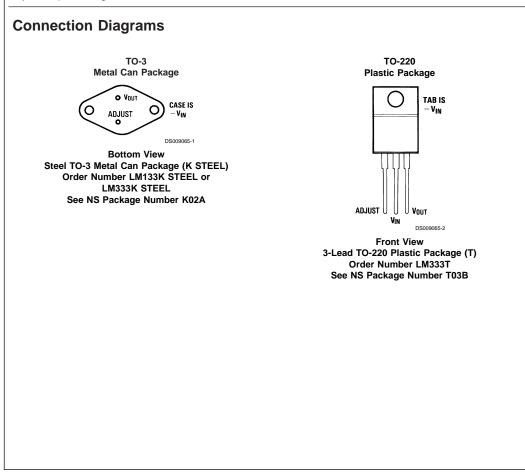
🕅 National Semiconductor

LM133/LM333 3-Ampere Adjustable Negative Regulators


General Description

The LM133/LM333 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of -3.0A over an output voltage range of -1.2V to -32V. These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM133 series features internal current limiting, thermal shutdown and safe-area compensation, making them substantially immune to failure from overloads.

The LM133/LM333 serve a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM133/ LM333 are ideal complements to the LM150/LM350 adjustable positive regulators.

Features

- Output voltage adjustable from -1.2V to -32V
- 3.0A output current guaranteed, -55°C to +150°C
- Line regulation typically 0.01%/V
- Load regulation typically 0.2%
- Excellent rejection of thermal transients
- 50 ppm/°C temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- P⁺ Product Enhancement tested
- Standard 3-lead transistor package
- Output is short circuit protected

www.national.com

LM133/LM333 3-Ampere Adjustable Negative Regulators

May 1998

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Dissipation	Internally Limited
Input-Output Voltage Differential	35V
Operating Junction Temperature Range LM133 LM333	T _{MIN} to T _{MAX} –55°C to +150°C –40°C to +125°C

Storage Temperature	–65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	
TO-3 Package	300°C
TO-220 Package	260°C
ESD Susceptibility	TBD

Electrical Characteristics LM133

Specifications with standard typeface are for $T_J = 25^{\circ}C$, and those with **boldface type** apply over the full operating temperature range. (Note 3) 1.4. Т

Parameter	Conditions	Typical	Min	Max	Units
			(Note 2)	(Note 2)	
Reference Voltage	I _L = 10 mA	-1.250	-1.238	-1.262	V
	$3V \le V_{IN} - V_{OUT} \le 35V$	-1.250	-1.225	-1.275	V
	10 mA \leq I _L \leq 3A, P \leq P _{MAX}				
Line Regulation	$3V \le V_{IN} - V_{OUT} \le 35V$	0.01		0.02	% /V
	I _{OUT} = 50 mA (Note 4)	0.02		0.05	
Load Regulation	$10 \text{ mA} \le I_{OUT} \le 3A, P \le P_{MAX}$	0.2		0.5	%
	(Notes 4, 5)	0.4		1.0	
Thermal Regulation	10 ms Pulse	0.002		0.01	% /W
Temperature Stability	$T_{MIN} \le T_J \le T_{MAX}$	0.4			%
Long Term Stability	$T_{J} = 125^{\circ}C, 1000 \text{ Hours}$	0.15			%
Adjust Pin Current		65		90	μA
		70		100	
Adjust Pin Current	$10 \text{ mA} \le I_L \le 3A$	2		6	μA
Change	$3.0V \le V_{IN} - V_{OUT} \le 35V$				
Minimum Load	$ V_{IN} - V_{OUT} \le 35V$	2.5		5.0	mA
Current	$ V_{IN} - V_{OUT} \le 10V$	1.2		2.5	
Current Limit	$3V \le V_{IN} - V_{OUT} \le 10V$	3.9	3.0		
(Note 5)	$ V_{IN} - V_{OUT} = 20V$	2.4	1.25		A
	$ V_{IN} - V_{OUT} = 30V$	0.4	0.3		
Output Noise	10 Hz to 10 kHz	0.003			% (rms)
(% of V _{OUT})					
Ripple Rejection	V _{OUT} = 10V, f = 120 Hz				dB
	$C_{ADJ} = 0 \ \mu F$	60			
	C _{ADJ} = 10 μF	77			
Thermal Resistance	TO-3 Package (K STEEL)	1.2		1.8	°C/W
Junction-to-Case					
Thermal Shutdown		163	150	190	°C
Temperature					

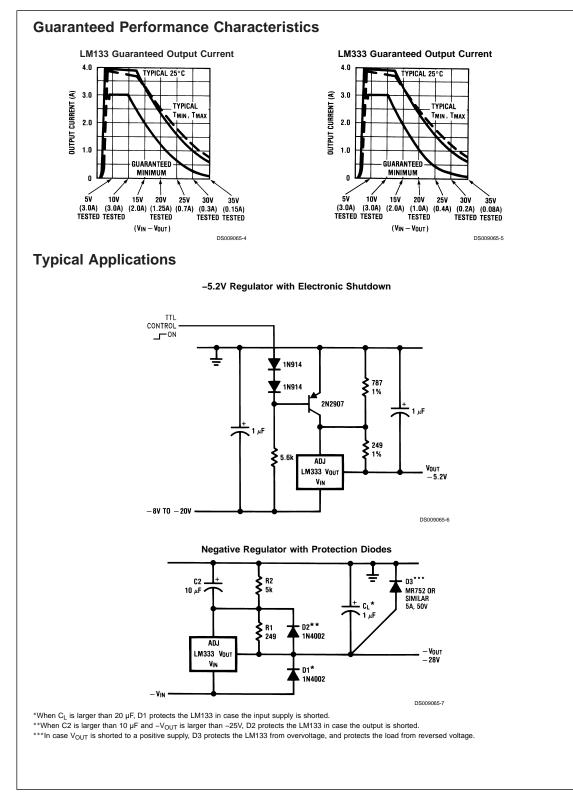
Electrical Characteristics LM333

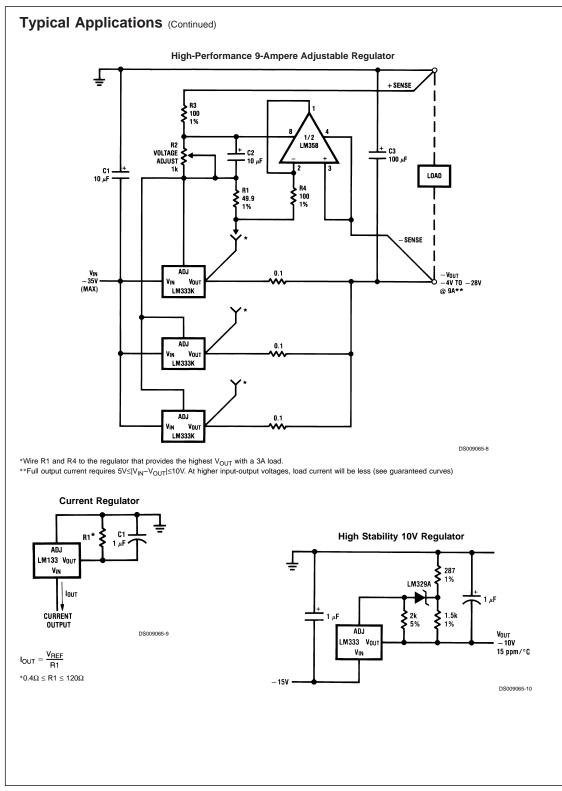
Specifications with standard typeface are for $T_J = 25^{\circ}C$, and those with **boldface type** apply over the full operating temperature range. (Note 3)

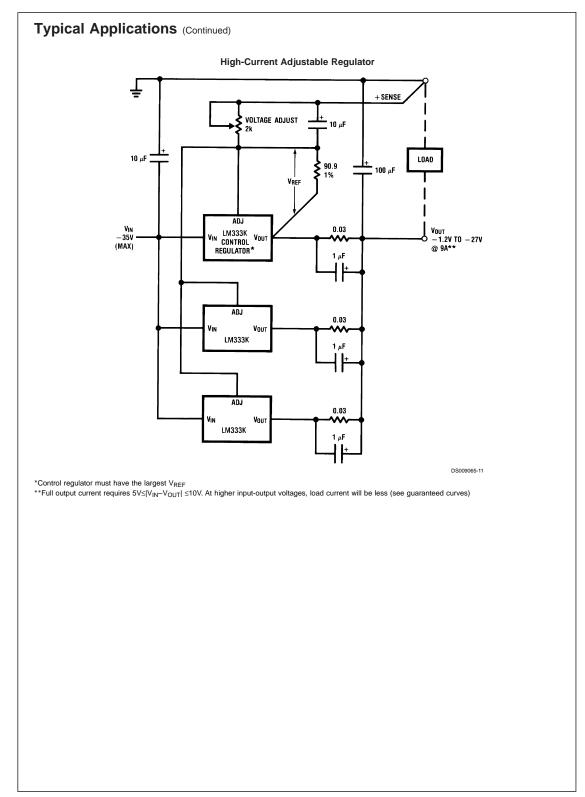
Parameter	Conditions	Typical	Min	Max	Units
			(Note 2)	(Note 2)	
Reference Voltage	I _L = 10 mA	-1.250	-1.225	-1.275	V
	$3V \le V_{IN} - V_{OUT} \le 35V$	-1.250	-1.213	-1.287]
	10 mA \leq I _L \leq 3A, P \leq P _{MAX}				

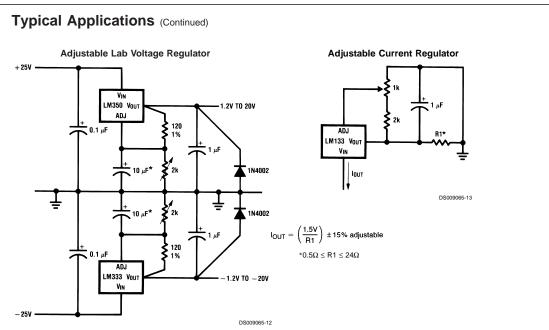
Electrical Characteristics LM333 (Continued)

Specifications with standard typeface are for $T_J = 25^{\circ}C$, and those with **boldface type** apply over the full operating temperature range. (Note 3)


Parameter	Conditions	Typical	Min	Max	Units
			(Note 2)	(Note 2)	
Line Regulation	$3V \le V_{IN} - V_{OUT} \le 35V$	0.01		0.04	% /V
	I _{OUT} = 50 mA (Note 4)	0.02		0.07	
Load Regulation	$10 \text{ mA} \le I_L \le 3A, P \le P_{MAX}$	0.2		1.0	%
	(Notes 4, 5)	0.4		1.5	
Thermal Regulation	10 ms Pulse	0.002		0.02	% /W
Temperature Stability	$T_{MIN} \le T_J \le T_{MAX}$	0.5			%
Long Term Stability	$T_{J} = 125^{\circ}C, 1000 \text{ Hours}$	0.2			%
Adjust Pin Current		65		95	μA
		70		100	
Adjust Pin Current	$10 \text{ mA} \le I_L \le 3A$	2.5		8	μΑ
Change	$3.0V \le V_{IN} - V_{OUT} \le 35V$				
Minimum Load	$ V_{IN} - V_{OUT} \le 35V$	2.5		10	mA
Current	$ V_{IN} - V_{OUT} \le 10V$	1.5		5.0	1
Current Limit	$3V \le V_{IN} - V_{OUT} \le 10V$	3.9	3.0		
(Note 5)	$ V_{IN} - V_{OUT} = 20V$	2.4	1.0		A
	$ V_{IN} - V_{OUT} = 30V$	0.4	0.20		1
Output Noise	10 Hz to 10 kHz	0.003			% (rms)
(% of V _{OUT})					
Ripple Rejection	V _{OUT} = 10V, f = 120 Hz				
	$C_{ADJ} = 0 \ \mu F$	60			dB
	C _{ADJ} = 10 μF	77			
Thermal Resistance	TO-3 Package (K STEEL)	1.2		1.8	°C/W
Junction to Case	TO-220 Package (T)	3		4	
Thermal Shutdown		163			°C
Temperature					
Thermal Resistance	K Package	35			°C/W
Junction to Ambient	T Package	50			
(No Heatsink)					


Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device outside of its stated operating conditions.


Note 2: All limits are guaranteed at either room temperature (standard type face) or at temperature extremes (bold typeface) by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods.


Note 3: Unless otherwise specified: $|V_{IN} - V_{OUT}| = 5V$, $I_{OUT} = 0.5A$, $P_{DISS} \le 30W$.

Note 4: Load and line regulation are measured at constant junction temperature, using low duty cycle pulse testing (output voltage changes due to heating effects are covered by the Thermal Regulation specification). For the TO-3 package, load regulation is measured on the output pin, V_0^* below the base of the package. **Note 5:** The output current of the LM333 is guaranteed to be \geq 3A in the range $3V \leq |V_{IN} - V_{OUT}| \leq 10V$. For the range $10V \leq |V_{IN} - V_{OUT}| \leq 15V$, the guaranteed minimum output current is equal to: $30/(V_{IN} - V_{OUT})$. Refer to graphs for guaranteed output currents at other voltages.

*The 10 µF capacitors are optional to improve ripple rejection.

THERMAL REGULATION

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since the power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulator of a voltage regulator is defined as the percentage change of $V_{\rm OUT}$, per watt, within the first 10 ms after a step of power is applied. The LM133's specification is 0.01%/W, max.

In Figure 1, a typical LM133's output drifts only 2 mV (or 0.02% of $V_{OUT} = -10V$) when a 20W pulse is applied for 10 ms. This performance is thus well inside the specification limit of 0.01%/Wx20W = 0.2% max. When the 20W pulse is ended, the thermal regulation again shows a 2 mV step as the LM133 chip cools off. Note that the load regulation error of about 1 mV (0.01%) is additional to the thermal regulation error. In *Figure 2*, when the 20W pulse is applied for 100 ms, the output drifts only slightly beyond the drift in the first 10 ms, and the thermal error stays well within 0.1% (10 mV).

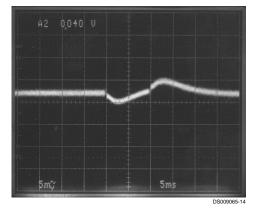
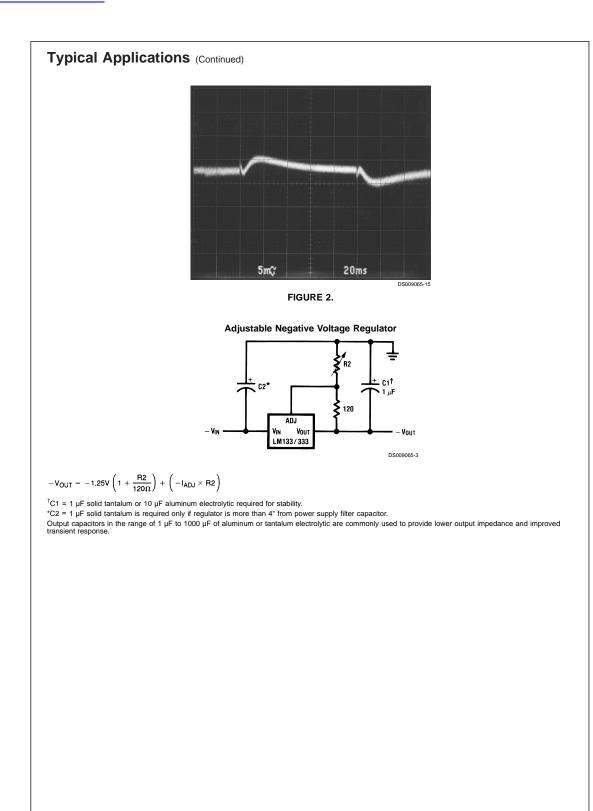
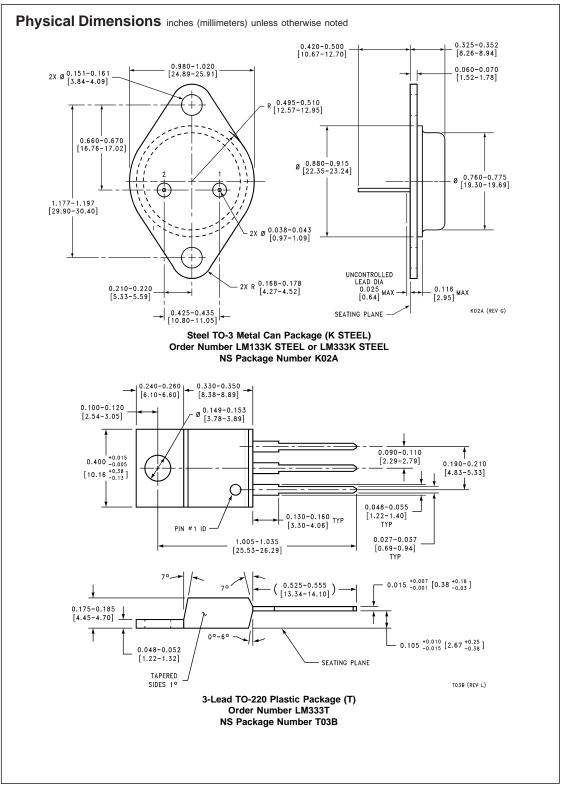




FIGURE 1.

www.national.com

8

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.