F100155 Quad Multiplexer/Latch

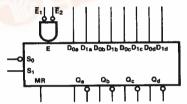
General Description

The F100155 contains four transparent latches, each of which can accept and store data from two sources. When both Enable (\overline{E}_n) inputs are LOW, the data that appears at an output is controlled by the Select (S_n) inputs, as shown in the Operating Mode table. In addition to routing data from either D_0 or D_1 , the Select inputs can force the outputs LOW for the case where the latch is transparent (both Enables are LOW) and can steer a HIGH signal from either D_0 or D_1 to an output. The Select inputs can be tied together for applications requiring only that data be steered from eight

ther D_0 or D_1 . A positive-going signal on either Enable input latches the outputs. A HIGH signal on the Master Reset (MR) input overrides all the other inputs and forces the Q outputs LOW. All inputs have 50 k Ω pulldown resistors.

Refer to the F100355 datasheet for:

PCC packaging

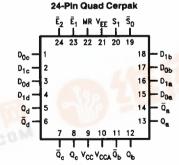

Lower power

Military versions

Extended voltage specs (-4.2V to -5.7V)

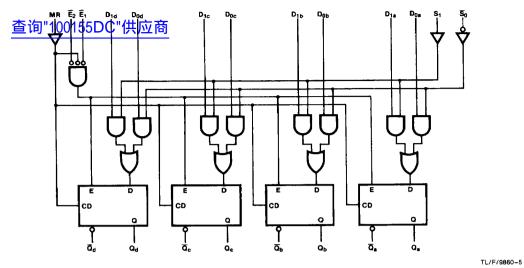
Ordering Code: See Section 8

Logic Symbol


TL/F/9860-3

Pin Names	Description
Ē₁, Ē₂	Enable Inputs (Active LOW)
\overline{S}_0, S_1	Select Inputs
MR	Master Reset
D _{na} -D _{nd}	Data Inputs
Qa-Qd	Data Outputs
$\overline{Q}_a - \overline{Q}_d$	Complementary Data Outputs

Connection Diagrams


TL/F/9860-1

TL/F/9860-2

3-125

Logic Diagram

Operating Mode Table

	Con	trois		Outputs
Ē ₁	Ē₂	S ₁	Ī\$₀	Qn
н	х	х	X	Latched*
X	н	X	x	Latched*
L	L	L	L	D _{0x}
L	L	H	L	D _{0x} D _{0x} + D _{1x}
L	L	L	н	L
L	L	Н	н	D _{1x}

*Stores data present before E went HIGH

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

Truth Table

			Input	s			Out	puts
MR	Ē ₁	Ē ₂	Sı	S ₀	D _{1x}	D _{0x}	Qx	Qx
Н	Х	Х	Х	Х	Х	Х	Н	L
L	L	L	Н	Н	н	Х	L	- н
L	L	L	Н	Н	L	Х	Н	ᅵᅵ
L	L	L	L	L	×	н	L	Н
L	L	L	L	L	Х	L	н	L
L	L	L	L	Н	X	Х	H	L
L	L	L	Н	L	Н	X	L	н
L	L	L	н	L	×	Н	L	Н
L	L	L	н	L	L	L	н	٦
L	Н	Х	Х	Х	Х	X	Late	hed*
L	Х	H_	Х	Х	Х	X	Late	hed*

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please compact if National Semiconductor Sales Office/Distributors for availability and specifications.

-65°C to +150°C Storage Temperature

Maximum Junction Temperature (T_J) + 150°C Case Temperature under Bias (T_C) 0°C to +85°C VEE Pin Potential to Ground Pin -7.0V to +0.5VInput Voltage (DC) V_{FF} to +0.5VOutput Current (DC Output HIGH) -50 mA Operating Range (Note 2) -- 5.0V to -- 4.2V

DC Electrical Characteristics

 $V_{EE} = -4.5V$, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0^{\circ}C$ to $+85^{\circ}C$ (Note 3)

Symbol	Parameter	Min	Тур	Max	Units	Condition	s (Note 4)	
V_{OH}	Output HIGH Voltage	-1025	-955	-880	m∨	V _{IN} = V _{IH} (Max)	Loading with	
V _{OL}	Output LOW Voltage	-1810	- 1705	- 1620] ''''	or V _{IL (Min)}	50Ω to -2.0V	
V _{OHC}	Output HIGH Voltage	1035			mV	V _{IN} = V _{IH(Min)}	Loading with	
Volc	Output LOW Voltage			-1610] '''*	or V _{IL (Max)}	50Ω to -2.0V	
V _{IH}	Input HIGH Voltage	-1165	· · · · · · · · · · · · · · · · · · ·	- 880	mV	Guaranteed HIGH Signal for All Inputs		
V _{IL}	Input LOW Voltage	-1810		1475	mV	Guaranteed LOW for All Inputs	Signal	
I _{IL}	Input LOW Current	0.50			μА	V _{IN} = V _{IL} (Min)		

DC Electrical Characteristics

 $V_{EE} = -4.2V$, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0^{\circ}C$ to $+85^{\circ}C$ (Note 3)

Symbol	Parameter	Min	Тур	Max	Units	Condition	s (Note 4)
V _{OH}	Output HIGH Voltage	-1020		-870	mV	V _{IN} = V _{IH (Max)}	Loading with
VOL	Output LOW Voltage	1810		- 1605] ",,*	or V _{IL (Min)}	50Ω to -2.0V
V _{OHC}	Output HIGH Voltage	-1030			mV	$V_{IN} = V_{IH (Min)}$	Loading with
Volc	Output LOW Voltage			-1595	1111	or V _{IL (Max)}	50Ω to -2.0V
VIH	Input HIGH Voltage	-1150		-870	mV	Guaranteed HIGH for All Inputs	Signal
V _{IL}	Input LOW Voltage	-1810		-1475	mV	Guaranteed LOW for All Inputs	Signal
Iμ	Input LOW Current	0.50			μΑ	$V_{IN} = V_{IL (Min)}$	

DC Electrical Characteristics

 $V_{EE} = -4.8V$, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0^{\circ}C$ to $+85^{\circ}C$ (Note 3)

Symbol	Parameter	Min	Тур	Max	Units	Condition	s (Note 4)	
VoH	Output HIGH Voltage	- 1035		-880	mV	V _{IN} = V _{IH (Max)}	Loading with	
V _{OL}	Output LOW Voltage	-1830		1620	""•	or V _{IL (Min)}	50Ω to -2.0V	
V _{OHC}	Output HIGH Voltage	- 1045			mV	V _{IN} = V _{IH (Min)}	Loading with	
V _{OLC}	Output LOW Voltage			-1610		or V _{IL (Max)}	50Ω to -2.0V	
V _{IH}	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs		
V _{IL}	Input LOW Voltage	-1830		-1490	mV	Guaranteed LOW for All Inputs	Signal	
IIL	Input LOW Current	0.50			μΑ	VIN = VIL (Min)		

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2V to -4.8V.

Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics

 $V_{\text{EE}} = -4.2 \text{V}$ to -4.8 V unless otherwise specified, $V_{\text{CC}} = V_{\text{CCA}} = \text{GND}$, $T_{\text{C}} = 0^{\circ}\text{C}$ to $+85^{\circ}\text{C}$

Symbol "	100155 口和地快 放商	Min	Тур	Max	Units	Conditions
IIH	input HiGH Current So, S1 E1, E2 Dna-Dnd MR			220 350 340 430	μΑ	V _{IN} = V _{IH (Max}
lee	Power Supply Current	-133	95	-66	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristic $V_{\text{EE}}=-4.2 V$ to -4.8 V, $V_{\text{CC}}=V_{\text{CCA}}=\text{GND}$

O	Parameter	T _C =	o.c	$T_C = +25^{\circ}C$		T _C = +85°C		Units	Conditions	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	J	Conditions	
t _{PLH} t _{PHL}	Propagation Delay D _{na} -D _{nd} to Output (Transparent Mode)	0.50	1.90	0.60	1.85	0.50	1.90	ns		
t _{PLH} t _{PHL}	Propagation Delay \$\overline{S}_0 S_1\$ to Output (Transparent Mode)	1.50	3.50	1.50	3.40	1.50	3.50	ns	Figures 1 and 2	
^t PLH ^t PHL	Propagation Delay E ₁ , E ₂ to Output	0.90	2.50	1.00	2.40	1.00	2.50	ns		
t _{PLH} t _{PHL}	Propagation Delay MR to Output	0.90	3.00	0.90	2.90	0.90	3.00	ns	Figures 1 and 3	
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.60	2.30	0.60	2.20	0.45	2.30	ns	Figures 1 and 2	
ts	Setup Time D _{na} -D _{nd} S ₀ , S ₁ MR (Release Time)	0.90 2.40 1.50		0.90 2.40 1.50		0.90 2.70 1.50		ns	Figure 4 Figure 3	
t _H	Hold Time D _{na} -D _{nd} S ₀ , S ₁	0.40 -0.70	-	0.40 -0.70		0.40 0.70		ns	Figure 4	
t _{pw} (L)	Pulse Width LOW E ₁ , E ₂	2.00		2.00		2.00		ns	Figure 2	
t _{pw} (H)	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3	

Cerpak AC Electrical Characteristics $V_{\text{EE}} = -4.2 \text{V to } -4.8 \text{V}, V_{\text{CC}} = V_{\text{CCA}} = \text{GND}$

0	Parameter	T _C = 0°C		T _C = +25°C		$T_C = +85^{\circ}C$		Units	Conditions
Symbol		Min	Max	Min	Max	Min	Max		
t _{PLH} t _{PHL}	Propagation Delay D _{na} -D _{nd} to Output (Transparent Mode)	0.50	1.70	0.60	1.65	0.50	1.70	ns	(
t _{PLH} t _{PHL}	Propagation Delay \$\overline{S}_1\$, \$S_1\$ to Output (Transparent Mode)	1.50	3.30	1.50	3.20	1.50	3.30	ns	Figures 1 and 2
t _{PLH}	Propagation Delay $\overline{\mathbb{E}}_1$, $\overline{\mathbb{E}}_2$ to Output	0.90	2.30	1.00	2.20	1.00	2.30	ns	

TL/F/9860-6

Cerpak AC Electrical Characteristics $V_{EE} = -4.2 V$ to -4.8 V, $V_{CC} = V_{CCA} = GND$ (Continued)

Symbol	查询 " 400495DC"	## # **	ос	T _C = +25°C		T _C = +85°C		Units	Conditions	
Cymbol	旦时 100193000	六四回	Max	Min	Max	Min	Max	- Cilita		
t _{PLH}	Propagation Delay MR to Output	0.90	2.80	0.90	2.70	0.90	2.80	ns	Figures 1 and 3	
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.60	2.20	0.60	2.10	0.45	2.20	ns	Figures 1 and 2	
ts	Setup Time D _{na} -D _{nd} S 0, S 1 MR (Release Time)	0.80 2.30 1.40		0.80 2.30 1.40		0.80 2.60 1.40		ns	Figure 4 Figure 3	
tH	Hold Time D _{na} -D _{nd} S ₀ , S ₁	0.30 0.80		0.30 0.80		0.30 0.80		ns	Figure 4	
t _{pw} (L)	Pulse Width LOW E1, E2	2.00		2.00		2.00		ns	Figure 2	
t _{pw} (H)	Pulse Width HIGH MR	2.00		2.00		2.00		ns	Figure 3	

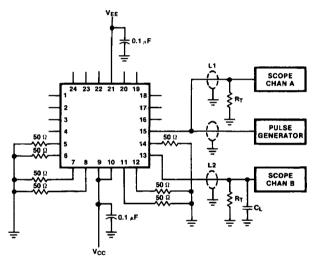
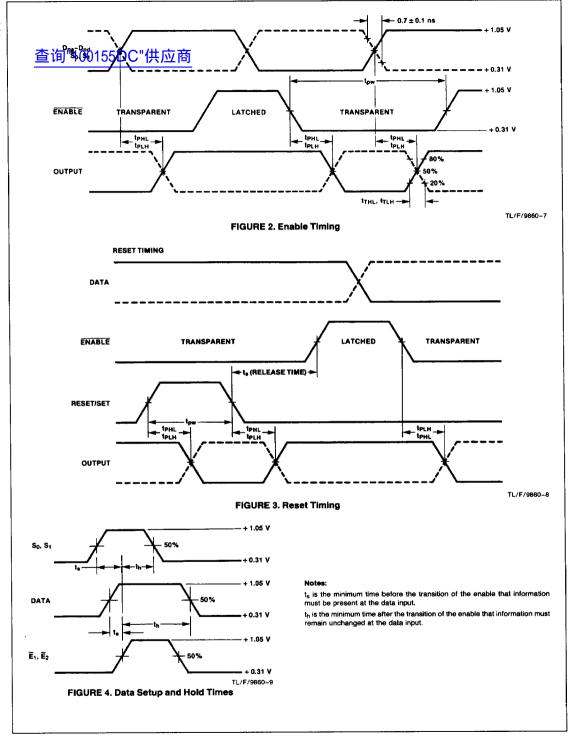



FIGURE 1. AC Test Circuit

Notes:

 V_{CC} , $V_{CCA} = +2V$, $V_{EE} = -2.5V$ L1 and L2 = equal length 50Ω impedance lines $R_T = 50\Omega$ terminator internal to scope Decoupling 0.1 μF from GND to V_{CC} and V_{EE} All unused outputs are loaded with 500 to GND C_L = Fixture and stray capacitance ≤ 3 pF
Pin numbers shown are for flatpak; for DIP see logic symbol

