
Brightness Control Input Voltage Range	V _{BRT ADJ}	0		2.5	V
Lamp Operating Voltage	VLAMP	300	675	800	V _{RMS}
Lamp Current (Full Brightness)	IOLAMP		7		mA _{RMS}
Operating Ambient Temperature Range	T _A	0		70	°C

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Test Conditions	LXMG1611-01			Units
Faranieter	Symbol	Test conditions	Min	Тур	Max	Unit
OUTPUT PIN CHARACTERISTICS						
Full Bright Lamp Current	$I_{L(MAX)}$	$V_{BRT ADJ} = 2.5V_{DC}$, SLEEP = HIGH, Burst Duty = 100%, $V_{IN} = 9V_{DC}$	6.3	7.0	7.7	mA _R
Minimum Lamp Current (Note 2)	I _{L(MIN)}	$V_{BRT ADJ} = 0V_{DC}$, SLEEP = HIGH, Burst Duty = 2%, $V_{IN} = 9V_{DC}$		0.14		mA _R
Lamp Start Voltage	V _{LS}	$0^{\circ}C < T_{A} < 40^{\circ}C, V_{IN} \ge 7V_{DC}$	1500		1800	VRM
Operating Frequency	f _o	$V_{BRT ADJ} = 2.5V_{DC}$, SLEEP = HIGH, VIN = $12V_{DC}$	52	57	62	kH:
BRITE INPUT						
Input Current	IBRT	$V_{BRT ADJ} = 0V_{DC}$	-10	-12	-14	μA _D
Input Voltage for Max. Lamp Current	Vc	I _{O(LAMP)} = 100% Duty Cycle		2.5	2.6	VDC
Input Voltage for Min. Lamp Current	Vc	I _{O(LAMP)} = Minimum Duty Cycle		0	0	VDC
SLEEP INPUT						
RUN Mode	$V\overline{\text{SLEEP}}(HI)$		2.2		V _{IN}	VDC
SLEEP Mode	$V\overline{\text{SLEEP}}(LO)$		-0.3		0.8	VDC
Input Current	SLEEP	SLEEP = 5V		120	180	μA _D
V _{SYNC(-)} / V _{SYNC(+)} CHARACTERISTICS						
Logic High Level	V _{SYNCH(HI)}		4.0		6.5	VDC
Logic Low Level	V _{SYNCH(LO)}		-0.3		1.0	VDC
Input Impedance	Z _{IN}		60	66	75	kΩ
Pulse Width (Note 3)	t _{PW}		25		250	μs
Input Frequency	f _{SYNC}		49		150	Hz
POWER CHARACTERISTICS						1
Sleep Current	I _{IN(MIN)}	$V_{IN} = 15V_{DC}, \overline{SLEEP} \le 0.8V$		10	50	μA _D

Copyright © 1999 Rev. 1.0b, 2006-11-10

Microsemi Integrated Products Division 11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570



LXMG1611-01

Digital Dimming CCFL Inverter Module

PRODUCTION DATA SHEET

FUNCTIONAL PIN DESCRIPTION					
Conn.	Pin	Pin Description			
CN1					
CN1-1 CN1-2	V _{IN}	Input Power Supply (8V \leq V _{IN} \leq 18V).			
CN1-3 CN1-4	GND	Power Supply Return.			
CN1-5 CN1-6	SLEEP	ON/OFF Control. (2.2V < $\overline{\text{SLEEP}}$ < V _{IN} = ON, -0.3V < $\overline{\text{SLEEP}}$ < 0.8V = OFF)			
CN1-7 CN1-8	V _{SYNC(-)} V _{SYNC(+)}	Vertical Synchronization Input, negative going 25µs < t _{PW} < 250µs,			
CN2					
CN2-1	V _{HI}	High Voltage connection to high side of lamp. Connect to lamp with shortest lead length. DO NOT connect to ground.			
CN2-2	V _{LO}	Connection to low side of lamp. Connect to lamp terminal with longer lead length. DO NOT connect to ground.			

CN1

CN2

Or

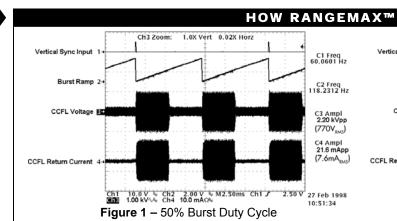
Molex 53261-0871

JST SM02(8.0)B-BHS-1-TB

Yeon Ho 20015WR-05A00

*Loose (-8000, Chain) Recommended #26 AWG wiring

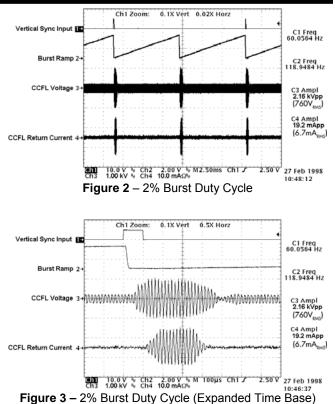
Pins: 5BH-001T-P0.5, Housing: BHR-03VS-1



WORKS

LXMG1611-01

Digital Dimming CCFL Inverter Module


PRODUCTION DATA SHEET

Rather than using the traditional dimming technique of varying lamp current magnitude to adjust light output, RangeMAXTM inverters use a fixed lamp current value with a duty cycle control method.

The lamp current burst width can be modulated from 100% (continuous lamp current) down to a 2% duty cycle, allowing the lamp to be dimmed to less than 1% of its full brightness.

As can be seen in Trace 4 of Figure 3 photo at right, careful design consideration was given to controlling lamp start voltage to softly start current flow. This eliminates current overshoot that can result in premature cathode wear and reduce lamp life.

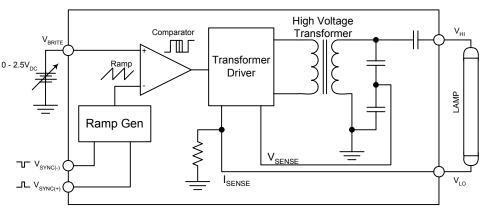


Figure 4 – RangeMAX™ Block Diagram

www.*Microsemi.*com

LXMG1611-01

Digital Dimming CCFL Inverter Module

PRODUCTION DATA SHEET

HOW RANGEMAX™ WORKS (CONTINUED)

- On-board brightness control circuit includes a DC voltage to pulse width converter that minimizes system design work and system noise susceptibility. This provides a familiar and convenient interface while reducing the potential for externally induced noise which can cause lamp flicker.
- An on-board oscillator operates the inverter BURST rate above 95Hz, well beyond standard 50/60Hz video refresh rates where the eye can perceive pulsing light.
- RangeMAX inverter modules are designed to operate with the burst frequency synchronized to the video frame rate. This provides operation with no visible display disturbances caused by beat frequencies between the lamps and video frame rates.

In applications with no access to a vertical sync, the inverter burst frequency can be allowed to "free run" at 95Hz. In this non-synchronous mode, minor display disturbances can be found under certain video conditions. This performance may be acceptable for many applications, but synchronization must be used when no disturbance can be tolerated.

- Separate inputs are provided for negative and positive vertical sync pulses so external inversion is not needed.
- Separate feedback loops for lamp current and open circuit voltage regulation insure reliable strike under all operating conditions, automatic over-voltage prevention with broken or failed lamps, and accurate lamp current regulation.

TYPICAL APPLICAITON

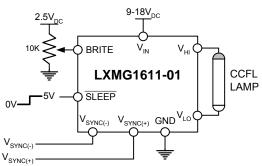
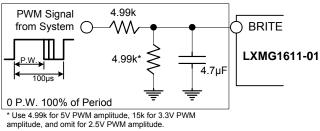




Figure 5 – Potentiometer Brightness Control

- The brightness control may be a simple 10k potentiometer or a voltage output DAC. A PWM signal from a microcontroller may also be used with a suitable filter such as shown in Figure 5A.
- If synchronization to the video framerate is desired, connect the vertical sync pulse from the system video controller to the appropriate V_{SYNC} input. If the pulse is negative going (), connect it to V_{SYNC(-}). If positive going (), connect it to V_{SYNC(+}). If no video synchronization is desired, leave both V_{SYNC(-}) and V_{SYNC(+}) floating.
- If you need to turn the inverter ON/OFF remotely, connect a 3V or 5V logic signal to the SLEEP input. If

remote ON/OFF is not needed, connect the $\overline{\text{SLEEP}}$ input to V_N or any other voltage greater than 2.2V_{DC}.

Connect V_{HI} to high voltage wire from the lamp. Connect
V_{L0} to the low voltage wire (wire with thinner insulation).
Never connect V_{L0} to circuit ground as this will defeat
lamp current regulation. If both lamp wires have heavy
high voltage insulation, connect the longest wire to V_{L0}.

RangeMAX[™] Inverters Also available in Dual Output LXMG1621-01 and Quad Output LXMG1643-12-6x versions for multiple lamp applications.

APPLICATIONS

Not Recommended For New Design

LXMG1611-01

Digital Dimming CCFL Inverter Module

PRODUCTION DATA SHEET

NOTES

PRODUCTION DATA – Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.