

HDMI Transmitter Port Protection and Interface Device

CM2020-00TR

Features

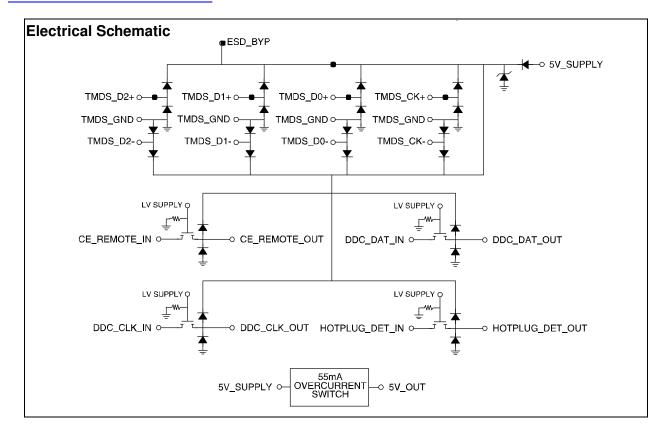
- HDMI 1.3 compliant
- 0.05pF matching capacitance between the TMDS intra-pair
- Overcurrent output protection
- Level shifting/isolation circuitry
- Provides ESD protection to IEC61000-4-2 Level 4
 - 8kV contact discharge
 - 15kV air discharge
- Matched 0.5mm trace spacing (TSSOP)
- Simplified layout for HDMI connectors
- Backdrive protection
- RoHS-compliant, lead-free packaging

Applications

- PC
- Consumer Electronics
- Set Top Box
- DVDRW Players

Product Description

The CM2020-00TR HDMI Transmitter Port Protection and Interface device is specifically designed for next generation HDMI source interface protection.


An integrated package provides all ESD, level shift, overcurrent output protection and backdrive protection for an HDMI port in a single 38-Pin TSSOP package.

The CM2020-00TR part is specifically designed to complement the CM2021 protection part in HDMI receivers (Displays, DTV, CE devices, etc.)

The CM2020-00TR also incorporates a silicon overcurrent protection device for +5V supply voltage output to the connector.

CM2020-00TR

查询"CM2020-00TR-D"供应商

PACKAGE / PINOUT DIAGRAM						
TOP VIEW						
5V_SUP SV_SUP (V_SUP TMDS_I TMDS_ TMDS	PLY 1 1 pLY 2 ND 2 3 D2+ 4 4 ND 5 D2- 6 D1+ 7 ND 8 D1- 9 D0- 10 ND 11 D0- 11 D0- 112 CK+ 113	38 5V_OUT 37 ESD_BYP 36 GND 35 TMDS_D2+ 34 TMDS_GND 33 TMDS_D2- 32 TMDS_D1+ 31 TMDS_D1- 29 TMDS_D0- 26 TMDS_CK+ 25 TMDS_GND				
TMDS CE_REMOTE DDC_CLK	СК- []]] 15 _IN []]] 16	24 TMDS_CK- 23 CE_REMOTE_OUT 22 DDC_CLK_OUT				
DDC_DAT HOTPLUG_DET	_IN 18	21 DDC_DAT_OUT 20 HOTPLUG_DET_OUT				
Note: This drawing is not to scale.	38-PIN TSSOP P	ACKAGE				

CM2020-00TR 查询"CM2020-00TR-D"供应商

Pin Descriptions

	PIN DESCRIPTIONS						
PINS	NAME	ESD Level	DESCRIPTION				
4, 35	TMDS_D2+	8kV ³	TMDS 0.9pF ESD protection ¹ .				
6, 33	TMDS_D2-	8kV ³	TMDS 0.9pF ESD protection ¹ .				
7, 32	TMDS_D1+	8kV ³	TMDS 0.9pF ESD protection ¹ .				
9, 30	TMDS_D1-	8kV ³	TMDS 0.9pF ESD protection ¹ .				
10, 29	TMDS_D0+	8kV ³	TMDS 0.9pF ESD protection ¹ .				
12, 27	TMDS_D0-	8kV ³	TMDS 0.9pF ESD protection ¹ .				
13, 26	TMDS_CK+	8kV ³	TMDS 0.9pF ESD protection ¹ .				
15, 24	TMDS_CK-	8kV ³	TMDS 0.9pF ESD protection ¹ .				
16	CE_REMOTE_IN	2kV ⁴	LV_SUPPLY referenced logic level into ASIC.				
23	CE_REMOTE_OUT	8kV ³	5V_SUPPLY referenced logic level out plus 3.5pF ESD to connector.				
17	DDC_CLK_IN	2kV⁴	LV_SUPPLY referenced logic level into ASIC.				
22	DDC_CLK_OUT	8kV ³	5V_SUPPLY referenced logic level out plus 3.5pF ESD to connector.				
18	DDC_DAT_IN	2kV⁴	LV_SUPPLY referenced logic level into ASIC.				
21	DDC_DAT_OUT	8kV ³	5V_SUPPLY referenced logic level out plus 3.5pF ESD to connector.				
19	HOTPLUG_DET_IN	2kV ⁴	LV_SUPPLY referenced logic level into ASIC.				
20	HOTPLUG_DET_OUT	8kV ³	5V_SUPPLY referenced logic level out plus 3.5pF ESD ² to connector				
2	LV_SUPPLY	2kV⁴	Bias for CE / DDC / HOTPLUG level shifters.				
1	5V_SUPPLY	2kV ⁴	Current source for 5V_OUT.				
38	5V_OUT	8kV ³	55mA minimum overcurrent protected 5V output. This output must be bypassed with a $0.1\mu F$ ceramic capacitor.				
37	ESD_BYP	2kV⁴	This pin must be connected to a $0.1 \mu F$ ceramic capacitor.				
3, 36	GND	N/A	Supply GND reference.				
5, 34, 8, 31, 11, 28, 14, 25	TMDS_GND	N/A	TMDS ESD and Parasitic GND return.⁵				

Note 1: These 2 pins need to be connected together in-line on the PCB.

- Note 2: This output can be connected to an external 0.1µF ceramic capacitor, resulting in an increased ESD withstand voltage rating.
- Note 3: Standard IEC 61000-4-2, C_{DISCHARGE}=150pF, R_{DISCHARGE}=330Ω, 5V_SUPPLY and LV_SUPPLY within recommended operating conditions, GND=0V and ESD_BYP (pin 37), 5V_OUT (pin 38), and HOTPLUG_DET_OUT (pin 20) each bypassed with a 0.1µF ceramic capacitor connected to GND.
- Note 4: Human Body Model per MIL-STD-883, Method 3015, C_{DISCHARGE}=100pF, R_{DISCHARGE}=1.5kΩ, 5V_SUPPLYand LV_SUPPLY within recommended operating conditions, GND=0V and ESD_BYP (pin 37), 5V_OUT (pin 38), and HOTPLUG_DET_OUT (pin 20) each bypassed with a 0.1µF ceramic capacitor connected to GND.
- Note 5: These pins should be routed directly to the associated GND pins on the HDMI connector with single point ground vias at the connector

Ordering Information

PART NUMBERING INFORMATION							
Pins Package Ordering Part Number ¹ Part Marking							
38	TSSOP-38	CM2020-00TR	CM2020-00TR				

Note 1: Parts are shipped in Tape and Reel form unless otherwise specified.

Backdrive protection

Below, two scenarios are discussed to illustrate what can happen when a powered device is connected to an unpowered device via a HDMI interface, substantiating the need for backdrive protection on this type of interface. In the first example a DVD player is connected to a TV via an HDMI interface. If the DVD player is switched off and the TV is left on, there is a possibility of reverse current flow back into the main power supply rail of the DVD player. Typically, the DVD's power supply has some form of bulk supply capacitance associated with it. Because all CMOS logic exhibits a very high impedance on the power rail node when "off", if there may be very little parasitic shunt resistance, and even with as little as a few milliamps of "backdrive" current flowing into the power rail, it is possible over time to charge that bulk supply capacitance to some intermediate level. If this level rises above the power-on-reset (POR) voltage level of some of the integrated circuits in the DVD player, these devices may not reset properly when the DVD player is turned back on.

In a more serious scenario, if any SOC devices are incorporated in the design which have built-in level shifter and DRC diodes for ESD protection, there is even a risk for permanent damage. In this case, if there is a pullup resistor (such as with DDC) on the other end of the cable, then that resistance will pull the SOC chips "output" up to a high level. This will forward bias the upper ESD diode in the DRC and charge the bulk capacitance in a similar fashion as described in the first example. If this current flow is high enough, even as little as a few milliamps, it could destroy one of the SOC chip's internal DRC diodes, as they are not designed for passing DC.

To avoid either of these situations, the CM2020-00TR was designed to block backdrive current, guaranteeing no more than 5mA on any I/O pin when the I/O pin voltage is greater than the CM2020-00TR supply voltage.

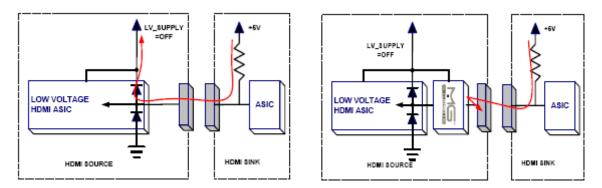


Figure 1. Backdrive Protection Diagram.

CM2020-00TR 查询"CM2020-00TR-D"供应商

Specifications

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	RATING	UNITS				
V _{CC5V} , V _{CCLV}	6.0	V				
DC Voltage at any Channel Input	6.0	V				
Storage Temperature Range	-65 to +150	°C				

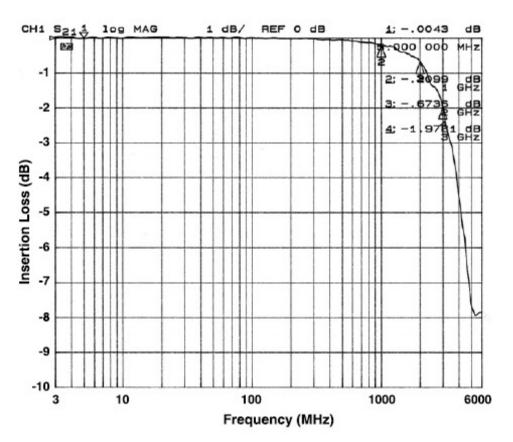
	STANDARD (RECOMMENDED) OPERATING CONDITIONS								
SYMBOL	PARAMETER	MIN	ТҮР	МАХ	UNITS				
5V_SUPPLY	Operating Supply Voltage	GND	5	5.5	V				
LV_SUPPLY	Bias Supply Voltage	1	3.3	5.5	V				
	Operating Temperature Range	-40		85	°C				

	ELECTRICAL OPERATING CHARACTERISTICS (SEE NOTE 1)									
SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS				
I _{CC5V}	Operating Supply Current	5V_SUPPLY = 5.0V		110	130	μA				
I _{cclv}	Bias Supply Current	LV_SUPPLY = 3.3V		1	5	μA				
V _{DROP}	5V_OUT Overcurrent Output Drop	5V_SUPPLY= 5.0V, Ι _{ουτ} =55mA		65	100	mV				
I _{sc}	5V_OUT Short Circuit Current Limit	5V_SUPPLY= 5.0V, 5V_OUT = GND	90	135	175	mA				
I _{off}	OFF state leakage current, level shifting NFET	LV_SUPPLY 0V		0.1	5	μΑ				
IBACKDRIVE	Current conducted from output pins to V_SUPPLY rails when powered down	5V_SUPPLY V _{CH_OUT} ; Signal pins: TMDS_D[2:0]+/-, TMDS_CK+/-, CE_REMOTE_OUT, DDC_DAT_OUT, DDC_CLK_OUT, HOTPLUG_DET_OUT, 5V_OUT Only		0.1	5	μΑ				
I _{BACKDRIVE,} CEC	Current through CE-REMOTE_OUT when powered down	CE-REMOTE_IN = LV_SUPPLY < CE_REMOTE_OUT		0.1	1	μA				

查询"CM2020-00TR-D"供应商

CM2020-00TR

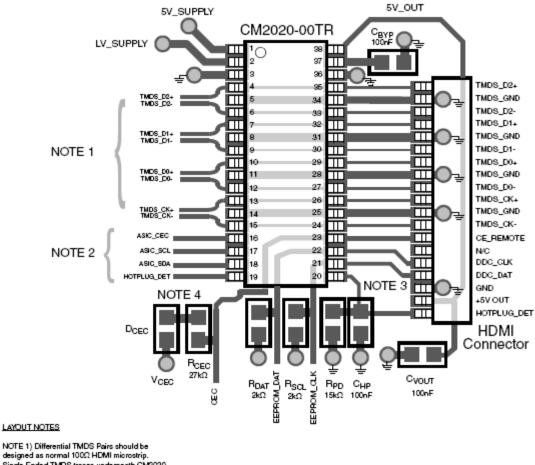
SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	МАХ	UNITS
V _{on}	VOLTAGE drop across level shifting NFET when ON	$LV_SUPPLY = 2.5V, V_s = GND,$ $I_{DS} = 3mA$	75	95	140	mV
V _F	Diode Forward Voltage Top Diode Bottom Diode	I _F = 8mA, T _A = 25 °C	0.6 0.6	0.85 0.85	0.95 0.95	V V
V_{ESD}	ESD Withstand Voltage, contact discharge per IEC 61000-4-2 standard (IEC)	Pins 4, 7, 10, 13, 20, 21, 22, 23, 24, 27, 30, 33, 38; T _A =25 ℃ Note 2	±8			kV
V _{CL}	Channel Clamp Voltage Positive Transients Negative Transients	$T_{A}=25 \text{ °C}, I_{PP}=1 \text{ A}, t_{P}=8/20 \text{ uS};$ Note 3		10.8 -2.1		V V
R _{dyn}	Dynamic Resistance Positive Transients Negative Transients	$I_{_{PP}}$ = 1A, $t_{_{P}}$ = 8/20µS; $T_{_{A}}$ = 25 °C; Note 3		1.4 0.9		Ω Ω
Ι _{LEAK}	TMDS Channel Leakage Current	T _A = 25 ℃		0.01	1	μA
C _{IN,} TMDS	TMDS Channel Input Capacitance	5V_SUPPLY= 5.0V, Measured at 1MHz, V _{BIAS} =2.5V		0.9	1.2	pF
$\Delta c_{_{\rm IN,}}$ TMDS	TMDS Channel Input Capacitance Matching	5V_SUPPLY= 5.0V, Measured at 1MHz, V_{BIAS} =2.5V; Note 4		0.05		pF
C _{IN,} DDC	Level Shifting Input Capacitance, Capacitance to GND	5V_SUPPLY= 5.0V, Measured at 100KHz, V _{BIAS} =2.5V; Note 2		3.5	4	pF
C _{IN,} CEC	Level Shifting Input Capacitance, Capacitance to GND	$5V_SUPPLY= 5.0V,$ Measured at 100KHz, $V_{BIAS}=2.5V$		3.5	4	pF
C _{IN,} HP	Level Shifting Input Capacitance, Capacitance to GND	5V_SUPPLY= 5.0V, Measured at 100KHz, V_{BIAS} =2.5V		3.5	4	pF


Note 1: Operating Characteristics are over Standard Operating Conditions unless otherwise specified.

Note 3: These measurements performed with no external capacitor on ESD_BYP.

Note 4: Intra-pair matching, each TMDS pair (i.e. D+, D-)

Note2: Standard IEC 61000-4-2, C_{DISCHARGE}=150pF, R_{DISCHARGE}=330Ω, 5V_SUPPLY and LV_SUPPLY within recommended operating conditions, GND=0V and ESD_BYP (pin 37), 5V_OUT (pin 38), and HOTPLUG_DET_OUT (pin 20) each bypassed with a 0.1µF ceramic capacitor connected to GND.


Performance Information

Typical Filter Performance (T_A=25 °C, DC Bias=0V, 50 Ohm Environment)

Figure 2. Insertion Loss vs. Frequency (TMDS_D1- to GND)

Application Information

designed as normal 1002 HDMI microstrip. Single Ended TMDS traces underneath CM2020 and between CM2020 and Connector should be tuned to match chip/connector parasitics. (See MediaGuardTM Application Notes.)

NOTE 2) Level Shifter signals should be biased with a weak pullup to the desired local LV_SUPPLY. If the local ASIC includes sufficient pullups to register a logic high when the CM2020 NFET is "off", then external pullups are not needed. NOTE 3) Place CM2020 as obse to conector as possible, and as with any controlled impedance line avoid ANY sitscreening over TMOS lines. NOTE 4) CEC pullup isolation. The 27k R_{CEC}

and a Schottky Dcecprovide the necessary isolation for the CEC pullup.

Figure 3. Typical Application for CM2020-00TR

Application Information (cont'd)

Design Considerations

ESD Bypass

Pin 37 (ESD_BYP) is provided for an optional external ESD bypass capacitor only (i.e. 0.1mF ceramic.) It should not be connected to any supply rail.

5V Overcurrent Output

Maximum Overcurrent Protection output drop at 55mA on 5V_OUT is 100mV. To meet HDMI output requirements of 4.8-5.3V, an input of greater than 4.9V should be used (i.e. 5.1V + 4%). A 0.1μ F ceramic bypass capacitor on this output is also recommended.

Hotplug Detect Input

To meet the requirements of HDMI CTS TID7-12, the following pullup/pulldown configuration is recommended for a $3.3V_{+}/-10\%$ internal VCC rail (See Figure 4 below). A 0.1μ F ceramic capacitor is recommended for additional edge debounce and ESD bypass.

DUT On vs. DUT Off

Many HDMI CTS tests require a power off condition on the System Under Test. Many Dual Rail Clamp (DRC) ESD diode configurations will be forward biased when their VDD rail is lower than the I/O pin bias, thereby exhibiting extremely high apparent capacitance measurements, for example. The MediaGuard[™] backdrive isolation circuitry limits this current to <5µA, and will help ensure compliance.

查询"CM2020-00TR-D"供应商

CM2020-00TR

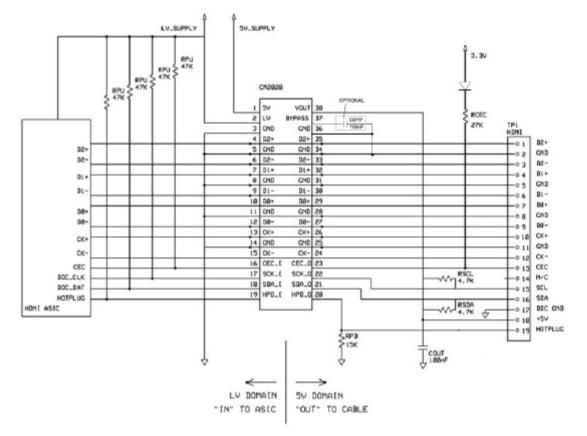
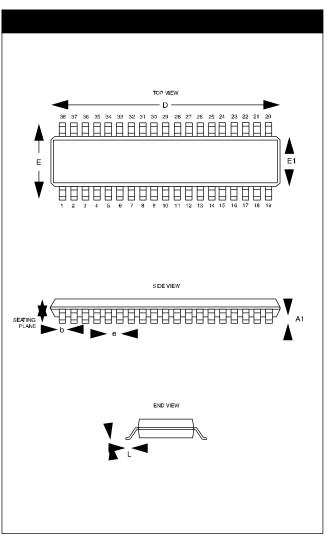


Figure 4. Design Example

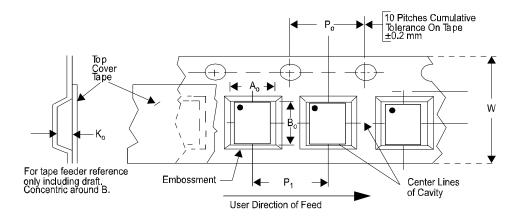

CM2020-00TR 查询"CM2020-00<u>TR-D"供应商</u>

Mechanical Details

TSSOP-38 Mechanical Specifications

CM2020-00TR devices are supplied in 38-pin TSSOP packages. Dimensions are presented below.

PACKAGE DIMENSIONS							
Package		TSS	SOP				
JEDEC No.	١	MO-153 (Va	riation BD-	1)			
Pins		3	8				
Dimensions	Millir	neters	Inc	hes			
	Min	Max	Min	Max			
Α	_	1.20	_	0.047			
A1	0.05	0.15	0.002	0.006			
b	0.17	0.27	0.007	0.011			
с	0.09	0.20	0.004	0.008			
D	9.60	9.80	0.378	0.386			
E	6.40	BSC	0.25	2 BSC			
E1	4.30	4.50	0.169	0.177			
е	0.50	BSC	0.02	0 BSC			
L	0.45	0.75	0.018	0.030			
# per tape and reel	2500 pieces						
С	Controlling dimension: millimeters						



Package Dimensions for TSSOP-38

查询"CM2020-00TR-D"供应商

Tape and Reel Specifications

PART NUMBER	PACKAGE SIZE (mm)	POCKET SIZE (mm) B ₀ X A ₀ X K ₀	TAPE WIDTH W	REEL DIAMETER	QTY PER REEL	P₀	P,
CM2020-00TR	9.70 X 6.40 X 1.20	10.20 X 6.90 X 1.80	16mm	330mm (13")	2500	4mm	12mm

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for reseale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative