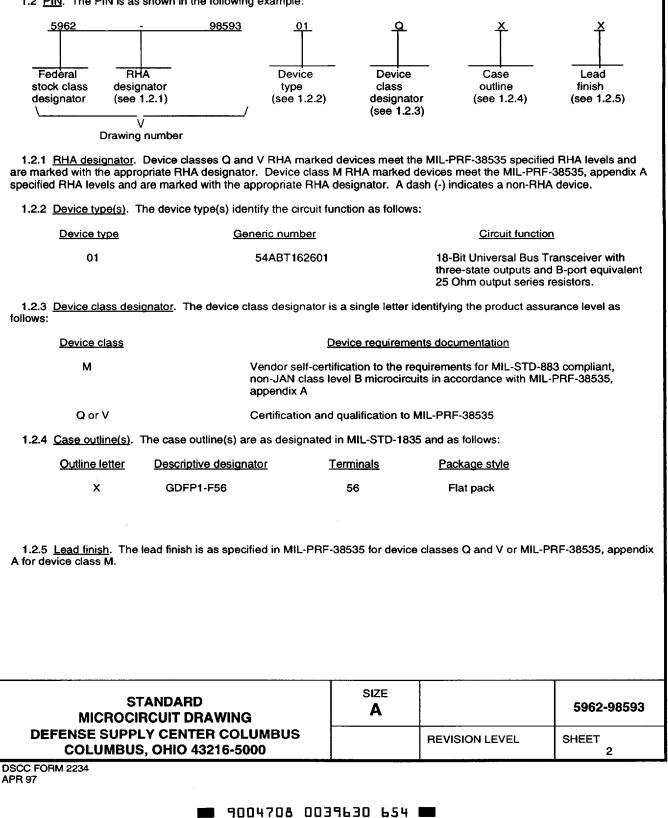
查询"5962	2-985	9301	QXA	"供」	立商			F	REVISI	ONS										
LTR					C	ESCR	IPTIO	N					DA	TE (YF	R-MO-E	DA)		APPR	OVED	
1																				
		T			r	1	1	1	1		<u> </u>				1	<u> </u>	1			
REV		<u> </u>								<u> </u>	 									
SHEET			ļ																	
REV																				<u> </u>
SHEET	15	16	17	18	19	20	21	22												
REV STATUS OF SHEETS				REV											9	10		12	12	14
				SHE			1	2	3	4	5	6	7	8	9	10	11	12	13	<u> '</u>
PMIC N/A				PRE	EPARE J	D BY oseph	A. Ker	by			וס	EFFN	SE SI	JPPI	Y CF	NTEF		UMB	us	
		<u></u>								4						HIO				
STAN MICRO			•	CHE	CKED Cha	BY arles F.	Saffle	, Jr.					COL		03, U		10210	,		
DRA																				
THIS DRAWIN FOR US	SE BY	ALL	BLE	APF	ROVE? Mo	D BY onica L	. Poelk	ing		MIC 18-I	ROC BIT U	NIVE	T, DIO RSAL	JITAI BUS	_, AD\ TRAN	VANC	ED B	WITH	AR CM	ios, Ee-
		-	-							STA	ATE O	UTPL	JTS A	ND B	-POR	RT EQ	UIVA	LENT	25 Oł	HM
AND AGEN DEPARTMEN				DRA	WING		0VAL I 6-24	DATE			IPUI	SER	ES K	E915	IORS	s, iviu	NULI	i mic s	SILICO	NIN
					ISION					<u> </u>	75		GE CC		1					
AM	SC N/A	•			ISION	LEVEL					ze A		6726			5	i962·	·9859	93	
										SHE		l								
DSCC FORM 223	3									1			1	OF	22		<u></u>			<u></u>


APR 97 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

5962-E423-98

9004708 0039629 932 🎟

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

1.2 PIN. The PIN is as shown in the following example:

查询。"5962-9859301074."供应商3/

DC input voltage range (V_{IN}),(except I/O ports) DC output voltage range in the high or power-off state (V_{OUT})	
Current into any output in the low state (IoL):	
A port	96 mA
B port	30 mA
DC input clamp current (I _{IK}) (V _{IN} < 0.0)	18 mA
DC output clamp current (Iok) (Vout < 0.0)	50 mA
Maximum power dissipation at $T_A = +55^{\circ}C$ (in still air) (P _D)	673 mW <u>5</u> /
Storage temperature range (TSTG)	65°C to +150°C
Lead temperature (soldering, 10 seconds)	+300°C
Thermal resistance, junction-to-case (0,c)	See MIL-STD-1835
Junction temperature (TJ)	

Supply voltage range (V _{CC}) Input voltage range (V _{IN})	
Minimum High level input voltage (VIH)	+2.0 V
Maximum Low level input voltage (VIL)	+0.8V
Maximum High level output current (I _{OH}):	24 m A
A port B port	
Maximum Low level output current (IoL):	
A port	
B port Maximum input transition rise or fall rate ($\Delta t / \Delta V$) (outputs enabled)	
Minimum power-up ramp rate $(\Delta t/\Delta V_{CC})$	
Operating free-air temperature (T _A)	•

1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

2/ Unless otherwise noted, all voltages are referenced to GND.

3/ The limits for the parameters specified herein shall apply over the full specified V_{CC} range and case temperature range of -55°C to +125°C.

4/ The input and output negative-voltage ratings may be exceeded provided that the input and output clamp-current ratings are observed.

5/ Power dissipation values are derived using the formula $Pd = V_{CCLCC+} nV_{OL}I_{OL}$, where V_{CC} and I_{OL} are as specified in 1.3 above, I_{CC} and V_{OL} are as specified in Table 1 herein, and "n" represents the total number of outputs.

6/ Unused pins (input or I / O) must be held high or low to prevent them from floating.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-98593
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 3
DSCC FORM 2234	- 4		

APR 97

9004708 0039631 590

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883	-	Test Methods and Procedures for Microelectronics.
MIL-STD-973	-	Configuration Management.
MIL-STD-1835	-	Microcircuit Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 -	List of Standard Microcircuit Drawings (SMD's).
MIL-HDBK-780 -	Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.

3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.4 herein.

3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.

3.2.3 <u>Truth table</u>. The truth table shall be as specified on figure 2.

3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3.

3.2.5 <u>Ground bounce test circuit and waveforms</u>. The ground bounce test circuit and waveforms shall be as specified on figure 4.

3.2.6 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as specified on figure 5.

3.2.7 Radiation exposure circuit. The radiation exposure circuit shall be as specified when available.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-98593
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 4

DSCC FORM 2234 APR 97

🔳 9004708 0039632 427 🔳

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973.

3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 127 (see MIL-PRF-38535, appendix A).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-98593
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 5

🔳 9004708 0039633 363 📟

Test and MIL-STD-883 test method <u>1</u> /	Symbol	Test conditior -55°C ≤ Tc ≤ + +4.5 V ≤ VCC ≤	125°C +5.5 V	Vcc	Group A subgroups	Limi	ts <u>3</u> /	Uni
		unless otherwise			Min	Мах	L	
Input clamp voltage	Viк	I _{IN} = -18 mA		4.5 V	1, 2, 3		-1.2	v
High level output voltage	V _{он} A port	For all inputs affecting output under test,	I _{OH} = -3 mA	4.5 V	1, 2, 3	2.5		v
3006		$V_{IN} = 2.0 V \text{ or } 0.8 V$ For all other inputs,		5.0 V 4.5 V 4.5 V 1		3.0		
		$V_{IN} = V_{CC} \text{ or } GND$	I _{OH} = -24 mA			2.0		
	V _{0H} B port		I _{OH} = -1 mA		1	3.35		
				5.0 V		3.85		
				4.5 V	2, 3	3.3		
				5.0 V		3.8		
			l _{он} = -3 mA	4.5 V	1	3.1		
					2, 3	3.0		
			I _{OH} = -12 mA	4.5 V	1	2.6		
Low level output voltage	V _{OL} A port	For all inputs affecting output under test,	l _{oL} = 48 mA	4.5 V	1, 2, 3		0.55	v
3007	V _{OL} B port	$V_{IN} = 2.0 V \text{ or } 0.8 V$ For all other inputs, $V_{IN} = V_{CC} \text{ or } GND$	I _{OL} = 12 mA	4,5 V			0.8	
Input current high IIH 3010 4/		For input under test, V _{IN} = V _{CC}	Control Inputs	0.0 V and 5.5 V	1, 2, 3		1.0	μA
			A or B ports	2.1 V and 5.5 V			20.0	
Input current low 3009	μ. <u>4</u> /	For input under test, V _{IN} = 0.0 V	Control Inputs	0.0 V and 5.5 V	1, 2, 3		-1.0	μA
			A or B ports	2.1 V and 5.5 V			-20.0	
See footnotes at end o	f table.							
MICRO		DRAWING	SIZE A				5962-9	8593
		ITER COLUMBUS 0 43216-5000		REV	ISION LEVEL	s	HEET 6	

🔳 9004708 0039634 2TT 📟

Test and MIL-STD-883 test method <u>1</u> /	Symbol	Test conditions -55°C ≤ Tc ≤ +12 +4.5 V ≤ VCC ≤ +	25°C	Vcc	Group A subgroups	Limi	ts <u>3</u> /	Ur
		unless otherwise sp	ecified			Min	Мах	
Three-state output current at power up condition	Іоzри <u>5</u> /	For output under test, $V_{OUT} = 0.5 V \text{ to } 2.7 V$ $\overline{OE} = 2.0 V \text{ or } 0.8 V$		0.0 V and 2.1 V	1, 2, 3		±50.0	μ
Three-state output current at power down condition	I _{OZPD} <u>5</u> /	For output under test, $V_{OUT} = 0.5 \text{ V}$ to 2.7 V $\overline{OE} = 2.0 \text{ V}$ or 0.8 V		2.1 V and 0.0 V	1, 2, 3		±50.0	μ
Three-state output leakage current high 3021	Іо <mark>сн</mark> <u>6</u> /	For output under test, $V_{OUT} = 2.7 V$ $\overline{OE} \ge 2.0 V$		2.1 V and 5.5 V	1, 2, 3		10.0	μ
Three-state output leakage current low 3020	loz∟ <u>6</u> ∕	For output under test, $V_{OUT} = 0.5 V$ $\overline{OE} \ge 2.0 V$		2.1 V and 5.5 V	1, 2, 3		-10.0	μ
High-state leakage current	ICEX	For output under test, V _{OUT} = 5.5 V Outputs High		5.5 V	1,2,3		50.0	μ.
Output current 3011	louт A port <u>7</u> /	V _{OUT} = 2.5 V		5.5 V	1, 2, 3	-50.0	-180.0	m
	І _{оит} В port <u>7</u> /					-25.0	-100.0	
Quiescent supply current, outputs high 3005	Іссн	For all inputs, $V_{IN} = V_{CC}$ of $I_{OUT} = 0.0$ A A or B ports	r GND	5.5 V	1, 2, 3		3.0	m
Quiescent supply current, outputs low 3005	ICCL			5.5 V	1, 2, 3		36.0	
Quiescent supply current, outputs disabled 3005	Iccz			5.5 V	1, 2, 3		3.0	
ee footnotes at end of ta	uble.		0175					
STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS		RAWING ER COLUMBUS	SIZE A	REV	ISION LEVEL		5962-9	
COLUMBUS, OHIO 43216-5000						7	,	

Test and MIL-STD-883 test method <u>1</u> /	Symbol	Test conditions 2/ -55°C ≤ T _C ≤ +125°C +4.5 V ≤ VCC ≤ +5.5 \		×	Group A subgroups	Limi	its <u>3</u> /	Unit	
		unless otherwise specifi	ed			Min	Max		
Quiescent supply current delta, TTL input levels 3005	Δlcc <u>8</u> /	One input at 3.4 V Other inputs at V _{CC} or GND	5.5	V	1, 2, 3		50.0	μA	
Input capacitance 3012	C _{IN}	Control inputs T _c = +25°C see 4.4.1b	5.0	V	4		10.5	pF	
I/O port capacitance	Ciro	A or B ports $T_c = +25^{\circ}C$ see 4.4.1b	5.0	V	4		15.0	pF	
Low level ground bounce noise	oise <u>9</u> /	nce noise $g/$ $V_{IL} = 0.0 V$ $T_A = +25 °C$		5.0	V	4		2100	m∨
	V _{OLV} <u>9</u> /	See 4.4.1d See figure 4	5.0	v	4		-1450	m∖	
High level V _{CC} bounce noise	V _{ОНР} <u>9</u> /		5.0	v	4		1400	m۱	
	V _{онv} <u>9</u> /		5.0	v	4		-900	۳V	
Functional test 3014	<u>10</u> /	V _{IN} = 2.0 V or 0.8 V Verify output V _{OUT} See 4.4.1c	4.5	v	7, 8	L	н		
			5.5	v	7, 8	L	н		
Propagation delay time, An to Bn 3003	tесні <u>11</u> /	$ \begin{array}{l} R_{L} = 500\Omega \\ C_{L} = 50 \ pF \ minimum \\ See \ figure \ 5. \end{array} $	5.0	v	9	1.5	4.0	ns	
			4.5 an 5.5	nd	10, 11	1.5	5.1		
	t _{PHL1}		5.0	v	9	2.0	5.2		
	11/		4.5 an 5.5	nd	10, 11	2.0	6.1		
ee footnotes at end of	table.								
	STANDAF		SIZE A				5962-9	9859	
MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000				REV	ISION LEVEL		SHEET 8	,	

Test and MIL-STD-883 test method <u>1</u> /	Symbol	Test conditions	Vcc	Group A subgroups	Lim	iits <u>3</u> /	Ur
		unless otherwise specified			Min	Max	
Propagation delay time, Bn to An 3003	t _{PLH2} <u>11</u> /	$R_L = 500\Omega$ $C_L = 50 \text{ pF minimum}$ See figure 5.	5.0	V 9	1.0	3.6	n
			4.5 and 5.5	i	1.0	4.5	
	t _{PHL2}		5.0	V 9	2.0	4.5	
	11/		4.5 and 5.5	1	2.0	5.1	
Propagation delay time, LEBA to An 3003	t _{PLH3} <u>11</u> /	$R_L = 500\Omega$ $C_L = 50 pF$ minimum See figure 5.	5.0	V 9	2.0	4.5	n
			4.5 and 5.5	. t	2.0	5.6	
	t _{PHL3}		5.0	V 9	2.0	4.7	
	11/		4.5 and 5.5	i i	2.0	5.4	
Propagation delay time, LEAB to Bn 3003	tplH4 <u>11</u> /	$R_L = 500\Omega$ $C_L = 50 pF$ minimum See figure 5.	5.0	V 9	2.0	4.8	r
			4.5 and 5.5) È	2.0	6.1	
	t _{PHL4}		5.0	V 9	2.0	5.2]
	11/		4.5 and 5.5	t l	2.0	6.4	
Propagation delay time, CLKBA to An 3003	t _{PLH5} <u>11</u> /	$ \begin{array}{l} R_{L} = 500\Omega \\ C_{L} = 50 \ pF \ minimum \\ See figure 5. \end{array} $	5.0	V 9	1.5	4.7	r
			4.5 and 5.5	, j t	1.5	5.4	
ee footnotes at end of ta	able.						
	TANDAR	D PRAWING	SIZE A			5962-9	9859
DEFENSE SUPP COLUMBU		TER COLUMBUS		REVISION LEVE	L	SHEET)

Test and MIL-STD-883 test method <u>1</u> /	Symbol	Test conditions <u>2</u> / -55°C ≤ T _C ≤ +125°C +4.5 V ≤ VCC ≤ +5.5 V	C I	/cc	Group A subgroups	Lim	iits <u>3</u> /	Uni
		unless otherwise spec	aified			Min	Мах	1
Propagation delay	t _{PHL5}	R _L = 500Ω	5.	.0 V	9	1.5	4.3	ns
time, CLKBA to An 3003	11/	C _{L =} 50 pF minimum See figure 5.	a	.5 V Ind .5 V	10, 11	1.5	5.2	
Propagation delay	tplH6	R _L = 500Ω	5.	.0 V	9	1.5	4.7	ns
time, CLKAB to Bn 3003	11/	C∟ ₌50 pF minimum See figure 5.	a	.5 V and .5 V	10, 11	1.5	6.0	
	t _{PHL6}		5.	.0 V	9	1.5	4.8]
	11/		a	.5 V and .5 V	10, 11	1.5	5.8	
Propagation delay <u>time, o</u> utput enable, OEBA to An 3003	tрzн1 <u>11</u> /	$\begin{array}{l} R_{L} = 500 \ \Omega \\ C_{L} = 50 \ pF \ \text{minimum} \\ See \ \text{figure} \ 5. \end{array}$	5	.0 V	9	2.0	4.6	ns
			a	.5 V and .5 V	10, 11	2.0	5.5	
	t _{PZL1}		5	.0 V	9	2.0	4.7	7
	11/		a	.5 V and .5 V	10, 11	2.0	5.8	
Propagation delay <u>time, o</u> utput enable, OEAB to Bn 3003	tрzн2 <u>11</u> /	$R_{L} = 500\Omega$ $C_{L} = 50 \text{ pF minimum}$ See figure 5.	5	.0 V	9	2.0	5.3	ns
			á	.5 V and .5 V	10, 11	1.5	6.6	
	tpzi.2]	5	.0 V	9	2.0	5.1	
	11/		a	.5 V and .5 V	10, 11	2.0	6.2	
ee footnotes at end of t	able.							
	TANDAF	RD DRAWING	SIZE A				5962-	9859
		TER COLUMBUS 43216-5000		R	EVISION LEVE	L	SHEET	10

unless otherwise specified $R_L = 500\Omega$ $C_{L=}50 \text{ pF}$ minimum See figure 5.	5.0 V 4.5 V and	9	Min 2.0	Max 5.4	n
C _L ₌ 50 pF minimum	4.5 V			5.4	n
		10, 11			
	5.5 V		1.4	6.6	
	5.0 V	9	1.5	4.7	
	4.5 V and 5.5 V	10, 11	1.5	5.8	
$ \begin{array}{l} R_L = 500\Omega \\ C_L = 50 \ \text{pF} \ \text{minimum} \\ \text{See figure 5.} \end{array} $	5.0 V	9	2.0	4.8	n
	4.5 V and 5.5 V	10, 11	1.4	5.6	
	5.0 V	9	1.5	4.5]
	4.5 V and 5.5 V	10, 11	1.5	5.7	
$\begin{array}{l} R_{L}=500\Omega\\ C_{L}=50\ pF\ minimum\\ See\ figure\ 5. \end{array}$	5.0 V	9	150		мн
	4.5 V and 5.5 V	10,11	150		
$\begin{array}{l} R_L = 500\Omega \\ C_L = 50 \ \text{pF} \ \text{minimum} \\ \text{See figure 5.} \end{array}$	4.5 V and 5.5 V	9,10,11	0.0	150	мн
LEAB or LEBA high	4.5 V and	9,10,11	2.5	1	ns
CLKAB or CLKBA high or low	5.5 V		3.3		
-	$C_{L} = 50 \text{ pF minimum}$ See figure 5. $R_{L} = 500\Omega$ $C_{L} = 50 \text{ pF minimum}$ See figure 5. $R_{L} = 500\Omega$ $C_{L} = 50 \text{ pF minimum}$ See figure 5.	$ \begin{array}{ c c c c } & \text{and} & 5.5 \ V \\ \hline R_L = 500\Omega & 5.0 \ V \\ \hline C_L = 50 \ \text{pF minimum} & 5.0 \ V \\ \hline & & 4.5 \ V \\ & \text{and} \\ & 5.5 \ V \\ \hline & & 5.0 \ V \\ \hline & & 4.5 \ V \\ & \text{and} \\ & 5.5 \ V \\ \hline & & 4.5 \ V \\ & \text{and} \\ & 5.5 \ V \\ \hline & & \text{R}_L = 500\Omega \\ \hline & & \text{C}_L = 50 \ \text{pF minimum} \\ \hline & & \text{See figure 5.} \\ \hline & & & \text{R}_L = 500\Omega \\ \hline & & & \text{A}_L = 500\Omega \\ \hline & & & & \text{A}_L = 500\Omega \\ \hline & & & & \text{A}_L = 500\Omega \\ \hline & & & & \text{A}_L = 500\Omega \\ \hline & & & & \text{A}_L = 500\Omega \\ \hline & & & & & \text{A}_L = 500\Omega \\ \hline & & & & & \text{A}_L = 500\Omega \\ \hline & & & & & & \text{A}_L = 500\Omega \\ \hline & & & & & & & \text{A}_L = 500\Omega \\ \hline & & & & & & & & & & & & & & & & & &$	$ \begin{array}{ c c c c c } & \text{and} & 5.5 \ V & & & \\ \hline R_L = 500\Omega & & & & \\ C_L = 50 \ \text{pF minimum} & & & & \\ See \ figure \ 5. & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & &$	$ \begin{array}{ c c c c c c } \hline R_L = 500\Omega \\ C_L = 50 pF minimum \\ See figure 5. \\ \hline \\ \hline \\ R_L = 500\Omega \\ C_L = 50 pF minimum \\ See figure 5. \\ \hline \\ $	$ \begin{array}{ c c c c c c } \hline R_L = 500\Omega \\ C_L = 50 \ pF \ minimum \\ See figure 5. \\ \hline \\ \hline \\ R_L = 500\Omega \\ See figure 5. \\ \hline \\ $

Test and MIL-STD-883 test method <u>1</u> /	Symbol	Test conditions 2/ -55°C ≤ T _C ≤ +125°C +4.5 V ≤ VCC ≤ +5.5 V	Vcc	Group A subgroups	Limi	ts <u>3</u> /	Uni	
		unless otherwise specified			Min	Мах		
Setup time	ts	A before CLKABT or B before CLKBAT	4.5 V and	9,10,11	4.8		ns	
	12/	A before LEAB \downarrow or B before LEBA \downarrow , CLK high	5.5 V			2.5		
		A before LEAB \downarrow or B before LEBA \downarrow , CLK low			1.2]	
		CLKENAB before CLKABT or CLKENBA before CLKBAT			2.7			
Hold time	t _h	A after CLKAB [↑] or B after CLKBA [↑]	4.5 V and	9,10,11	0.5	ns		
	12/	A after LEAB↓ or B after LEBA↓	5.5 V		2.0		1	
		CLKENAB after CLKABT or CLKENBA after CLKBAT			0.5]	
conditions listed h Each input/output, herein. Output ter	erein. , as applicat minals not c	renced MIL-STD-883 (e.g. ΔI_{CC}), utilize the ple, shall be tested at the specified temp designated shall be high level logic, low I all be onen. When performing these test	erature, fo level logic	or the specified , or open, exce	limits, to	the tests I _{CC} and ∆I	in tab I _{CC} tes	
where the output t	erminals sh	all be open. When performing these tes ough the meter. For input terminals not o	sts, the cu	rrent meter sha	il be plac	ed in the		

at 4.5 V \leq V_{CC} \leq 5.5 V.

4/ For I /O ports, the limit includes IozH or IozL leakage current from the output circuitry.

5/ This parameter is characterized, but not production tested.

6/ For I /O ports, the limit includes I_{IH} or I_{IL} leakage current from the input circuitry.

- 7/ Not more than one output should be tested at one time, and the duration of the test condition should not exceed one second.
- 8/ This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than at 0.0 V or V_{cc}. This test may be performed either one input at a time (preferred method) or with all input pins simultaneously at VIN = VCC - 2.1 V (alternate method). Classes Q and V shall use the preferred method. When the test is performed using the alternate test method, the maximum limit is equal to the number of inputs at a high TTL input level times 1.5 mA, and the preferred method and limits are guaranteed.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-98593
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 12
DSCC FORM 2234		• • • • • •	

APR 97

🔳 9004708 0039640 5T3 🖿

查询"5962-9859301QXA"供应商	E I. Electrical performance	characteristics - Continued
目的 0902-9009301QAA (共理)	E I. Electrical performance	<u>e characteristics</u> - Continued

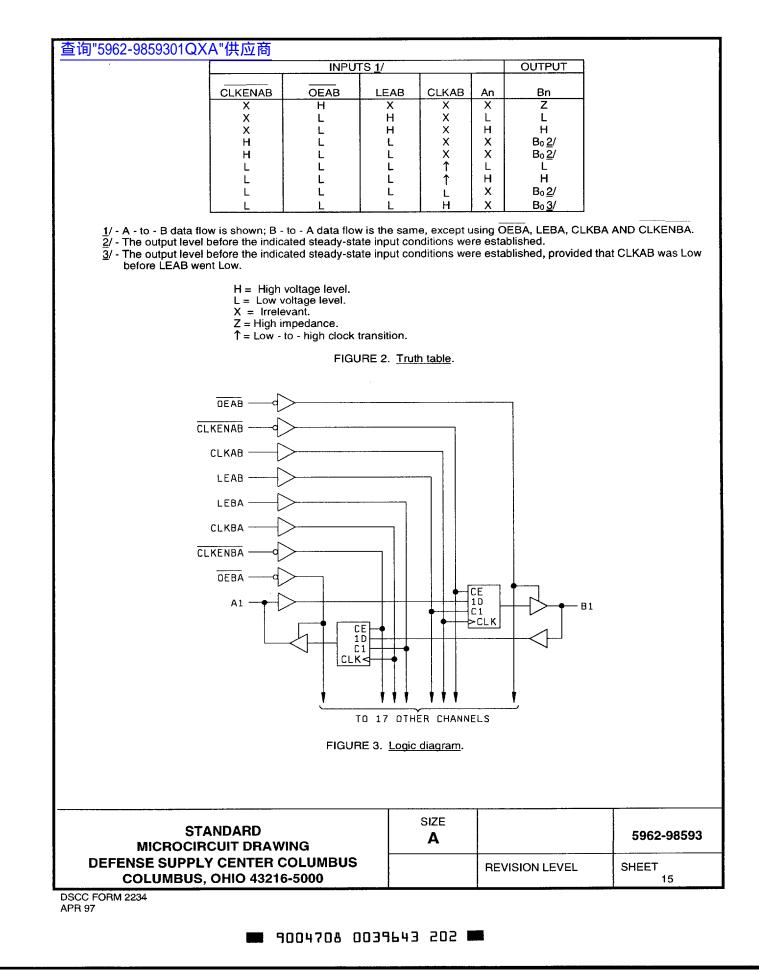
<u>9</u> /	This test is for qualification only. Ground and V _{CC} bounce tests are performed on a non-switching (quiescent) output and are used to measure the magnitude of induced noise caused by other simultaneously switching outputs. The test is
	performed on a low noise bench test fixture. For the device under test, all outputs shall be loaded with 500 Ω of load
	resistance and a minimum of 50 pF of load capacitance (see figure 4). Only chip capacitors and resistors shall be used.
	The output load components shall be located as close as possible to the device outputs. It is suggested, that whenever
	possible, this distance be kept to less than 0.25 inches. Decoupling capacitors shall be placed in parallel from Vcc to
	ground. The values of these decoupling capacitors shall be determined by the device manufacturer. The low and high
	level ground and V _{CC} bounce noise is measured at the quiet output using a 1 GHz minimum bandwidth oscilloscope with
	a 50 Ω input impedance.

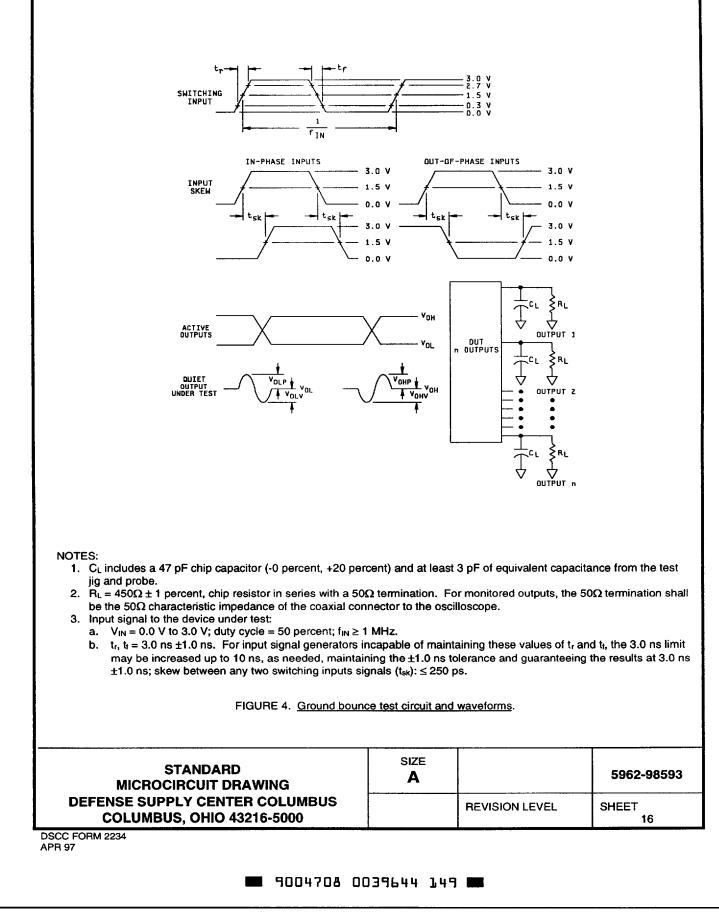
The output load components shall be located as close as possible to the device outputs. It is suggested, that whenever possible, this distance be kept to less than 0.25 inches. Decoupling capacitors shall be placed in parallel from V_{CC} to ground. The values of these decoupling capacitors shall be determined by the device manufacturer. The low and high level ground and V_{CC} bounce noise is measured at the quiet output using a 1 GHz minimum bandwidth oscilloscope with a 50 Ω input impedance.

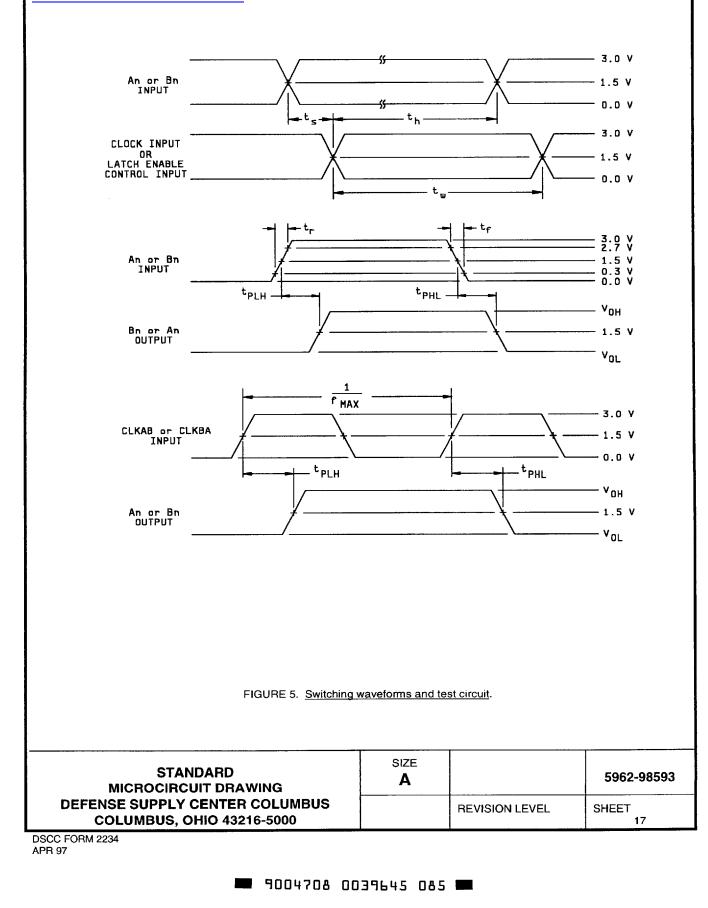
The device inputs shall be conditioned such that all outputs are at a high nominal V_{OH} level. The device inputs shall then be conditioned such that they switch simultaneously and the output under test remains at V_{OH} as all other outputs possible are switched from V_{OH} to V_{OL} . V_{OHV} and V_{OHP} are then measured from the nominal V_{OH} level to the largest negative and positive peaks, respectively (see figure 4). This is then repeated with the same outputs not under test switching from V_{OL} to V_{OH} .

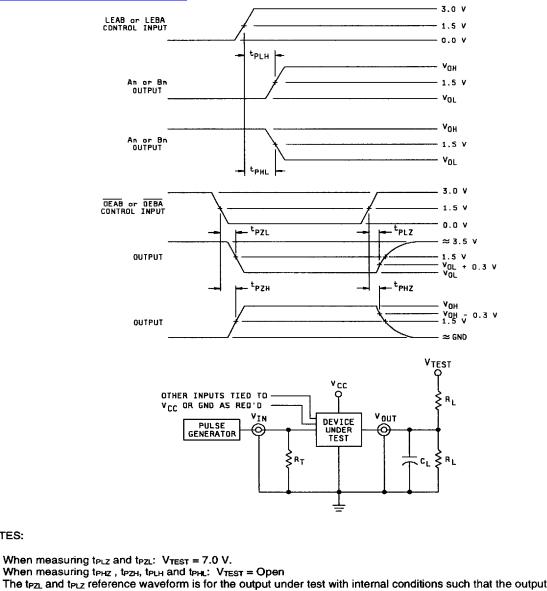
The device inputs shall be conditioned such that all outputs are at a low nominal V_{OL} level. The device inputs shall then be conditioned such that they switch simultaneously and the output under test remains at V_{OL} as all other outputs possible are switched from V_{OL} to V_{OH} . V_{OLP} and V_{OLV} are then measured from the nominal V_{OL} level to the largest positive and negative peaks, respectively (see figure 4). This is then repeated with the same outputs not under test switching from V_{OL} to V_{OL} .

- 10/ Tests shall be performed in sequence, attributes data only. Functional tests shall include the truth table and other logic patterns used for fault detection. The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 2 herein. Functional tests shall be performed in sequence as approved by the qualifying activity on qualified devices. After incorporating allowable tolerances per MIL-STD-883, V_{IL} = 0.4 V and V_{IH} = 2.4 V. For outputs, L ≤ 0.8 V, H ≥ 2.0 V.
- 11/ For propagation delay tests, all paths must be tested.
- 12/ This parameter shall be guaranteed, if not tested, to the limits specified in table I herein.


STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-98593
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 13


APR 97


🖬 9004708 0039641 43T 🎟


查询"5962-9859301QXA"供应商				
Device		01		
Case Outlines	Tamainal	X	Terminal	
Terminal Number	r Terminal Symbol	Terminal number	Terminal Symbol	
1	OEAB	29	CLKENBA	
2	LEAB	30	CLKBA	
3 4	A1	31	B18	
4	GND A2	32 33	GND B17	
5 6 7	A3	34	B16	
7	Vcc	35	Vcc	
8 9	A4 A5	36 37	B15 B14	
10	A6	38	B13	
	GND	39	GND	
12 13	A7 A8	40 41	B12 B11	
14	A9	42	B10	
15	A10	43	B9	
16 17	A11 A12	44 45	B8 B7	
18	GND	46	GND	
19	A13	47	B6	
20 21	A14 A15	48 49	B5 B4	
22	Vcc	50	Vcc	
23	A16	51	B3	
24 25	A17 GND	52 53	B2 GND	
26	A18	54	B1	
27 28	OEBA LEBA	55 56	CLKAB CLKENAB	
20				
	Terminal de	escriptions		
Terminal symb			Description	
An (n = 1 to 18) Bn (n = 1 to 18)		Data inputs / out Data inputs / out	puts, A port	
LEAB, LEBA		A to B / B to A la	tch enable control input	<u> </u>
OEAB, OEBA		A to B / B to A o	utput enable control inpu	uts
CLKAB, CLKBA		A to B / B to A cl	ock inputs	
CLKENAB, CLKENBA		A to B / B to A cl	ock enable inputs	
	FIGURE 1. <u>Tem</u>	ninal connections.		
STANDARD MICROCIRCUIT DRAWING		SIZE A		5962-98593
DEFENSE SUPPLY CENTER COL COLUMBUS, OHIO 43216-5			REVISION LEVEL	SHEET 14
DSCC FORM 2234 APR 97				

9004708 0039642 376 🔳

NOTES:

- 1.
- When measuring tPHZ , tPZH, tPLH and tPHL: VTEST = Open 2.
- 3. The tPZ and tPLZ reference waveform is for the output under test with internal conditions such that the output is at Vol. except when disabled by the output enable control. The tPZH and tPHZ reference waveform is for the output under test with internal conditions such that the output is at VoH except when disabled by the output enable control.
- 4. CL 50 pF (includes test jig and probe capacitance).
- $R_T = 50\Omega$ or equivalent. 5.
- 6. $R_L = 500\Omega$ or equivalent.
- Input signal from pulse generator: $V_{IN} = 0.0$ V to 3.0 V; PRR \leq 10 MHz; tr = 2.5 ns; t₁ = 2.5 ns; t_r and t₁ shall be measured 7. from 2.7 V to 0.3 V and from 0.3 V to 2.7 V, respectively; duty cycle = 50 percent.
- 8. Timing parameters shall be tested at a minimum input frequency of 1 MHz.
- The outputs are measured one at a time with one transition per measurement. 9.

FIGURE 5. Switching waveforms and test circuit - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-98593
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 18

APR 97

90047080039646Tll 🎟

查词...5962-98583801 QAN & 供应商ions

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

- 4.2.1 Additional criteria for device class M.
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
- 4.2.2 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein.
 - c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.3.1 <u>Electrostatic discharge sensitivity qualification inspection</u>. Electrostatic discharge sensitivity (ESDS) testing shall be performed in accordance with MIL-STD-883, method 3015. ESDS testing shall be measured only for initial qualification and after process or design changes which may affect ESDS classification.

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-PRF-38535 permits alternate in-line control testing. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-98593
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 19

DSCC FORM 2234 APR 97

9004708 0039647 958 🎟

查询"5962-9859301QXA"供应商 TABLE II. <u>Electrical test requirements</u>.

Test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	(in acco	groups rdance with 8535, table III)
	Device class M	Device class Q	Device class V
Interim electrical parameters (see 4.2)			1
Final electrical parameters (see 4.2)	<u>1</u> / 1, 2, 3, 7, 8, 9, 10, 11	<u>1</u> / 1, 2, 3, 7, 8, 9, 10, 11	<u>2</u> / 1, 2, 3, 7, 8, 9, 10, 11
Group A test requirements (see 4.4)	1, 2, 3, 4, 7, 8, 9, 10, 11	1, 2, 3, 4, 7, 8, 9, 10, 11	1, 2, 3, 4, 7, 8, 9, 10, 11
Group C end-point electrical parameters (see 4.4)	1, 2, 3	1, 2, 3	1, 2, 3, 7,8, 9, 10, 11
Group D end-point electrical parameters (see 4.4)	1, 2, 3	1, 2, 3	1, 2, 3
Group E end-point electrical parameters (see 4.4)	1, 7, 9	1, 7, 9	1, 7, 9

1/ PDA applies to subgroup 1.

 $\frac{2}{2}$ PDA applies to subgroups 1 and 7.

4.4.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table in figure 2 herein. The test vectors used to verify the truth table shall, at a minimum, test all functions of each input and output. All possible input to output logic patterns per function shall be guaranteed, if not tested, to the truth table in figure 2, herein. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device.
- c. C_{IN}, and C_{I/O} shall be measured only for initial qualification and after process or design changes which may affect capacitance. C_{IN} and C_{I/O} shall be measured between the designated terminal and GND at a frequency of 1 MHz. This test may be performed at 10 MHz and guaranteed, if not tested, at 1 MHz. The DC bias for the pin under test (V_{BIAS}) = 2.5 V or 3.0 V. For C_{IN} and C_{I/O} test all applicable pins on five devices with zero failures.

For C_{IN} a device manufacturer may qualify devices by functional groups. A specific functional group shall be composed of function types, that by design, will yield the same capacitance values when tested in accordance with table I, herein. The device manufacturer shall set a function group limit for the C_{IN} and C_{IO} tests. The device manufacturer shall set a function group limit for the C_{IN} and C_{IO} tests. The device manufacturer may then test one device functional group, to the limits and conditions specified herein. All other device functions in that particular functional group shall be guaranteed, if not tested, to the limits and test conditions specified in table I, herein. The device manufacturers shall submit to DSCC-VA the device functions listed in each functional group and the test results for each device tested.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-98593
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 20
DSCC FORM 2234 APR 97			

🖬 9004708 0039648 894 📟

查询"5962-9859301QXA"供应商	杳诣	1"5962-	-985930	1QXA"	供应者	ž
------------------------	----	---------	---------	-------	-----	---

Ground and V_{CC} bounce tests are required for all device classes. These tests shall be performed only for initial qualification, after process or design changes which may affect the performance of the device, and any changes to the test fixture. V_{OLP}, V_{OLV}, V_{OHP}, and V_{OHV} shall be measured for the worst case outputs of the device. All other outputs shall be guaranteed, if not tested, to the limits established for the worst case outputs. The worst case outputs tested are to be determined by the manufacturer. Test 5 devices assembled in the worst case package type supplied to this document. All other package types shall be guaranteed, if not tested, to the limits established for the worst case package. The 5 devices to be tested shall be the worst case device type supplied to this drawing. All other device types shall be guaranteed, if not tested, to the limits established for the worst case device type. The package type and device type to be tested shall be determined by the manufacturer. The device manufacturer will submit to DSCC-VA data that shall include all measured peak values for each device tested and detailed oscilloscope plots for each V_{OLP}, V_{OLV}, V_{OHP}, and V_{OHV} from one sample part per function. The plot shall contain the waveforms of both a switching output and the output under test.

Each device manufacturer shall test product on the fixtures they currently use. When a new fixture is used, the device manufacturer shall inform DSCC-VA of this change and test the 5 devices on both the new and old test fixtures. The device manufacturer shall then submit to DSCC-VA data from testing on both fixtures, that shall include all measured peak values for each device tested and detailed oscilloscope plots for each V_{OLP} , V_{OLV} , V_{OHP} , and V_{OHV} from one sample part per function. The plot shall contain the waveforms of both a switching output and the output under test.

For V_{OHP}, V_{OLP}, and V_{OLP}, a device manufacturer may qualify devices by functional groups. A specific functional group shall be composed of function types, that by design, will yield the same test values when tested in accordance with table I, herein. The device manufacturer shall set a functional group limit for the V_{OHP}, V_{OHP}, V_{OLP}, and V_{OLV} tests. The device manufacturer may then test one device function from a functional group, to the limits and conditions specified herein. All other device functions in that particular functional group shall be guaranteed, if not tested, to the limits and conditions specified in table I, herein. The device manufacturers shall submit to DSCC-VA the device functions listed in each functional group and test results, along with the oscilloscope plots, for each device tested.

4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table II herein.

4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

- a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- b. $T_A = +125^{\circ}C$, minimum.
- c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

4.4.2.2 <u>Additional criteria for device classes Q and V</u>. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table II herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-98593
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 21
DSCC FORM 2234 APR 97			

🔳 9004708 0039649 720 🔳

a. End-point electrical parameters shall be as specified in table II herein.

- b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25°C ±5°C, after exposure, to the subgroups specified in table II herein.
- c. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.

4.5 Methods of inspection. Methods of inspection shall be specified as follows:

4.5.1 <u>Voltage and current</u>. Unless otherwise specified, all voltages given are referenced to the microcircuit GND terminal. Currents given are conventional current and positive when flowing into the referenced terminal.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

6. NOTES

6.1 Intended use. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.1.2 Substitutability. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0674.

6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0674.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.

6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-98593
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 22

DSCC FORM 2234 APR 97

9004708 0039650 442 **1**

STANDARD MICROCIRCUIT DRAWING SOURCE APPROVAL BULLETIN DATE: 98-06-24

Approved sources of supply for SMD 5962-98593 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-9859301QXA	01295	SNJ54ABT162601WD

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number

01295

Vendor name and address

Texas Instruments Incorporated 13500 N. Central Expressway P.O. Box 655303 Dallas, TX 75265 Point of contact: I-20 at FM 1788 Midland, TX 79711-0448

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.

🛚 9004708 0039651 389 🎟