

FEATURES

- Ideal for addressable register applications
- Data enable for address and data synchronization applications
- Eight positive-edge triggered D-type flip-flops
- See "273" for master reset version
- See "373" for transparent latch version
- See "374" for 3-state version
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT377 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT377 have eight edgetriggered, D-type flip-flops with individual D inputs and Q outputs.

A common clock (CP) input loads all flip-flops simultaneously when the data enable (E) is LOW.

The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding output (Qn) of the flip-flop.

The E input must be stable only one set-up time prior to the LOW-to-HIGH transition for predictable operation.

		CONDITIONS	TYP	UNIT		
SYMBOL	PARAMETER	CONDITIONS	нс	нст	UNIT	
tPHL/ tPLH	propagation delay CP to Q _n	CL = 15 pF VCC = 5 V	13	14	ns	
f _{max}	maximum clock frequency	ACC - 2 A	77	53	MHz	
CI	input capacitance		3.5	3.5	рF	
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	20	20	рF	

$$GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$$

Notes

1. CPD is used to determine the dynamic power dissipation (PD in μ W):

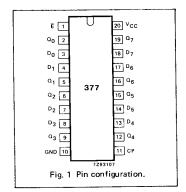
$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_0)$$
 where:

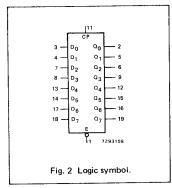
CL = output load capacitance in pF fi = input frequency in MHz VCC = supply voltage in V

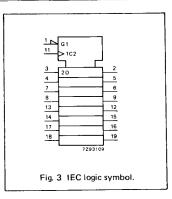
fo = output frequency in MHz

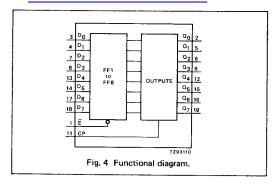
 $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

2. For HC the condition is V_I = GND to V_{CC}
For HCT the condition is V_I = GND to V_{CC} - 1.5 V


PACKAGE OUTLINES


20-lead DIL; plastic (SOT146).


20-lead mini-pack; plastic (SO20; SOT163A).

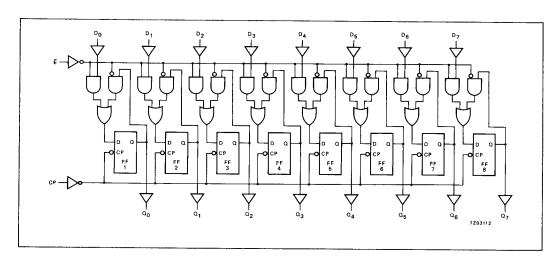

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION					
1	E	data enable input (active LOW)					
2, 5, 6, 9, 12, 15, 16, 19	Q ₀ to Q ₇	flip-flop outputs					
3, 4, 7, 8, 13, 14, 17, 18	D ₀ to D ₇	data inputs					
10	GND	ground (0 V)					
11	CP	clock input (LOW-to-HIGH, edge-triggered)					
20	Vcc	positive supply voltage					

FUNCTION TABLE

OPERATING		INPUT	S	OUTPUTS
MODES	СР	Ē	Dn	Q _n
load "1"	1	I	h	Н
load'"0"	1	ı	1	L
hold (do nothing)	† X	h H	×	no change no change

H = HIGH voltage level


h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition

L = LOW voltage level
I = LOW voltage level one set-up time

prior to the LOW-to-HIGH CP transition

↑ = LOW-to-HIGH CP transition

X = don't care

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: standard

ICC category: MSI

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF

SYMBOL	PARAMETER	T _{amb} (°C)							UNIT	TEST CONDITIONS	
										,,	WAVEFORMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFURING
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} /	propagation delay CP to Q _n		44 16 13	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig. 6
tTHL/ tTLH	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig. 6
tw ,	clock pulse width HIGH or LOW	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 6
t _{su}	set-up time D _n to CP	60 12 10	14 5 4		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig. 7
t _{su}	set-up time E to CP	60 12 10	6 2 2		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig. 7
th	hold time D _n to CP	3 3 3	-8 -3 -2		3 3 3		3 3 3		ns	2.0 4.5 6.0	Fig. 7
th	hold time E to CP	4 4 4	-3 -1 -1		4 4 4		4 4 4		ns	2.0 4.5 6.0	Fig. 7
f _{max}	maximum clock pulse frequency	6 30 35	23 70 83		5 24 28		4 20 24		MHz	2.0 4.5 6.0	Fig. 6

DC CHARACTERISTICS FOR 74HCT

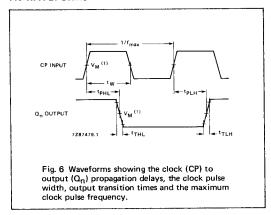
For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: standard

ICC category: MSI

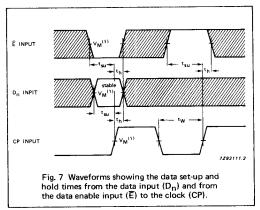
Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.


INPUT	UNIT LOAD COEFFICIENT
Ē	1.50
CP	0.50
Dn	0.20

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$


SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
			74HCT								
		+25			-40 to +85 -4		-40 to +125		UNIT	VCC	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
tPHL/ tPLH	propagation delay CP to Q _n		17	32		40		48	ns	4.5	Fig. 6
^t THL∕ ^t TLH	output transition time		7	15		19		22	ns	4.5	Fig. 6
tW	clock pulse width HIGH or LOW	20	8		25		30		ns	4.5	Fig. 6
t _{su}	set-up time D _n to CP	12	4		15		18		ns	4.5	Fig. 7
t _{su}	set-up time E to CP	22	12		28		33		ns	4.5	Fig. 7
th	hold time D _n to CP	2	-4		2		2		пѕ	4.5	Fig. 7
th	hold time E to CP	3	-2		3		3		ns	4.5	Fig. 7
f _{max}	maximum clock pulse frequency	27	48		22		18		MHz	4.5	Fig. 6

AC WAVEFORMS

Note to AC waveforms

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Note to Fig. 7

The shaded areas indicate when the input is permitted to change for predictable output performance.