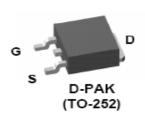
FAIRCHILD

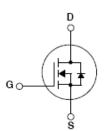
SEMICONDUCTOR®

FDD8444L_F085

N-Channel PowerTrench[®] MOSFET

40V, 50A, 6.0m Ω

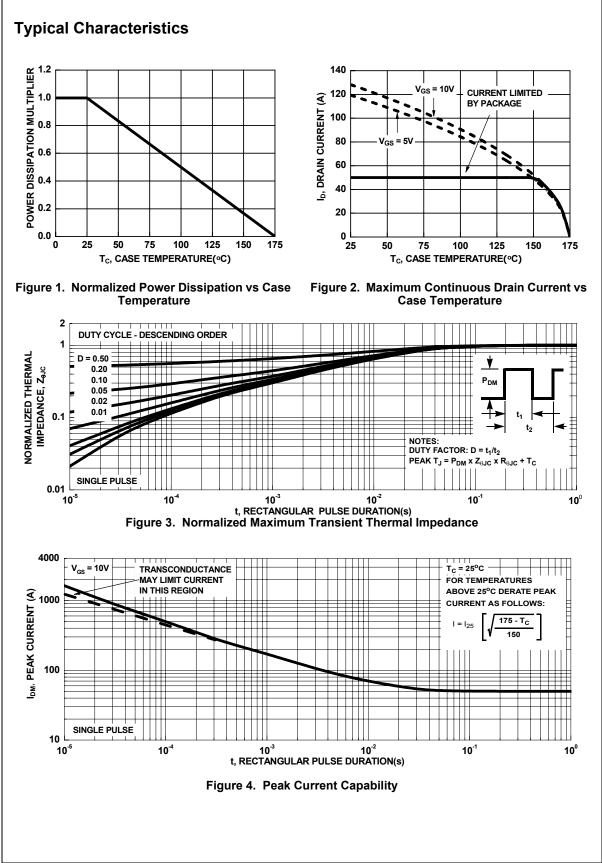

Features


- Typ $r_{DS(on)}$ = 3.8m Ω at V_{GS} = 5V, I_D = 50A
- Typ Q_{g(tot)} = 46nC at V_{GS} = 5V
- Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse/ Repetitive Pulse)
- Qualified to AEC Q101
- RoHS Compliant

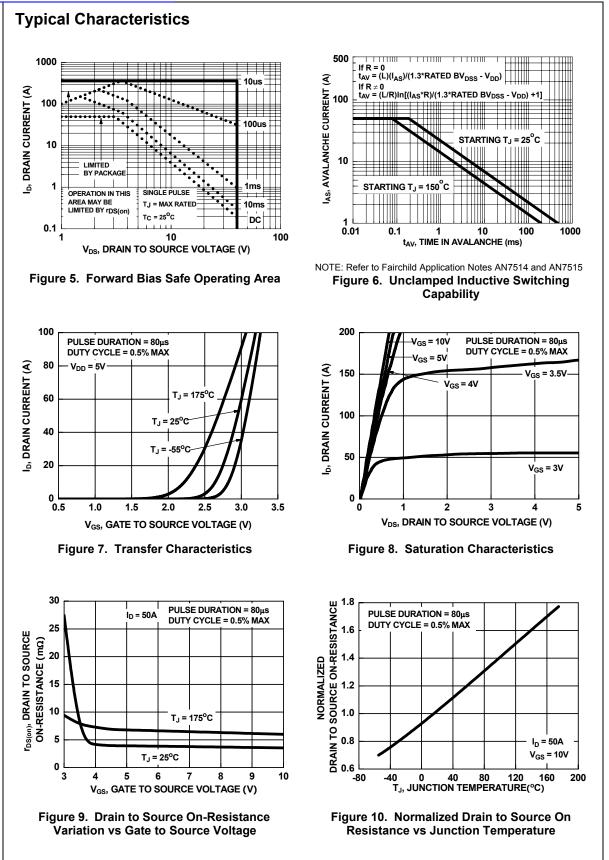
Applications

- Automotive Engine Control
- Powertrain Management
- Solenoid and Motor Drivers
- Electronic Transmission
- Distributed Power Architecture and VRMs
- Primary Switch for 12V and 24V systems

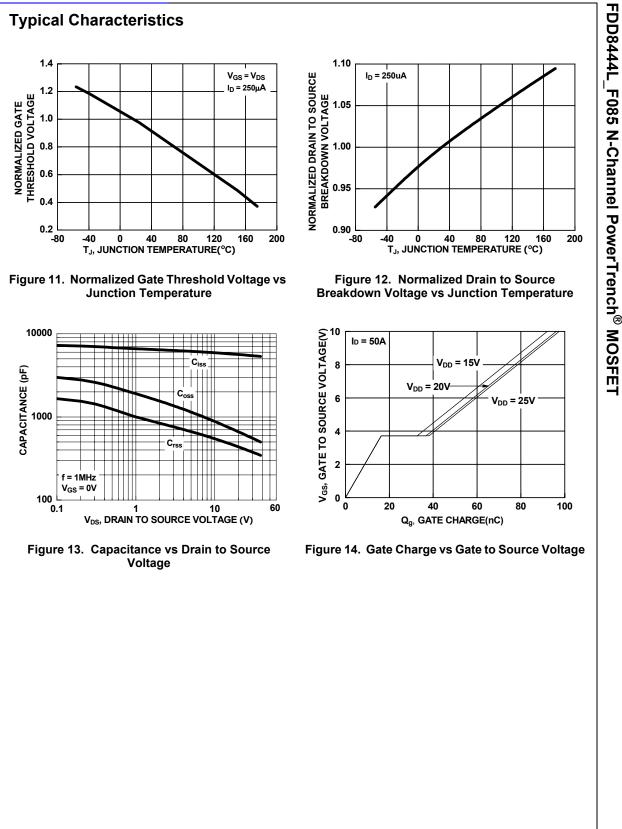
1


January 2009

		cimum Rating	jo 1 _C =2	25°C unle	ss otherwis	e noted				
Symbol	Parameter					Ratings	\$	Units		
V _{DSS}	Drain to Source Voltage					40		V		
V _{GS}	Gate to Source Voltage					±20		V		
	Drain Current Continuous ($T_C < 150^{\circ}C$, $V_{GS} = 10V$) (Note 1)					1)	50			
I _D	Continuous (T_{amb} = 25°C, V_{GS} = 10V, with $R_{\theta JA}$ = 52°C/W)						16		А	
	Pulsed					See Figure 4				
E _{AS}	Single Pulse Avalanche Energy					(Note	(Note 2) 295			mJ W
P _D	Power Dissipation							153		
	Derate above 25°C					1.02				
T _J , T _{STG}	Operating	and Storage Tempe	erature					-55 to +1	75	°C
Therm	al Cha	racteristics								
$R_{\theta JC}$	Thermal F	Resistance, Junction	to Case					0.98		°C/W
$R_{ hetaJA}$	Thermal F	Resistance, Junction	to Ambier	nt TO-252	2, 1in ² copp	er pad area		52		°C/W
	Marking	king and Ord	Pack		Reel S	ize	Tape Wid	th	Quar	itity
	8444L	FDD8444L F085	TO-25	-	13"	-	12mm	-	2500 units	
Symbol		Parameter			Test Cond	141		-		
		_			Test Conu	itions	Min	Тур	Мах	Units
	racterist		-	1				Тур	Max	1
	1	t ics Fource Breakdown V	oltage	I _D = 250	μΑ, V _{GS} = (40	-	-	V
B _{VDSS}	Drain to S			1	μΑ, V _{GS} = 0 2V,		40	1	- 1 250	1
B _{VDSS} DSS	Drain to S Zero Gate	ource Breakdown V	ent	I _D = 250 V _{DS} = 32	μΑ, V _{GS} = 0 2V, V	V	40	1	- 1	V
B _{VDSS} DSS GSS	Drain to S Zero Gate	iource Breakdown V v Voltage Drain Curre ource Leakage Curre	ent	$I_{D} = 250$ $V_{DS} = 32$ $V_{GS} = 0^{9}$	μΑ, V _{GS} = 0 2V, V	V	40	1	- 1 250	V µA
B _{VDSS} DSS GSS Dn Cha	Drain to S Zero Gate Gate to So racterist	iource Breakdown V v Voltage Drain Curre ource Leakage Curre	ent	$I_{D} = 250$ $V_{DS} = 32$ $V_{GS} = 0^{\circ}$ $V_{GS} = \pm 2$	μΑ, V _{GS} = 0 2V, V	0V T _J = 150°C	40	1	- 1 250	V µA
B _{VDSS} DSS GSS Dn Cha	Drain to S Zero Gate Gate to So racterist	cource Breakdown V Voltage Drain Curre ource Leakage Curre ics	ent	$I_{D} = 250$ $V_{DS} = 32$ $V_{GS} = 0$ $V_{GS} = \pm 2$ $V_{GS} = V$	μΑ, V _{GS} = 0 2V, V 20V)V T _J = 150°C	40 - - -		- 1 250 ±100	V μA nA
B _{VDSS} DSS GSS Dn Cha	Drain to S Zero Gate Gate to So racterist Gate to S	Source Breakdown V Voltage Drain Curre ource Leakage Curre i CS ource Threshold Vol	ent ent tage	$I_{D} = 250$ $V_{DS} = 32$ $V_{GS} = 0^{\circ}$ $V_{GS} = \pm 2^{\circ}$ $V_{GS} = V$ $I_{D} = 50A$	μΑ, V _{GS} = 0 2V, V 20V _{DS} , I _D = 250)V T _J = 150°C	40 - - -	- - - - 1.8	- 1 250 ±100	V μA nA
B _{VDSS} DSS Coss Dn Cha	Drain to S Zero Gate Gate to So racterist Gate to S	cource Breakdown V Voltage Drain Curre ource Leakage Curre ics	ent ent tage	$I_{D} = 250$ $V_{DS} = 33$ $V_{GS} = 0$ $V_{GS} = \pm 32$ $V_{GS} = \pm 32$ $I_{D} = 50A$ $I_{D} = 50A$ $I_{D} = 50A$	μ A, V _{GS} = 0 2V, V 20V <u>DS</u> , I _D = 250 A, V _{GS} = 10V A, V _{GS} = 5V A, V _{GS} = 4.5	0V T _J = 150°C 0μΑ /	40 - - -	- - - - 1.8 3.5	- 1 250 ±100	V μA nA
B _{VDSS} I _{DSS} I _{GSS}	Drain to S Zero Gate Gate to So racterist Gate to S	Source Breakdown V Voltage Drain Curre ource Leakage Curre i CS ource Threshold Vol	ent ent tage	$I_{D} = 250$ $V_{DS} = 33$ $V_{GS} = 0$ $V_{GS} = \pm 32$ $V_{GS} = \pm 32$ $I_{D} = 50A$ $I_{D} = 50A$ $I_{D} = 50A$	$μA, V_{GS} = 0$ 2V, V 20V $D_{S}, I_D = 250$ $v_{GS} = 10V$ $v_{GS} = 5V$ $v_{GS} = 5V$ $v_{GS} = 5V$	0V T _J = 150°C 0μΑ /	40 	- - - - - - - - - - - - - - - - - - -	- 1 250 ±100 3 5.2 6.0	V µA nA
B _{VDSS} DSS GSS Dn Cha V _{GS(th)}	Drain to S Zero Gate Gate to So racterist Gate to S Drain to S	Source Breakdown V Voltage Drain Curre ource Leakage Curre i CS ource Threshold Vol	ent ent tage	$I_{D} = 250$ $V_{DS} = 32$ $V_{GS} = 0^{10}$ $V_{GS} = \pm 2^{10}$ $I_{D} = 50A$ $I_{D} = 50A$ $I_{D} = 50A$ $I_{D} = 50A$	$μA, V_{GS} = 0$ 2V, V 20V $D_{S}, I_D = 250$ $v_{GS} = 10V$ $v_{GS} = 5V$ $v_{GS} = 5V$ $v_{GS} = 5V$	0V T _J = 150°C 0μΑ /	40 	- - - - - - - - - - - - - - - - - - -	$ \begin{array}{c} -\\ 1\\ 250\\ \pm 100\\ \end{array} $ $ \begin{array}{c} 3\\ 5.2\\ 6.0\\ 6.5\\ \end{array} $	V µA nA
B _{VDSS} DSS Dn Cha V _{GS(th)} ^r DS(on) Dynami	Drain to S Zero Gate Gate to So racterist Gate to S Drain to S	Source Breakdown V Voltage Drain Curre ource Leakage Curre ics ource Threshold Vol Source On Resistanc	ent ent tage	$I_{D} = 250$ $V_{DS} = 32$ $V_{GS} = 0^{\circ}$ $V_{GS} = \pm 2^{\circ}$ $I_{D} = 50A$ $I_{D} = 50A$ $I_{D} = 50A$ $I_{D} = 50A$	μ A, V _{GS} = 0 2V, V 20V <u>DS</u> , ID = 250 A, V _{GS} = 10V A, V _{GS} = 5V A, V _{GS} = 5V A, V _{GS} = 5V, °C)V T _J = 150°C 0μΑ /	40 	- - - - - - - - - - - - - - - - - - -	$ \begin{array}{c} -\\ 1\\ 250\\ \pm 100\\ \end{array} $ $ \begin{array}{c} 3\\ 5.2\\ 6.0\\ 6.5\\ \end{array} $	V µA nA
B _{VDSS} DSS Dn Cha V _{GS(th)} ^C DS(on) Dynami C _{iss}	Drain to S Zero Gate Gate to So racterist Gate to S Drain to S C Charace Input Cap	Source Breakdown V Voltage Drain Curre ource Leakage Curre ics ource Threshold Vol Source On Resistanc	ent ent tage	$I_{D} = 250$ $V_{DS} = 32$ $V_{GS} = 0$ $V_{GS} = \pm 2$ $I_{D} = 50A$ $V_{DS} = 25$	$μA, V_{GS} = 0$ 2V, V 20V $D_{S}, I_{D} = 250$ $4, V_{GS} = 10V$ $4, V_{GS} = 5V$ $4, V_{GS} = 5V$ $4, V_{GS} = 5V$ $5V, V_{GS} = 0$)V T _J = 150°C 0μΑ /	40 - - - - - - -		- 1 250 ±100 3 5.2 6.0 6.5 10.7	V μA nA V
B _{VDSS} loss Dn Cha V _{GS(th)} ⁽ DS(on) Dynami C _{iss} C _{oss}	Drain to S Zero Gate Gate to So racterist Gate to S Drain to S Drain to S c Charace Input Cap Output Cap	iource Breakdown V Voltage Drain Curre ource Leakage Curre ics ource Threshold Vol Source On Resistanc cteristics	ent tage	$I_{D} = 250$ $V_{DS} = 32$ $V_{GS} = 0^{\circ}$ $V_{GS} = \pm 2^{\circ}$ $I_{D} = 50A$ $I_{D} = 50A$ $I_{D} = 50A$ $I_{D} = 50A$	$μA, V_{GS} = 0$ 2V, V 20V $D_{S}, I_{D} = 250$ $4, V_{GS} = 10V$ $4, V_{GS} = 5V$ $4, V_{GS} = 5V$ $4, V_{GS} = 5V$ $5V, V_{GS} = 0$)V T _J = 150°C 0μΑ /	40 	- - - - - - - - - - - - - - - - - - -	- 1 250 ±100 3 5.2 6.0 6.5 10.7	V μA nA V mΩ
B _{VDSS} loss Dn Cha V _{GS(th)} ^r DS(on) Dynami C _{iss} C _{oss} C _{rss}	Drain to S Zero Gate Gate to So racterist Gate to S Drain to S Drain to S c Charace Input Cap Output Cap	Cource Breakdown V Voltage Drain Curre Dource Leakage Curre ics ource Threshold Vol Source On Resistance Cteristics vacitance apacitance Transfer Capacitance	ent tage	$I_{D} = 250$ $V_{DS} = 32$ $V_{GS} = 0$ $V_{GS} = \pm 2$ $I_{D} = 50A$ $V_{DS} = 25$	$\mu A, V_{GS} = 0$ 2V, V 20V DS, I_D = 250 A, V_{GS} = 10V A, V_{GS} = 5V A, V_{GS} = 5V A, V_{GS} = 5V, 0^{\circ}C 5V, V_{GS} = 0)V T _J = 150°C 0μΑ /	40 	- - - - - - - - - - - - - - - - - - -	- 1 250 ±100 3 5.2 6.0 6.5 10.7	V μA nA V mΩ pF
B _{VDSS} loss Dn Cha V _{GS(th)} ^f DS(on) Dynami C _{iss} C _{oss} C _{rss} R _G	Drain to S Zero Gate Gate to S Gate to S Drain to S C Charac Input Cap Output Ca Reverse T Gate Res	Cource Breakdown V Voltage Drain Curre Dource Leakage Curre ics ource Threshold Vol Source On Resistance Cteristics vacitance apacitance Transfer Capacitance	ent tage	$I_{D} = 250$ $V_{DS} = 32$ $V_{GS} = 0^{\circ}$ $V_{GS} = \pm 2^{\circ}$ $I_{D} = 50A$ $I_{D} = 50A$ $I_{D} = 50A$ $I_{D} = 50A$ $T_{J} = 175$ $V_{DS} = 25$ $f = 1MH2$	$\mu A, V_{GS} = 0$ 2V, V 20V DS. I_D = 250 A, V_{GS} = 10V A, V_{GS} = 5V A, V_{GS} = 5V C 5V, V_{GS} = 5V, Z Z)V T _J = 150°C 0μΑ /	40 	- - - - - - - - - - - - - - - - - - -	- 1 250 ±100 3 5.2 6.0 6.5 10.7	V μA nA V mΩ pF pF
B _{VDSS} bss bss Dn Cha V _{GS(th)} fDS(on) Dynami C _{iss} C _{oss} C _{rss} R _G Q _{g(TOT)}	Drain to S Zero Gate Gate to So racterist Gate to S Drain to S C Charac Input Cap Output Ca Reverse T Gate Res Total Gate	Source Breakdown V Voltage Drain Curre Dource Leakage Curre Cics Ource Threshold Vol Source On Resistance Cteristics Dacitance apacitance Transfer Capacitance Istance	ent tage	$I_{D} = 250$ $V_{DS} = 33$ $V_{GS} = 0$ $V_{GS} = \pm 32$ $V_{GS} = \pm 32$ $I_{D} = 50A$ $I_{D} = 50A$ $I_{D} = 50A$ $I_{D} = 50A$ $T_{J} = 175$ $V_{DS} = 25$ $f = 1MH2$ $f = 1MH2$	$μA, V_{GS} = 0$ 2V, V 20V $D_{S}, I_{D} = 250$ $V_{GS} = 10V$ $V_{GS} = 5V$ $V_{GS} = 5V$ $V_{GS} = 5V,$ $V_{GS} = 5V,$ $V_{GS} = 5V,$ $V_{CS} = 5V,$ $V_$)V T _J = 150°C 0μΑ / V	40 	- - - - - - - - - - - - - - - - - - -	- 1 250 ±100 3 5.2 6.0 6.5 10.7 - - - -	V μA nA V mΩ pF pF pF
B _{VDSS} DSS GSS Dn Cha V _{GS(th)} DS(on) DS(on) DS(on) C _{iss} C _{oss} C _{rss} R _G Q _{g(TOT)} Q _{g(TH)}	Drain to S Zero Gate Gate to So racterist Gate to S Drain to S c Charac Input Cap Output Ca Reverse T Gate Res Total Gate Threshold	Source Breakdown V Voltage Drain Curre ource Leakage Curre ics ource Threshold Vol Source On Resistance cteristics pacitance apacitance apacitance apacitance apacitance apacitance apacitance apacitance apacitance apacitance apacitance apacitance apacitance apacitance apacitance apacitance apacitance apacitance apacitance	ent tage	$\begin{split} I_{D} &= 250\\ V_{DS} &= 32\\ V_{GS} &= 0\\ V_{GS} &= 1\\ \hline \\ V_{GS} &= 1\\ \hline \\ I_{D} &= 50A\\ \hline \\ I_{D}$	$μA, V_{GS} = 0$ 2V, V 20V $D_{S}, I_{D} = 250$ $V_{GS} = 10V$ $V_{GS} = 5V$ $V_{GS} = 5V$ $V_{GS} = 5V,$ $V_{GS} = 5V,$ $V_{GS} = 5V,$ $V_{CS} = 5V,$ $V_$	V $T_{J} = 150^{\circ}C$ $D\mu A$ V V V V V V V V	40 - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- 1 250 ±100 3 5.2 6.0 6.5 10.7 - - - 60	V μA nA V mΩ pF pF pF Ω nC
B _{VDSS} I _{DSS} I _{GSS} Dn Cha V _{GS(th)}	Drain to S Zero Gate Gate to So racterist Gate to S Drain to S C Charao Input Cap Output Ca Reverse T Gate Res Total Gate Thresholo Gate to S	Source Breakdown V Voltage Drain Curre ource Leakage Curre ics ource Threshold Vol Source On Resistance Cteristics bacitance apacitance apacitance Transfer Capacitance istance a Charge at 5V d Gate Charge	ent tage e	$\begin{split} I_{D} &= 250\\ V_{DS} &= 32\\ V_{GS} &= 0\\ V_{GS} &= 1\\ \hline \\ V_{GS} &= 1\\ \hline \\ I_{D} &= 50A\\ \hline \\ I_{D}$	$μA, V_{GS} = 0$ 2V, V 20V $D_{S}, I_{D} = 250$ $V_{GS} = 10V$ $V_{GS} = 5V$ $V_{GS} = 5V$ $V_{GS} = 5V,$ $V_{GS} = 5V,$ $V_{GS} = 5V,$ $V_{CS} = 5V,$ $V_$	$T_{J} = 150^{\circ}C$ $D\mu A$ V V V $V_{DD} = 20V$	40 	- - - - - - - - - - - - - - - - - - -	- 1 250 ±100 3 5.2 6.0 6.5 10.7 - - - 60 7	V μA nA V mΩ pF pF pF Ω nC nC


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
witch	ing Characteristics					
n	Turn-On Time		-	-	104	ns
(on)	Turn-On Delay Time		-	18.7	-	ns
	Turn-On Rise Time	$V_{DD} = 20V, I_D = 50A$	-	46	-	ns
(off)	Turn-Off Delay Time	——V _{GS} = 5V, R _{GS} = 2Ω	-	42	-	ns
<u> </u>	Turn-Off Fall Time		-	19.2	-	ns
ff	Turn-Off Time		-	-	96	ns
rain-So	ource Diode Characteristics					
	Source to Drain Diade Valtage	I _{SD} = 50A	-	0.9	1.25	v
SD	Source to Drain Diode Voltage	I _{SD} = 25A	-	0.8	1.0	v
	Reverse Recovery Time		-	34	44	ns
rr	Reverse Recovery Charge	I _F = 50A, dI _F /dt = 100A/μs	-	29	38	nC

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC O101 at: http://www.aecouncil.com/


requirements, see AEC Q101 at: http://www.aecouncil.com/ All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

FDD8444L_F085 N-Channel PowerTrench[®] MOSFET

FDD8444L_F085 N-Channel PowerTrench[®] MOSFET

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™ * Fairchild® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FastvCore™ FastwCore™ FastwCore™ FastwCore™ FastwCore™ FastwCore™ FastwCore™ FastwCore™ FastwCore™ FastwCore™ FastwCore™	FRFET [®] Global Power Resource SM Green FPS™ e-Series™ GTO™ e-Series™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® ® PDP SPM™ Power-SPM™ Power-Trench® PowerXS™	Programmable Active Droop™ QFET® QS™ Quiet Series™ RadiConfigure™ To aving our world, 1mW /W /kW at a time™ SmartMax™ SMART START™ SMPR® STEALTH™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 SuperSot	the weer finyBuck™ finyBuck™ finyLogic® TINYOPTOTM finyPWM™ finyWire™ µSerDes™ WeerDes® UHC® Uitra FRFET™ VisualMax™ XS™
---	--	--	--

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts buying direct or from authorized distributors. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized fairchild is

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. I