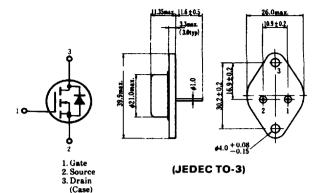
(Dimensions in mm)

2SK401

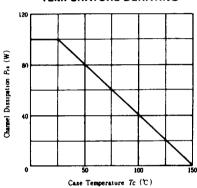

HITACHI/{OPTOELECTRONIC LIE D

SILICON N-CHANNEL MOS FET 2SK401 供应商

HIGH SPEED POWER SWITCHING, HIGH FREQUENCY POWER AMPLIFIER

■ FEATURES

- Low On-Resistance.
- High Speed Switching.
- High Cutoff Frequency.
- No Secondary Breakdown.
- Suitable for Switching Regulator, DC-DC Converter, Motor Control, and Ultrasonic Power Oscillators.

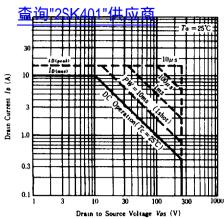


■ ABSOLUTE MAXIMUM RATINGS (T_a =25 °C)

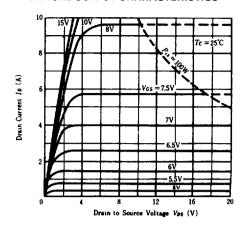
Item	Symbol	Rating	Unit
Drain-Source Voltage	V _{DSS}	250	v
Gate-Source Voltage	V_{GSS}	±20	v
Drain Current	I _D	10	A
Drain Peak Current	I D(prak)	15	A
Body-Drain Diode Reverse Drain Current	IDR	10	A
Channel Dissipation	Pch*	100	w
Channel Temperature	T _{ch}	150	°C
Storage Temperature	Tsig	-55 ~ +150	°C

^{*}Value at Tc=25 °C

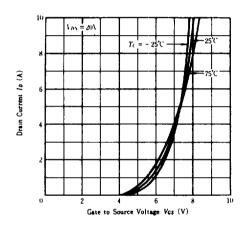
POWER VS. TEMPERATURE DERATING

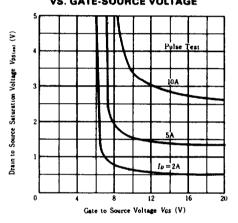

■ ELECTRICAL CHARACTERISTICS (T_a=25 °C)

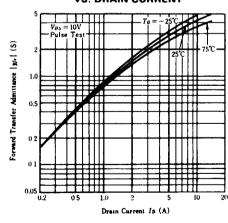
Item	Symbol	Test Condition	min.	typ.	max.	Unit
Drain-Source Breakdown Voltage	$V_{(sR)DSS}$	$I_D=10$ mA, $V_{GS}=0$	250	_	_	v
Gate-Source Leak Current	I _{GSS}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$	_	_	±1	μА
Zero Gate Voltage Drain Current	IDSS	$V_{os}=200 \text{V}, V_{os}=0$	_	_	1	mA
Gate-Source Cutoff Voltage	$V_{GS(eff)}$	$I_D=1$ mA, $V_{DS}=10$ V	2.0	_	5.0	v
Static Drain-Source On State Resistance	R _{DS(on)}	$I_D=5A, V_{GS}=15V^*$	-	0.3	0.4	Ω
Drain-Source Saturation Voltage	V_{DRon}	$I_{o}=5$ A. $V_{GS}=15$ V*	_	1.5	2.0	V
Forward Transfer Admittance	<i>V</i> /4	I ₀ =5A, V _{0s} =10V*	1.6	2.5	_	s
Input Capacitance	Cus	V_{DS} =10V, V_{GS} =0	_	1400	_	рF
Output Capacitance	C.,,		_	500	_	pF
Reverse Transfer Capacitance	C _{res}	f=1MHz	_	35	_	pF
Turn-on Delay Time	t _{d(en)}		_	13	_	ns
Rise Time	t,	I_{B} =2A, V_{GS} =15V R_{L} =15 Ω	_	52	_	ns
Turn-off Delay Time	t _{elen}		_	120	-	ns
Fall Time	t _f		_	60		ns
Body-Drain Diode Forward Voltage	V_{DF}	$I_{r}=5A$, $V_{GS}=0$	<u> </u>	0.9	_	v
Body-Drain Diode Reverse Recovery Time	t,,	I_t =5A. V_{GS} =0 di_f/dt =100A/ μ s	_	400	_	ns

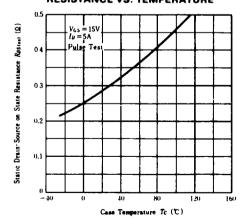

^{*}Pulse Test

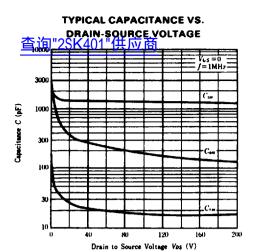
274


MAXIMUM SAFE OPERATION AREA

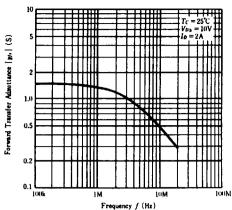

TYPICAL OUTPUT CHARACTERISTICS

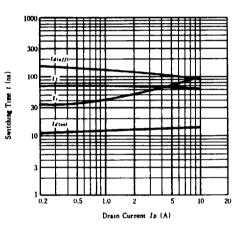

TYPICAL TRANSFER CHARACTERISTICS


DRAIN-SOURCE SATURATION VOLTAGE VS. GATE-SOURCE VOLTAGE

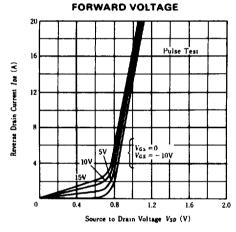


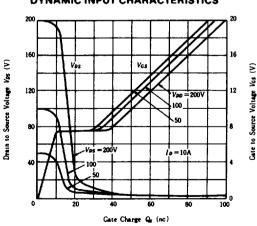
FORWARD TRANSFER ADMITTANCE VS. DRAIN CURRENT

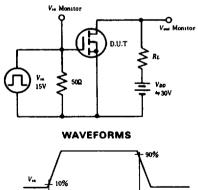

STATIC DRAIN-SOURCE ON STATE RESISTANCE VS. TEMPERATURE

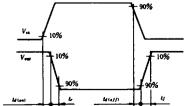


HITACHI/{OPTOELECTRONIC FORWARD TRANSFER ADMITTANCE


VS. FREQUENCY


SWITCHING CHARACTERISTICS


MAXIMUM BODY-DRAIN DIODE



DYNAMIC INPUT CHARACTERISTICS

SWITCHING TIME TEST CIRCUIT

