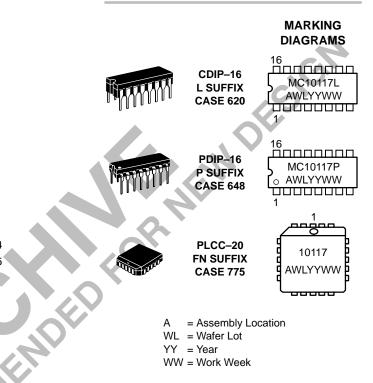
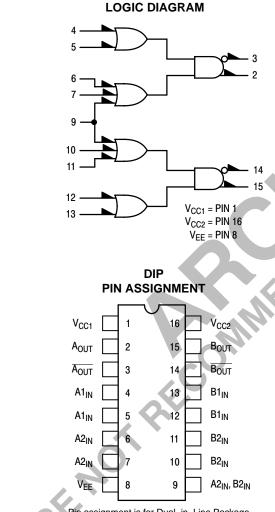
2100111117世 (11)

Dual 2-Wide 2-3-Input OR-AND/OR-AND Gate


The MC10117 is a dual 2-wide 2-3-input OR-AND/OR-AND-Invert gate. This general purpose logic element is designed for use in data control, such as digital multiplexing or data distribution. Pin 9 is common to both gates.

- $P_D = 100 \text{ mW typ/pkg}$ (No Load)
- $t_{pd} = 2.3$ ns typ
- t_r , $t_f = 2.2$ ns typ (20%-80%)


ON Semiconductor

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping		
MC10117L	CDIP-16	25 Units / Rail		
MC10117P	PDIP-16	25 Units / Rail		
MC10117FN	PLCC-20	46 Units / Rail		

Pin assignment is for Dual–in–Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ELECTRICAD CHARACTERISTICS

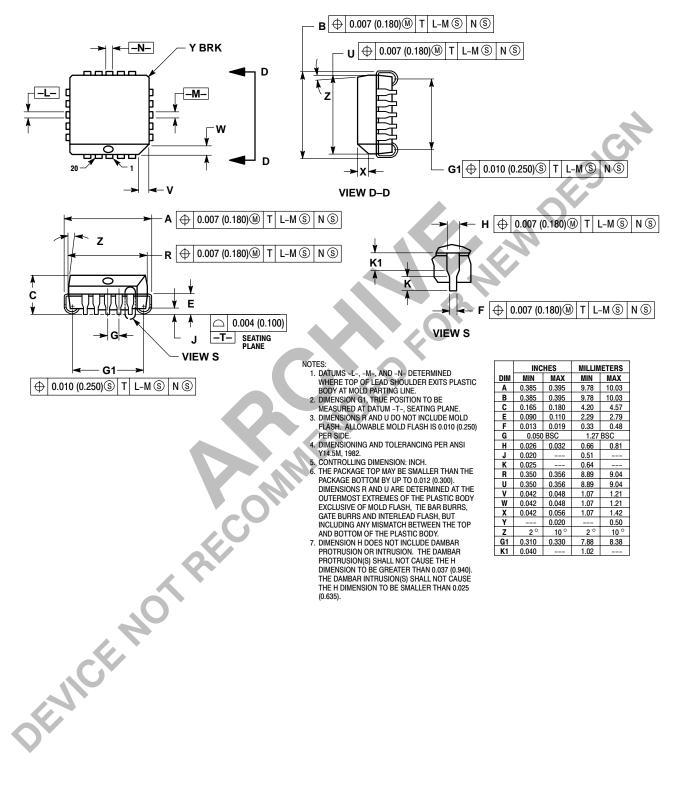
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Min 0.5 -0.960 -0.960 -1.850	+25°C Typ 20	Max 26 265 350 245	+85 Min	5° C Max 29 265	Uni mAd
Power Supply Drain Current I 8 29 Input Current I_{inH}^* 6 425 0 4 0.5 560 Qutput Voltage Logic 1 V _{OH} 2 -1.060 -0.890 Output Voltage Logic 0 V _{OL} 2 -1.890 -1.675 Output Voltage Logic 1 V _{OL} 2 -1.890 -1.675 Threshold Voltage Logic 0 V _{OL} 2 -1.080 -1.675 Threshold Voltage Logic 0 V _{OLA} 2 -1.685 -1.655 Switching Times (50Ω Load) V -1.655 -1.655 -1.655 Switching Times (20 to 80%) t ₂₊ 2 1.4 3.9 Rise Time (20 to 80%) t ₂₊ 2 0.9 4.1 Fall Time (20 to 80%) t ₂₋ 2 0.9 4.1 Inputs 4, 5, 12 and 13 have same l _{inH} limit. Inputs 6, 7, 10 and 11 have same l _{inH} limit. Inputs 6, 7, 10 and 11 have same l _{inH} limit. 0.9 4.1	0.5 -0.960 -0.960		26 265 350	Min	29	mAc
Input Current I_{inH}^* 6 9 425 560 390 Output Voltage Logic 1 V _{OH} 2 -1.060 -0.890 -1.060 -0.890 -0.780 Output Voltage Logic 0 V _{OL} 2 -1.890 -1.675 -1.675 -1.890 -1.675 Output Voltage Logic 1 V _{OL} 2 -1.080 -1.675 Threshold Voltage Logic 0 V _{OLA} 2 -1.080 -1.655 Threshold Voltage Logic 0 V _{OLA} 2 -1.655 -1.655 Switching Times (50Ω Load) Image: table tab	-0.960 -0.960	20	265 350			-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-0.960 -0.960		350		265	^
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-0.960 -0.960				350	μAd
Output Voltage Logic 1 V _{OH} 2 -1.060 -0.890 Output Voltage Logic 0 V _{OL} 2 -1.060 -0.780 Output Voltage Logic 0 V _{OL} 2 -1.890 -1.675 Threshold Voltage Logic 1 V _{OHA} 2 -1.080 -1.675 Threshold Voltage Logic 0 V _{OLA} 2 -1.080 -1.655 Switching Times (50Ω Load) V 2 -1.4 3.9 Propagation Delay t_{4+2+} 2 1.4 3.9 -1.655 Switching Times (20 to 80%) t_{2+} 2 0.9 4.1 Rise Time (20 to 80%) t_{2-} 2 0.9 4.1 Fall Time (20 to 80%) t_{2-} 2 0.9 4.1 Inputs 4, 5, 12 and 13 have same l _{inH} limit. Inputs 6, 7, 10 and 11 have same l _{inH} limit. Inputs 6, 7, 10 and 11 have same l _{inH} limit. Inputs 6, 7, 10 and 11 have same l _{inH} limit.	-0.960 -0.960		 		245	
Output Voltage Logic 1 V_{OH} 2 -1.060 -0.890 Output Voltage Logic 0 V_{OL} 2 -1.890 -1.675 Output Voltage Logic 1 V_{OL} 2 -1.890 -1.675 Threshold Voltage Logic 1 V_{OHA} 2 -1.080 -1.675 Threshold Voltage Logic 0 V_{OLA} 2 -1.080 -1.655 Switching Times (50Ω Load) V_{OLA} 2 -1.655 Switching Times (50Ω Load) I_{4+2+} 2 1.4 3.9 Rise Time (20 to 80%) t_{2+} 2 0.9 4.1 Fall Time (20 to 80%) t_{2-} 2 0.9 4.1 Inputs 4, 5, 12 and 13 have same I_{inH} limit. Inputs 6, 7, 10 and 11 have same I_{inH} limit. Inputs 6, 7, 10 and 11 have same I_{inH} limit.	-0.960		1	0.3		μAd
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-0.810	-0.890	-0.700	Vdd
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-1.850		-0.700	-0.890	-0.590	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-1.650	-1.825	-1.615	Vdd
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-1.850		-1.650	-1.825	-1.615	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-0.980 -0.980			-0.910 -0.910		Vdd
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-0.960		4 000	-0.910	4 505	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-1.630 -1.630		-1.595 -1.595	Vdd
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.4	2.3	3.4	1.4	3.8	113
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.4	2.3	3.4	1.4	3.8 3.8	
Rise Time $(20 \text{ to } 80\%)$ t_{2+} 2 0.9 4.1 Fall Time $(20 \text{ to } 80\%)$ t_{2-} 2 0.9 4.1 Fall Time $(20 \text{ to } 80\%)$ t_{2-} 2 0.9 4.1 Inputs 4, 5, 12 and 13 have same l_{inH} limit. 3 0.9 4.1 Inputs 6, 7, 10 and 11 have same l_{inH} limit. 9 4.1	1.4	2.3	3.4	1.4	3.8	
t3+ 3 0.9 4.1 Fall Time (20 to 80%) t_{2-} 2 0.9 4.1 Inputs 4, 5, 12 and 13 have same l_{inH} limit. 0.9 4.1 Inputs 6, 7, 10 and 11 have same l_{inH} limit. 0.9 4.1	1.4	2.3	3.4	1.4	3.8	
Fall Time (20 to 80%) t_{2-} 2 0.9 4.1 Inputs 4, 5, 12 and 13 have same l_{inH} limit. 0.9 4.1 Inputs 6, 7, 10 and 11 have same l_{inH} limit.	1.1 1.1	2.2 2.2	4.0 4.0	1.1 1.1	4.6 4.6	
t ₃₋ 3 0.9 4.1 Inputs 4, 5, 12 and 13 have same l _{inH} limit. Inputs 6, 7, 10 and 11 have same l _{inH} limit.						
Inputs 4, 5, 12 and 13 have same I _{inH} limit. Inputs 6, 7, 10 and 11 have same I _{inH} limit.	1.1 1.1	2.2 2.2	4.0 4.0	1.1 1.1	4.6 4.6	
MCENO						

ELECTRICAD CHARACTERISTICS (continued)

					TEST VOI	TAGE VALU	JES (Volts)		
		@ Test Te	mperature	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	
			–30°C	-0.890	-1.890	-1.205	-1.500	-5.2	
			+25°C	-0.810	-1.850	-1.105	-1.475	-5.2	
			+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
Pin				TEST V	OLTAGE AP	PLIED TO P	INS LISTED	BELOW	
Characteri	istic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	(V _{CC}) Gnd
Power Supply Drain C	Current	Ι _Ε	8					8	1, 16
Input Current		I _{inH} *	6 9 4	4 9	4			8 8 8	1, 16 1, 16 1, 16
		I _{inL}	4		9			8	1, 16
Output Voltage	Logic 1	V _{OH}	2 3	4, 9				8 8	1, 16 1, 16
Output Voltage	Logic 0	V _{OL}	2 3	4, 9				8 8	1, 16 1, 16
Threshold Voltage	Logic 1	V _{OHA}	2 3	9		4	4	8 8	1, 16 1, 16
Threshold Voltage	Logic 0	V _{OLA}	2 3	9		4	4	8 8	1, 16 1, 16
Switching Times	(50 Ω Load)			+1.11V		Pulse In	Pulse Out	–3.2 V	+2.0 V
Propagation Delay		t ₄₊₂₊ t ₄₋₂₋ t ₄₊₃₋ t ₄₋₃₊	2 2 3 3	9 9 9 9		4 4 4 4	2 2 3 3	8 8 8 8	1, 16 1, 16 1, 16 1, 16 1, 16
Rise Time	(20 to 80%)	t ₂₊ t ₃₊	2 3	9 9		4 4	2 3	8 8	1, 16 1, 16
Fall Time	(20 to 80%)	t ₂₋ t ₃₋	2 3	9 9		4 4	2 3	8 8	1, 16 1, 16

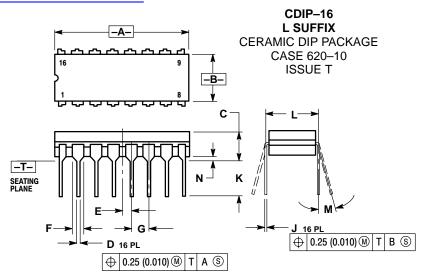
* Inputs 4, 5, 12 and 13 have same I_{inH} limit.

Inputs 6, 7, 10 and 11 have same I_{inH} limit.


Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50-ohm resistor to -2.0 volts. Test procedures are shown for only one gate. The other gates are tested in the same manner.

http://onsemi.com 3

查询"MC10117L"供应商


PACKAGE DIMENSIONS

PLCC-20 FN SUFFIX PLASTIC PLCC PACKAGE CASE 775-02 ISSUE C

查询"MC10117L"供应商

PACKAGE DIMENSIONS

NOTES:

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN FOOMED DRAWLES

DIMENSION LTO CENTER OF LEAD WHEN FORMED PARALLEL.
 DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015 0.020	0.020	0.39	0.50	
Е	0.050 BSC		1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100 BSC		2.54 BSC		
Н	0.008	0.015	0.21	0.38	
Κ	0.125		3.18	4.31	
L	0.300 BSC 0 ° 15 °		7.62 BSC		
М			0 °	15°	
Ν	0.020	0.040	0.51	1.01	

-A-ስ ስ ስ ሶ 16 В 0 Ų $\Box \Box$ ι, հո - C S -T- SEATING PLANE H G **D** 16 PL

PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08 ISSUE R

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
C	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Η	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305 10 °	7.50	7.74	
М	0°		0 °	10 °	
S	0.020	0.040	0.51	1.01	

图 @ t@ S10117L"供应商

DEWICE NOT RECOMMENDED FOR MENDESSIGN

图 @ t@ S10117L"供应商

DEWCE NOT RECOMMENDED

r and one are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes to any products herein. SCILLC makes no warranty, representation or guarantee regarding the sublability of its products for any particular SCILLC assume any Hability and a specifically discussions and and all liability.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.