SLOS221B - MAY 1998 - REVISED APRIL 2001

- Self-Calibrates Input Offset Voltage to 40 μV Max
- Low Input Offset Voltage Drift . . . 1 μV/°C
- Input Bias Current . . . 1 pA
- Open Loop Gain . . . 120 dB
- Rail-To-Rail Output Voltage Swing
- Stable Driving 1000 pF Capacitive Loads
- Gain Bandwidth Product . . . 4.7 MHz

- Slew Rate . . . 2.5 V/μs
- High Output Drive Capability . . . ±50 mA
- Calibration Time . . . 300 ms
- Characterized From -55°C to 125°C
- Available in Q-Temp Automotive
 HighRel Automotive Applications
 Configuration Control / Print Support
 Qualification to Automotive Standards

description

The TLC4501 and TLC4502 are the highest precision CMOS single supply rail-to-rail operational amplifiers available today. The input offset voltage is 10 μ V typical and 40 μ V maximum. This exceptional precision, combined with a 4.7-MHz bandwidth, 2.5-V/ μ s slew rate, and 50-mA output drive, is ideal for multiple applications including: data acquisition systems, measurement equipment, industrial control applications, and portable digital scales.

These amplifiers feature *self-calibrating* circuitry which digitally trims the input offset voltage to less than $40 \,\mu\text{V}$ within the first 300 ms of operation. The offset is then digitally stored in an integrated successive approximation register (SAR). Immediately after the data is stored, the calibration circuitry effectively drops out of the signal path, shuts down, and the device functions as a standard operational amplifier.

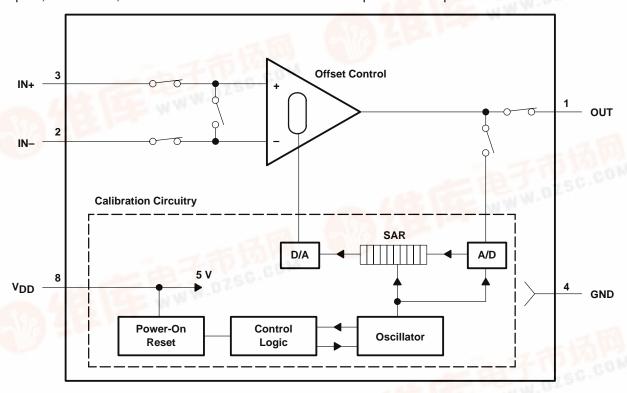
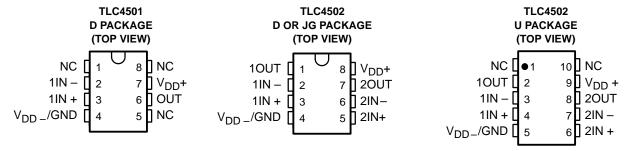
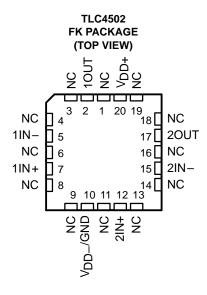


Figure 1. Channel One of the TLC4502

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinEPIC and Self-Cal are trademarks of Texas Instruments.





SLOSZZYTANY (1908) A BEZV SAFD APRIL 25901

description (continued)

Using this technology eliminates the need for noisy and expensive chopper techniques, laser trimming, and power hungry, split supply bipolar operational amplifiers.

NC - No internal connection

AVAILABLE OPTIONS

			PACKAGEI	DEVICES	
TA	V _{IO} max AT 25°C	SMALL OUTLINE† (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	CERAMIC FLAT PACK (U)
	40 μV	TLC4501ACD	_	_	_
0°C to 70°C	50 μV	TLC4502ACD	_	_	_
0 0 10 70 0	80 μV	TLC4501CD	_	_	_
	100 μV	TLC4502CD	_		_
	40 μV	TLC4501AID	_		_
-40°C to 125°C	50 μV	TLC4502AID	_		_
-40 C to 125 C	80 μV	TLC4501ID	_		_
	100 μV	TLC4502ID	_		_
-40°C to 125°C	50 μV	TLC4502AQD	_	_	_
-40 C to 125 C	100 μV	TLC4502QD	_	_	_
-55°C to 125°C	50 μV	TLC4502AMD	TLC4502AMFKB	TLC4502AMJGB	TLC4502AMUB
-55 C to 125 C	100 μV	TLC4502MD	TLC4502MFKB	TLC4502MJGB	TLC4502MUB

[†]The D package is also available taped and reeled.

查询"TI C4502AM"供应商

SLOS221B - MAY 1998 - REVISED APRIL 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD+} (see Note 1)	
Differential input voltage, V _{ID} (see Note 2)	
Input voltage range, V _I (any input, see Note 1)	0.3 V to 7 V
Input current, I _I (each input)	±5 mA
Output current, I _O (each output)	±100 mA
Total current into V _{DD+}	±100 mA
Total current out of V _{DD} _/GND	
Electrostatic discharge (ESD)	> 2 kV
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A : TLC4502C	
TLC4502I	–40°C to 125°C
TLC4502Q	–40°C to 125°C
TLC4502M	–55°C to 125°C
Storage temperature range, T _{Stq}	–65°C to 150°C
Case temperature for 60 seconds, T _C : FK package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to V_{DD} _/GND.
 - 2. Differential voltages are at IN+ with respect to IN-. Excessive current flows when an input is brought below V_{DD} = 0.3 V.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
U	675 mW	5.4 mW/°C	432 mW	350 mW	135 mW

recommended operating conditions

	TLC4502C		Τl	TLC4502I		TLC4502Q		TLC4502M	
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, V _{DD}	4	6	4	6	4	6	4	6	V
Input voltage range, V _I	V_{DD-}	V _{DD+} – 2.3	V						
Common-mode input voltage, V _{IC}	V_{DD-}	V _{DD+} – 2.3	V						
Operating free-air temperature, TA	0	70	-40	125	-40	125	-55	125	°C

TLC4501, TLC4501A, TLC4502, TLC4502A FAMILY OF SELF-CALIBRATING (Self-CalTM) PRECISION CMOS RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS SLOSZA (1967-1967-1985-1987-1987-1980-1

electrical characteristics at specified free-air temperature, V_{DD} = 5 V, GND = 0 (unless otherwise noted)

PARAMETER		TEC	TEST CONDITIONS			TI	UNIT		
	PARAMETER	IES	I CONDITIO	N 5	T _A †	MIN	TYP	MAX	UNII
				TLC4501		-80	10	80	
\/. -	Input offect voltege	$V_{DD} = \pm 2.5 \text{ V},$	$V_{\Omega} = 0$,	TLC4501A	Full range	-40	10	40	μV
VIO	Input offset voltage	V _{IC} = 0,	$R_S = 50 \Omega$	TLC4502	Full range	-100	10	100	μν
				TLC4502A		-50	10	50	
αVIO	Temperature coefficient of input offset voltage				Full range		1		μV/°C
1	Input offset current	$V_{DD} = \pm 2.5 \text{ V},$	$V_{\Omega} = 0$		25°C		1	60	nΛ
lo	input onset current	$V_{IC} = 0,$			Full range			500	pА
lin	Input bias current				25°C		1	60	pА
ΙΒ	input bias current				Full range			500	pΑ
		ΙΟΗ = - 500 μΑ	١		25°C		4.99		
Vон	High-level output voltage	January Emp			25°C		4.9		V
		$I_{OH} = -5 \text{ mA}$			Full range	4.7			
		V _{IC} = 2.5 V,	I _{OL} = 500 μ	A	25°C		0.01		
VOL	Low-level output voltage	V _{IC} = 2.5 V, I _{OL} = 5 mA			25°C		0.1		V
					Full range			0.3	
۸۰۰۰	Large-signal differential voltage	$V_{IC} = 2.5 V,$	V _O = 1 V to	4 V,	25°C	200	1000		V/mV
AVD	amplification	$R_L = 1 k\Omega$,	See Note 4		Full range	200			V/IIIV
R _{I(D)}	Differential input resistance				25°C		10		kΩ
RL	Input resistance	See Note 4			25°C		1012		Ω
CL	Common-mode input capacitance	f = 10 kHz,	P package		25°C		8		pF
zO	Closed-loop output impedance	A _V = 10,	f = 100 kHz		25°C		1		Ω
CMDD	Common mode note of the notice	V _{IC} = 0 to 2.7 \	/, V _O = 2.5 \	/,	25°C	90	100		10
CMRR	Common-mode rejection ratio	$R_S = 1 k\Omega$			Full range	85			dB
1	Supply-voltage rejection ratio	V= = 4 V to C	\/ \/:- 0	Nalaad	25°C	90	100		10
ksvr	$(\Delta V_{DD \pm}/\Delta V_{IO})$	$V_{DD} = 4 \text{ V to } 6$	V, V $C = 0$,	No load	Full range	90			dB
				TI CAEOA/A	25°C		1	1.5	
1	Supply ourrent	TLC4501/A Ful		Full range			2	m^	
IDD	Supply current	$V_0 = 2.5 V$,	No load	TI C4502/A	25°C		2.5	3.5	mA
			TLC4502/A F	Full range			4		
VIT(CAL)	Calibration input threshold voltage				Full range	4			V

†Full range is 0°C to 70°C.

NOTE 4: R_L and C_L values are referenced to 2.5 V.

operating characteristics, $V_{DD} = 5 \text{ V}$

	DADAMETED	TEST COND	ITIONS	- +	TLC450x	C, TLC4	50xAC	UNIT
	PARAMETER	TEST COND	ITIONS	T _A †	MIN	TYP	MAX	UNII
SR	Slew rate at unity gain	Vo = 0.5 V to 2.5 V	C _I = 100 pF	25°C	1.5	2.5		V/μs
3K	Siew rate at unity gain	$V_0 = 0.5 \text{ V to } 2.5 \text{ V},$	CL = 100 pr	Full range	1			V/μs
V	Equivalent input noise voltage	f = 10 Hz		25°C		70		->4/\ =
V _n	Equivalent input noise voltage	f = 1 kHz		25°C		12		nV/√Hz
\/\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Peak-to-peak equivalent input noise	f = 0.1 to 1 Hz		25°C		1		μV
V _{N(PP)}	voltage	f = 0.1 to 10 Hz		25°C		1.5		μν
In	Equivalent input noise current			25°C		0.6		fA/√ Hz
		$V_0 = 0.5 \text{ V to } 2.5 \text{ V},$	A _V = 1	25°C		0.02%		
THD + N	Total harmonic distortion plus noise	$f = 10 \text{ kHz},$ $R_1 = 1 \text{ k}\Omega,$	A _V = 10	25°C		0.08%		
		C _L = 100 pF	A _V = 100	25°C		0.55%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 1 \text{ k}\Omega$,	25°C		4.7		MHz
ВОМ	Maximum output swing bandwidth	$V_{O(PP)} = 2 V$, $R_L = 1 k\Omega$,	A _V = 1, C _L = 100 pF	25°C		1		MHz
+-	Settling time	$A_V = -1$, Step = 0.5 V to 2.5 V,	to 0.1%	25°C		1.6		ue.
t _S	Octaing time	$R_L = 1 \text{ k}\Omega$, $C_L = 100 \text{ pF}$	to 0.01%	25°C		2.2		μs
φm	Phase margin at unity gain	$R_L = 1 k\Omega$,	C _L = 100 pF	25°C		74		
	Calibration time			25°C		300		ms

† Full range is 0°C to 70°C. NOTE 4: R_L and C_L values are referenced to 2.5 V.

TLC4501, TLC4501A, TLC4502, TLC4502A FAMILY OF SELF-CALIBRATING (Self-CalTM) PRECISION CMOS RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS SLOSZA (1967-1967-1985-1987-1987-1980-1

electrical characteristics at specified free-air temperature, V_{DD} = 5 V, GND = 0 (unless otherwise noted)

PARAMETER		TEC	F CONDITION	10	- +	Т	LC450xl		LIAUT	
	PARAMETER	IES	CONDITION		T _A †	MIN	TYP	MAX	UNIT	
				TLC4501		-80	10	80		
\/.a	Input offset voltage	$V_{DD} = \pm 2.5 \text{ V},$	$V_{O} = 0$,	TLC4501A	Full range	-40	10	40	μV	
VIO	input onset voltage	$V_{IC} = 0$,	$R_S = 50 \Omega$	TLC4502	ruii range	-100	10	100	μν	
				TLC4502A		-50	10	50		
αΛΙΟ	Temperature coefficient of input offset voltage				Full range		1		μV/°C	
		$V_{DD} = \pm 2.5 \text{ V},$			25°C		1	60		
I _{IO}	Input offset current	V _{IC} = 0,	$R_S = 50 \Omega$		−40°C to 85°C			500	pA	
					Full range			5	nA	
					25°C		1	60		
I _{IB}	Input bias current	$V_{DD} = \pm 2.5 \text{ V},$ $V_{IC} = 0,$	$V_O = 0$, $R_S = 50 \Omega$		−40°C to 85°C			500	pA	
					Full range			10	nA	
		ΙΟΗ = – 500 μΑ			25°C		4.99			
Vон	High-level output voltage	I _{OH} = – 5 mA			25°C		4.9		V	
		IOH = - 2 IIIA			Full range	4.7				
		$V_{IC} = 2.5 V$,	ΙΟL = 500 μ	А	25°C		0.01			
VOL	Low-level output voltage	V _{IC} = 2.5 V,	I _{OL} = 5 mA		25°C		0.1		V	
		VIC = 2.5 V,	IOL = 3 IIIA		Full range			0.3		
AVD	Large-signal differential voltage	V _{IC} = 2.5 V,	$V_0 = 1 V to$	4 V,	25°C	200	1000		V/mV	
AVD	amplification	$R_L = 1 k\Omega$,	See Note 4		Full range	200			V/IIIV	
R _{I(D)}	Differential input resistance				25°C		10		kΩ	
R_{L}	Input resistance	See Note 4			25°C		1012		Ω	
CL	Common-mode input capacitance	f = 10 kHz,	P package		25°C		8		pF	
zO	Closed-loop output impedance	$A_V = 10,$	f = 100 kHz		25°C		1		Ω	
CMRR	Common-mode rejection ratio	V _{IC} = 0 to 2.7 V	′, V _O = 2.5 \	/,	25°C	90	100		dB	
CIVIKK	Common-mode rejection ratio	$R_S = 1 k\Omega$			Full range	85			uБ	
kovo	Supply-voltage rejection ratio	V _{DD} = 4 V to 6	\/ \/\o = 0	No load	25°C	90	100		dB	
ksvr	$(\Delta V_{DD \pm}/\Delta V_{IO})$	VDD = 4 V 10 0	v, v _{IC} = 0,	- INO IOAU	Full range	90			uБ	
				TLC4501/A	25°C		1	1.5		
¹ DD	Supply current	V _O = 2.5 V,	No load	1.20-300 1/A	Full range			2	mA	
טט.	Cappy duriont	"		TLC4502/A	25°C		2.5	3.5	IIIA	
				1204002/A	Full range			4		
VIT(CAL)	Calibration input threshold voltage				Full range	4			V	

[†] Full range is –40°C to 125°C.

NOTE 4: $\ R_L$ and $\ C_L$ values are referenced to 2.5 V.

operating characteristics, $V_{DD} = 5 \text{ V}$

	DADAMETED	TEST COND	ITIONS	- +	TLC450	xI, TLC4	50xAl	UNIT
	PARAMETER	TEST COND	ITIONS	T _A †	MIN	TYP	MAX	UNII
SR	Slow rate at unity gain	Vo = 0.5 V to 2.5 V	C 100 pF	25°C	1.5	2.5		V/µs
SK	Slew rate at unity gain	$V_0 = 0.5 \text{ V to } 2.5 \text{ V},$	C[= 100 pr	Full range	1			V/μs
V	Equivalent input noise voltage	f = 10 Hz		25°C		70		->4/ U =
V _n	Equivalent input noise voltage	f = 1 kHz		25°C		12		nV/√Hz
V	Peak-to-peak equivalent input noise	f = 0.1 to 1 Hz		25°C		1		μV
V _{N(PP)}	voltage	f = 0.1 to 10 Hz		25°C		1.5		μν
In	Equivalent input noise current			25°C		0.6		fA/√Hz
		$V_0 = 0.5 \text{ V to } 2.5 \text{ V},$	A _V = 1	25°C		0.02%		
THD + N	Total harmonic distortion plus noise	f = 10 kHz, $R_L = 1 \text{ k}\Omega,$	A _V = 10	25°C		0.08%		
		C _L = 100 pF	A _V = 100	25°C		0.55%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 1 k\Omega$,	25°C		4.7		MHz
ВОМ	Maximum output swing bandwidth	$V_{O(PP)} = 2 V$, $R_L = 1 k\Omega$,	A _V = 1, C _L = 100 pF	25°C		1		MHz
	Settling time	$A_V = -1$, Step = 0.5 V to 2.5 V,	to 0.1%	25°C		1.6		116
t _S	Jetung time	$R_L = 1 \text{ k}\Omega$, $C_L = 100 \text{ pF}$	to 0.01%	25°C		2.2		μs
φm	Phase margin at unity gain	$R_L = 1 k\Omega$,	C _L = 100 pF	25°C		74		
	Calibration time			25°C		300		ms

† Full range is –40°C to 125°C. NOTE 4: R_L and C_L values are referenced to 2.5 V.

TLC4501, TLC4501A, TLC4502, TLC4502A FAMILY OF SELF-CALIBRATING (Self-CalTM) PRECISION CMOS RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS SLOSZA (1967-1967-1985-1987-1987-1980-1

electrical characteristics at specified free-air temperature, V_{DD} = 5 V, GND = 0 (unless otherwise noted)

	PARAMETER	TES.	T CONDITION	ıs	T _A †		.C45020 .C4502N	,	UNIT
						MIN	TYP	MAX	
\/	lanut effect voltage	$V_{DD} = \pm 2.5 \text{ V},$	V _O = 0,	TLC4502	Full renera	-100	10	100	/
VIO	Input offset voltage	$V_{IC} = 0$,	$R_S = 50 \Omega$	TLC4502A	Full range	-50	10	50	μV
αVIO	Temperature coefficient of input offset voltage				Full range		1		μV/°C
lia	Input offset surrent	$V_{DD} = \pm 2.5 \text{ V},$	$V_{\mathbf{O}} = 0$		25°C		1	60	nA
IIO	Input offset current	$V_{DD} = \pm 2.5 \text{ V},$ $V_{IC} = 0,$	$R_S = 50 \Omega$		125°C			5	ПA
lin	Input bias current	1			25°C		1	60	nA
IB	input bias current				125°C			10	nA.
		I _{OH} = - 500 μA	1		25°C		4.99		
Vон	High-level output voltage	Jan. 5 m A			25°C		4.9		V
		IOH = -5 mA			Full range	4.7			
		V _{IC} = 2.5 V,	I _{OL} = 500 μ	4	25°C		0.01		
V_{OL}	Low-level output voltage	V 0.5.V			25°C		0.1		V
		$V_{IC} = 2.5 V,$	$I_{OL} = 5 \text{ mA}$		Full range			0.3	
Λ	Large-signal differential voltage	$V_{IC} = 2.5 \text{ V},$	V _O = 1 V to	4 V,	25°C	200	1000		V/mV
AVD	amplification	$R_L = 1 \text{ k}\Omega$,	See Note 4		Full range	200			V/IIIV
R _{I(D)}	Differential input resistance				25°C		10		kΩ
RL	Input resistance	See Note 4			25°C		1012		Ω
CL	Common-mode input capacitance	f = 10 kHz,	P package		25°C		8		pF
zO	Closed-loop output impedance	$A_{V} = 10,$	f = 100 kHz		25°C		1		Ω
CMDD	Comment and a minetion action	V _{IC} = 0 to 2.7 \	/, V _O = 2.5 \	/,	25°C	90	100		40
CMRR	Common-mode rejection ratio	$R_S = 1 k\Omega$			Full range	85			dB
l	Supply-voltage rejection ratio	V _{DD} = 4 V to 6	V, V _{IC} = V _D	D /2,	25°C	90	100		40
ksvr	$(\Delta V_{DD} \pm /\Delta V_{IO})$	No load			Full range	90			dB
1	Cumply august	V- 25V	Nolood		25°C		2.5	3.5	A
IDD	Supply current	$V_0 = 2.5 V$,	No load		Full range			4	mA
VIT(CAL)	Calibration input threshold voltage				Full range	4			V
(٥/,١೭)	,	I			3 -				

† Full range is -40°C to 125°C for Q suffix, -55°C to 125°C for M suffix.

NOTE 4: R_L and C_L values are referenced to 2.5 V.

operating characteristics, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST COND	TEST CONDITIONS			TLC4502Q, TLC4502M, TLC4502AQ, TLC4502AM		
					MIN	TYP	MAX	
SR	Slew rate at unity gain	$V_0 = 0.5 \text{ V to } 2.5 \text{ V},$	$C_L = 100 pF$	25°C	1.5	2.5		V/μs
OIX	Ciew rate at unity gain	See Note 4		Full range	1			V/μs
V _n	Equivalent input noise voltage	f = 10 Hz		25°C		70		nV/√ Hz
۷n	Equivalent input hoise voltage	f = 1 kHz		25°C		12		nv/√Hz
\/\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Peak-to-peak equivalent input noise	f = 0.1 to 1 Hz		25°C		1		μV
VN(PP)	voltage	f = 0.1 to 10 Hz		25°C		1.5		μν
In	Equivalent input noise current			25°C		0.6		fA/√Hz
		$V_0 = 0.5 \text{ V to } 2.5 \text{ V},$	A _V = 1	25°C		0.02%		
THD + N	Total harmonic distortion plus noise	$f = 10 \text{ kHz},$ $R_{\perp} = 1 \text{ k}\Omega,$	A _V = 10	25°C		0.08%		
		C _L = 100 pF	A _V = 100	25°C		0.55%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 1 k\Omega$,	25°C		4.7		MHz
ВОМ	Maximum output swing bandwidth	$V_{O(PP)} = 2 V$, $R_L = 1 k\Omega$,	A _V = 1, C _L = 100 pF	25°C		1		MHz
	Settling time	$A_V = -1$, Step = 0.5 V to 2.5 V,	to 0.1%	25°C		1.6		
t _S	Setting time	$R_L = 1 \text{ k}\Omega$, $C_L = 100 \text{ pF}$	to 0.01%	25°C	2.2		μs	
φm	Phase margin at unity gain	$R_L = 1 k\Omega$,	C _L = 100 pF	25°C		74		
	Calibration time			25°C		300		ms

† Full range is -40°C to 125°C for Q suffix, -55°C to 125°C for M suffix.

NOTE 4: R_L and C_L values are referenced to 2.5 V.

Table of Graphs

			FIGURE
\/	land to effect years	Distribution	2, 3, 4
VIO	Input offset voltage	vs Common-mode input voltage	5
α VIO	Input offset voltage temperature coefficient	Distribution	6, 7
Vон	High-level output voltage	vs High-level output current	8
VOL	Low-level output voltage	vs Low-level output current	9
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	10
los	Short-circuit output current	vs Free-air temperature	11
VO	Output voltage	vs Differential input voltage	12
AVD	Large-signal differential voltage amplification	vs Free-air temperature vs Frequency	13 14
z _O	Output impedance	vs Frequency	15
CMRR	Common-mode rejection ratio	vs Frequency vs Free-air temperature	16 17
SR	Slew rate	vs Load capacitance vs Free-air temperature	18 19
	Inverting large-signal pulse response		20
	Voltage-follower large-signal pulse response		21
	Inverting small-signal pulse response		22
	Voltage-follower small-signal pulse response		23
Vn	Equivalent input noise voltage	vs Frequency	24
	Input noise voltage	Over a 10-second period	25
THD + N	Total harmonic distortion plus noise	vs Frequency	26
	Gain-bandwidth product	vs Free-air temperature	27
1	Dhasa marain	vs Load capacitance	28
φm	Phase margin	vs Frequency	14
	Gain margin	vs Load capacitance	29
PSRR	Power-supply rejection ratio	vs Free-air temperature	30
	Calibration time at -40°C		31
	Calibration time at 25°C		32
	Calibration time at 85°C		33
	Calibration time at 125°C		34

DISTRIBUTION OF TLC4502 INPUT OFFSET VOLTAGE

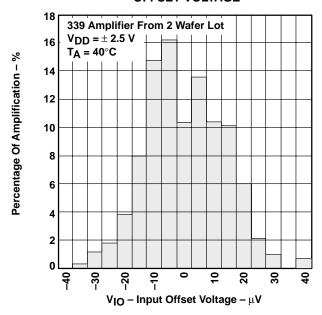
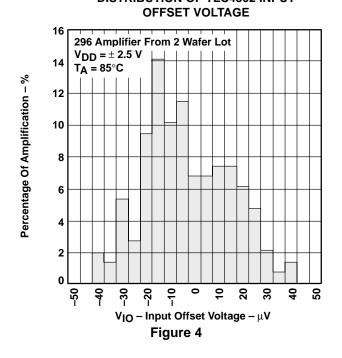



Figure 2

DISTRIBUTION OF TLC4502 INPUT

DISTRIBUTION OF TLC4502 INPUT OFFSET VOLTAGE

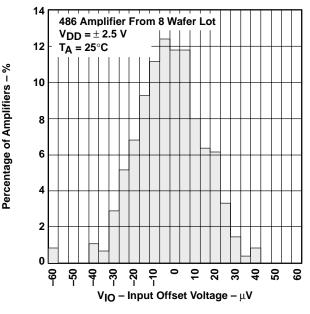
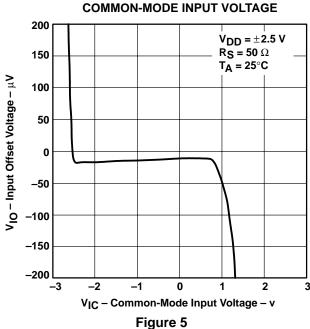



Figure 3

INPUT OFFSET VOLTAGE VS DMMON-MODE INPUT VOLTAGE

DISTRIBUTION OF TLC4502 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

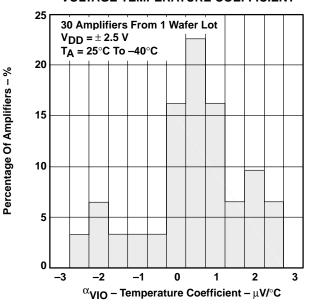


Figure 6

Percentage Of Amplifiers – %

DISTRIBUTION OF TLC4502 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

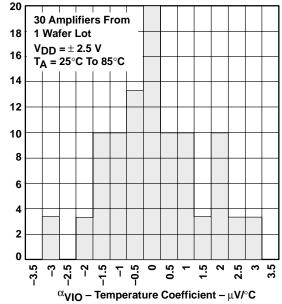


Figure 7

HIGH-LEVEL OUTPUT VOLTAGE vs

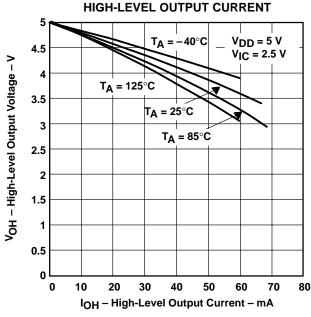
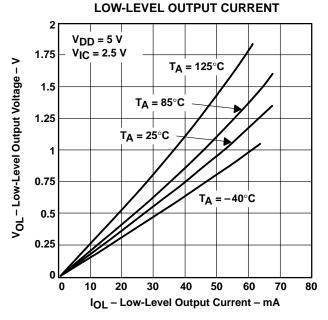
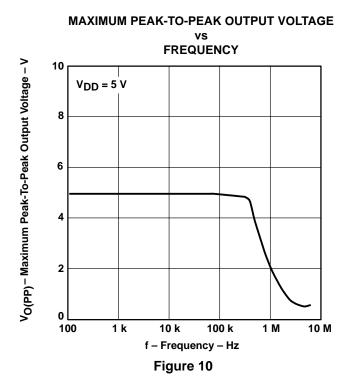
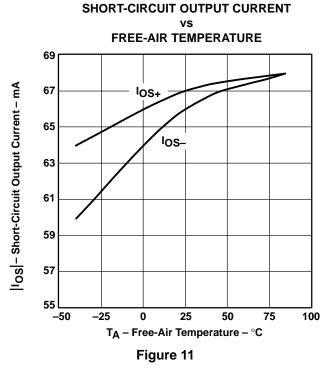
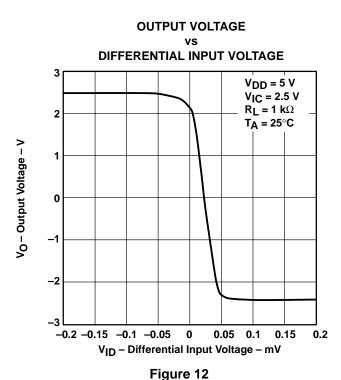
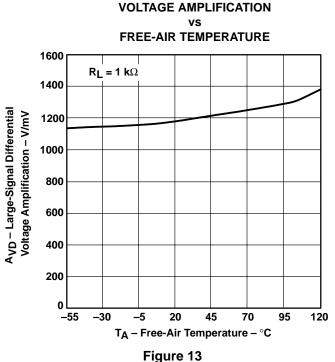


Figure 8

LOW-LEVEL OUTPUT VOLTAGE vs


Figure 9



LARGE-SIGNAL DIFFERENTIAL

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN

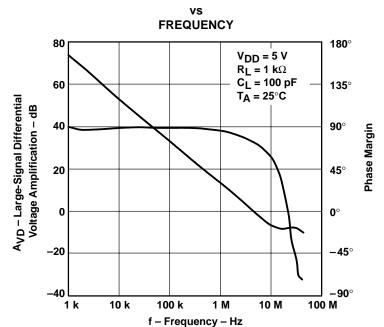


Figure 14

OUTPUT IMPEDANCE

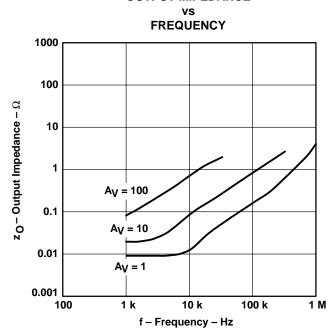
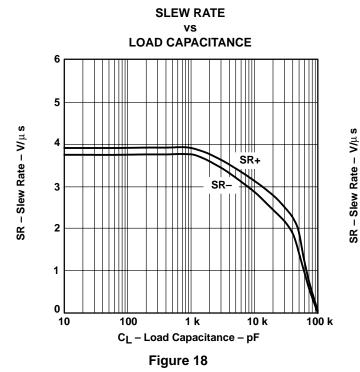



Figure 15

COMMON-MODE REJECTION RATIO FREQUENCY 110 $V_{DD} = 5 V$ CMRR - Common-Mode Rejection Ratio - dB 100 $V_{IC} = 2.5 V$ $T_A = 25^{\circ}C$ 90 80 70 60 50 40 30 20 10 100 1 k 10 k 100 k 1 M 10 M f - Frequency - Hz

Figure 16

COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE

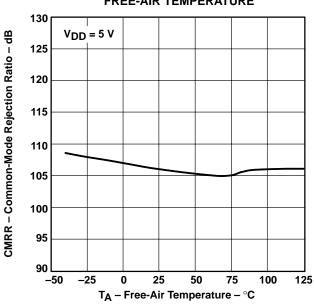


Figure 17

SLEW RATE vs FREE-AIR TEMPERATURE

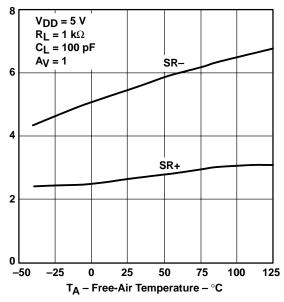


Figure 19

INVERTING LARGE-SIGNAL PULSE RESPONSE 4 3.5 Vo-Output Voltage - V 3 2.5 2 $V_{DD} = 5 V$ $R_L = 1 k\Omega$ 1.5 $C_{L} = 100 \text{ pF}$ $A_V = -1$ 1 T_A = 25°C 0.5 25 50 100 125 150 175 75 t – Time – μ s

Figure 20



Figure 21

INVERTING SMALL-SIGNAL PULSE RESPONSE

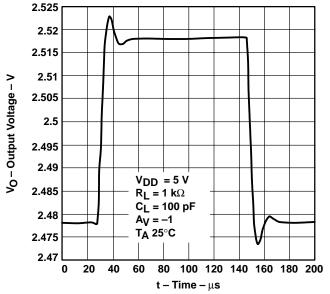


Figure 22

VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE

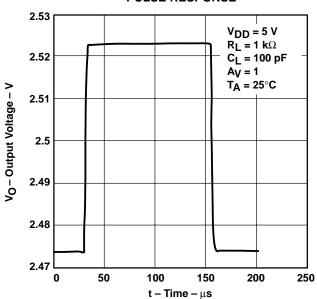


Figure 23

100

90

80

70

60 50

40

30 20 10

10

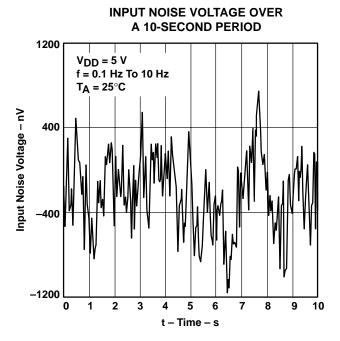
Vn – Equivalent Input Noise Voltage – nV/√Hz

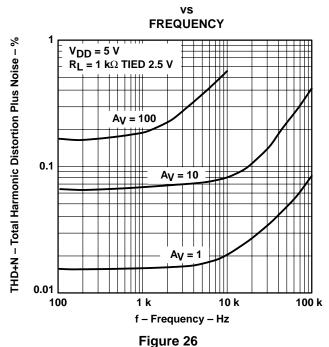
TYPICAL CHARACTERISTICS

EQUIVALENT INPUT NOISE VOLTAGE VS FREQUENCY VDD = 5 V RS = 20 Ω TA = 25°C

f – Frequency – Hz Figure 24

100




Figure 25

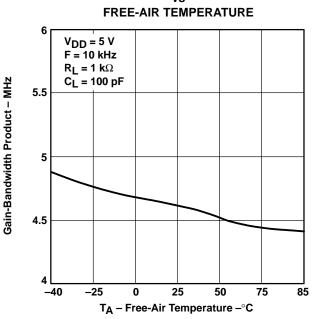
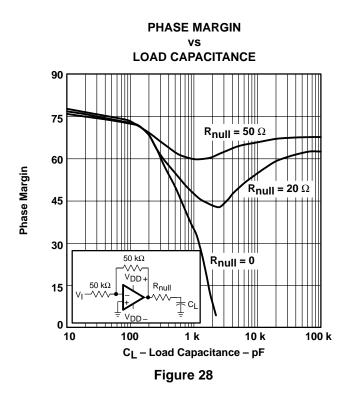
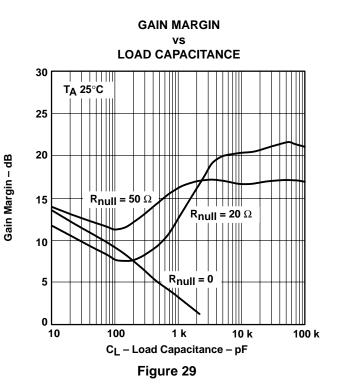
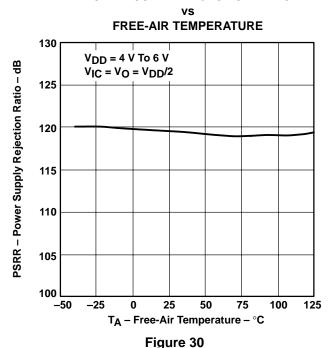
TOTAL HARMONIC DISTORTION PLUS NOISE

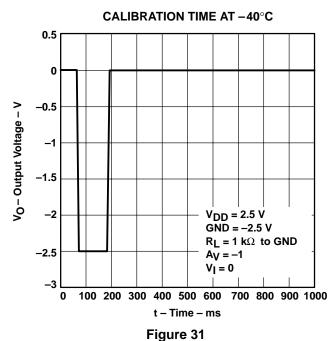
1 k

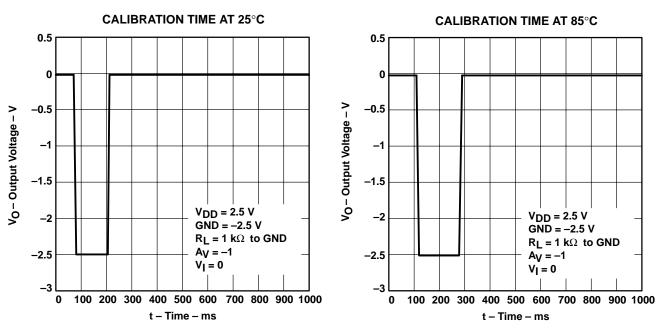
10 k

100 k

GAIN-BANDWIDTH PRODUCT


Figure 27



POWER SUPPLY REJECTION RATIO

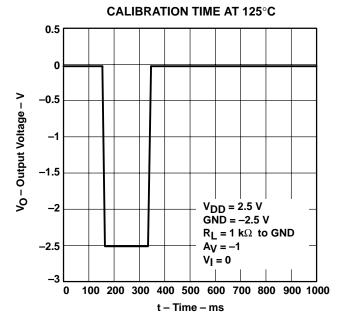


Figure 34

TLC4501, TLC4501A, TLC4502, TLC4502A FAMILY OF SELF-CALIBRATING (Self-Cal™) PRECISION CMOS RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS

SLOSZZYTAT MAY (1905 A BELV ISE DIALPRITE 250)

APPLICATION INFORMATION

- The TLC4502 is designed to operate with only a single 5-V power supply, have true differential inputs, and remain in the linear mode with an input common-mode voltage of 0.
- The TLC4502 has a standard dual-amplifier pinout, allowing for easy design upgrades.
- Large differential input voltages can be easily accommodated and, as input differential-voltage protection diodes are not needed, no large input currents result from large differential input voltage. Protection should be provided to prevent the input voltages from going negative more than -0.3 V at 25°C. An input clamp diode with a resistor to the device input terminal can be used for this purpose.
- For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor can be used from the output of the amplifier to ground. This increases the class-A bias current and prevents crossover distortion. Where the load is directly coupled, for example in dc applications, there is no crossover distortion.
- Capacitive loads, which are applied directly to the output of the amplifier, reduce the loop stability margin.
 Values of 500 pF can be accommodated using the worst-case noninverting unity-gain connection. Resistive isolation should be considered when larger load capacitance must be driven by the amplifier.

The following typical application circuits emphasize operation on only a single power supply. When complementary power supplies are available, the TLC4502 can be used in all of the standard operational amplifier circuits. In general, introducing a pseudo-ground (a bias voltage of $V_1/2$ like that generated by the TLE2426) allows operation above and below this value in a single-supply system. Many application circuits shown take advantage of the wide common-mode input-voltage range of the TLC4502, which includes ground. In most cases, input biasing is not required and input voltages that range to ground can easily be accommodated.

description of calibration procedure

To achieve high dc gain, large bandwidth, high CMRR and PSRR, as well as good output drive capability, the TLC4502 is built around a 3-stage topology: two gain stages, one rail-to-rail, and a class-AB output stage. A nested Miller topology is used for frequency compensation.

During the calibration procedure, the operational amplifier is removed from the signal path and both inputs are tied to GND. Figure 35 shows a block diagram of the amplifier during calibration mode.

SLOS221B - MAY 1998 - REVISED APRIL 2001

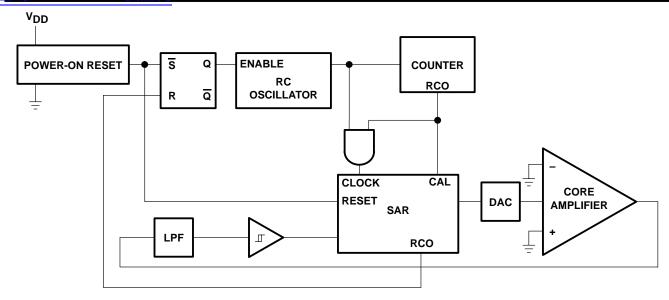


Figure 35. Block Diagram During Calibration Mode

The class AB output stage features rail-to-rail voltage swing and incorporates additional switches to put the output node into a high-impedance mode during the calibration cycle. Small-replica output transistors (matched to the main output transistors) provide the amplifier output signal for the calibration circuit. The TLC4502 also features built-in output short-circuit protection. The output current flowing through the main output transistors is continuously being sensed. If the current through either of these transistors exceeds the preset limit (60 mA - 70 mA) for more than about 1 μs , the output transistors are shut down to approximately their quiescent operating point for approximately 5 ms. The device is then returned to normal operation. If the short circuit is still in place, it is detected in less than 1 μs and the device is shut down for another 5 ms.

The offset cancellation uses a current-mode digital-to-analog converter (DAC), whose full-scale current allows for an adjustment of approximately ± 5 mV to the input offset voltage. The digital code producing the cancellation current is stored in the successive-approximation register (SAR).

During power up, when the offset cancellation procedure is initiated, an on-chip RC oscillator is activated to provide the timing of the successive-approximation algorithm. To prevent wide-band noise from interfering with the calibration procedure, an analog low-pass filter followed by a Schmitt trigger is used in the decision chain to implement an averaging process. Once the calibration procedure is complete, the RC oscillator is deactivated to reduce supply current and the associated noise.

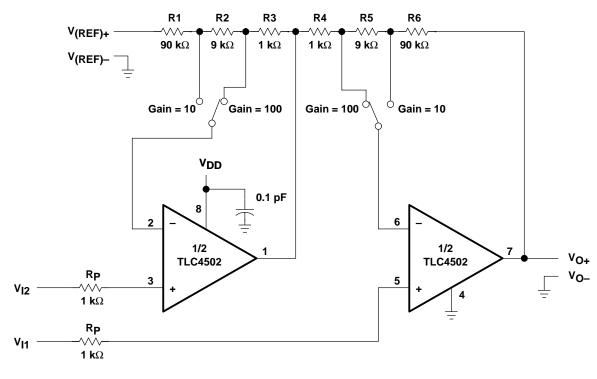
TLC4501, TLC4501A, TLC4502, TLC4502A FAMILY OF SELF-CALIBRATING (Self-Cal™) PRECISION CMOS RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS

SLOSZZY (TENTET MARY (1948 S.A. PREZV IS/FIDIALP RTIL 2000)

APPLICATION INFORMATION

The key operational-amplifier parameters CMRR, PSRR, and offset drift were optimized to achieve superior offset performance. The TLC4502 calibration DAC is implemented by a binary-weighted current array using a pseudo-R-2R MOSFET ladder architecture, which minimizes the silicon area required for the calibration circuitry, and thereby reduces the cost of the TLC4502.

Due to the performance (precision, PSRR, CMRR, gain, output drive, and ac performance) of the TLC4502, it is ideal for applications like:


- Data acquisition systems
- Medical equipment
- Portable digital scales
- Strain gauges
- Automotive sensors
- Digital audio circuits
- Industrial control applications

It is also ideal in circuits like:

- A precision buffer for current-to-voltage converters, a/d buffers, or bridge applications
- High-impedance buffers or preamplifiers
- Long term integration
- Sample-and-hold circuits
- Peak detectors

The TLC4502 self-calibrating operational amplifier is manufactured using Texas instruments LinEPIC process technology and is available in an 8-pin SOIC (D) Package. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 125°C. The M-suffix devices are characterized for operation from –55°C to 125°C.

$$(Gain = 10) \quad V_O = \Big(V_{11} - V_{12}\Big)\Big(1 + \frac{R6}{R4 + R5}\Big) + V_{(REF)} \text{ Where R1} = R6, R2 = R5, and R3 = R4$$

$$(Gain = 100) \quad V_O = \Big(V_{11} - V_{12}\Big)\Big(1 + \frac{R5 + R6}{R4}\Big) + V_{(REF)} \text{ Where R1} = R6, R2 = R5, and R3 = R4$$

Figure 36. Single-Supply Programmable Instrumentation Amplifier Circuit

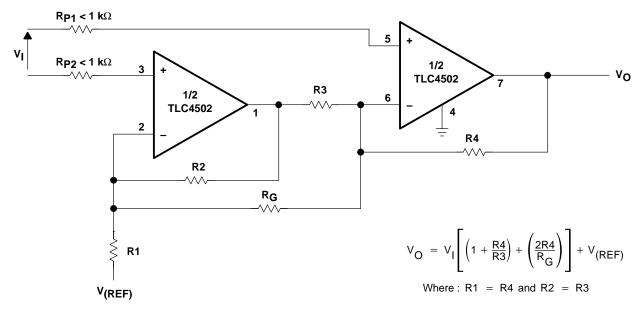
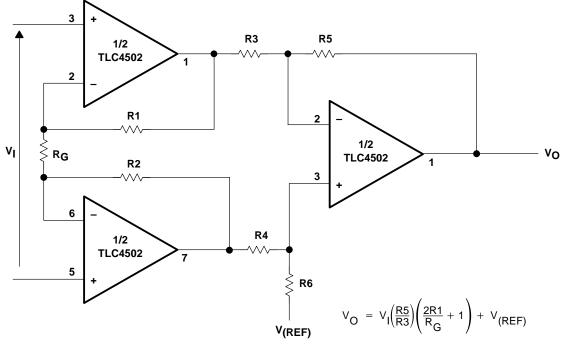



Figure 37. Two Operational-Amplifier Instrumentation Amplifier Circuit

SLOSZZYTEN WAY (1945 A BEZV SED APRIL 2301

Where: R1 = R2, R3 = R4, and R5 = R6

Figure 38. Three Operational-Amplifier Instrumentation Amplifier Circuit

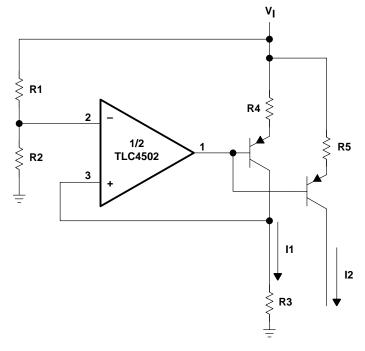


Figure 39. Fixed Current-Source Circuit

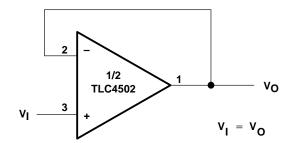


Figure 40. Voltage-Follower Circuit

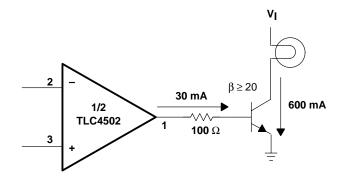


Figure 41. Lamp-Driver Circuit

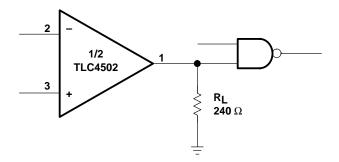


Figure 42. TTL-Driver Circuit

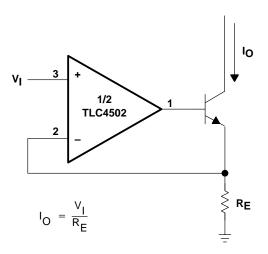


Figure 43. High-Compliance Current-Sink Circuit

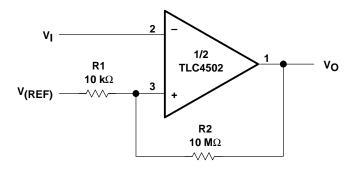


Figure 44. Comparator With Hysteresis Circuit

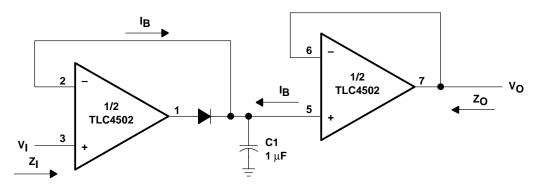


Figure 45. Low-Drift Detector Circuit

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$ Release 8, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 4) and subcircuit in Figure 46 are generated using the TLC4501 typical electrical and operating characteristics at $T_A = 25^{\circ}C$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

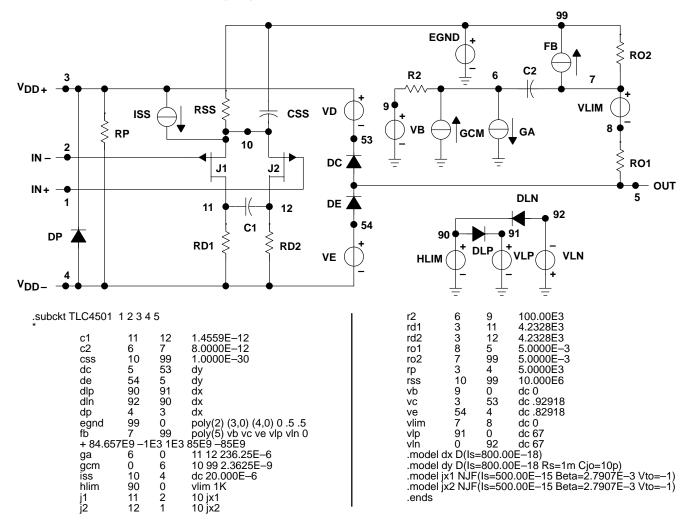


Figure 46. Boyle Macromodel and Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

查询"CLC4502AM"供应商

26-Mar-2010

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp (3)
5962-9753701Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-9753701QHA	ACTIVE	CFP	U	10	1	TBD	A42	N / A for Pkg Type
5962-9753701QPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type
5962-9753702Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-9753702QHA	ACTIVE	CFP	U	10	1	TBD	A42	N / A for Pkg Type
5962-9753702QPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type
TLC4501ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4501ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4501AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4501AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4501AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4501AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4501AQD	PREVIEW	SOIC	D	8		TBD	Call TI	Call TI
TLC4501AQDR	PREVIEW	SOIC	D	8		TBD	Call TI	Call TI
TLC4501CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4501CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4501ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4501IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4501IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4501IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4501QD	PREVIEW	SOIC	D	8		TBD	Call TI	Call TI
TLC4501QDR	PREVIEW	SOIC	D	8		TBD	Call TI	Call TI
TLC4502ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

查询"JLC4502AM"供应商

26-Mar-2010

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TLC4502AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502AMD	ACTIVE	SOIC	D	8	75	TBD	CU NIPDAU	Level-1-220C-UNLIM
TLC4502AMDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502AMFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
TLC4502AMJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type
TLC4502AMUB	ACTIVE	CFP	U	10	1	TBD	A42	N / A for Pkg Type
TLC4502AQD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502AQDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502AQDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502AQDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502MD	ACTIVE	SOIC	D	8	75	TBD	CU NIPDAU	Level-1-220C-UNLIM
TLC4502MDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
TLC4502MJG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type
TLC4502MJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type
TLC4502MUB	ACTIVE	CFP	U	10	1	TBD	A42	N / A for Pkg Type
TLC4502QD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502QDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLC4502QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

PACKAGE OPTION ADDENDUM

螽润"忒LC4502AM"供应商

26-Mar-2010

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

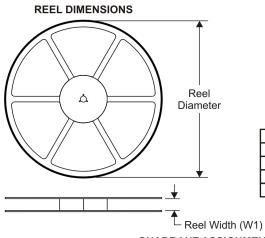
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

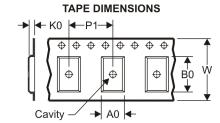
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

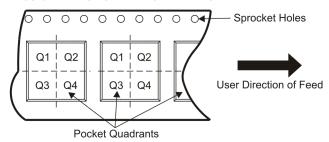
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



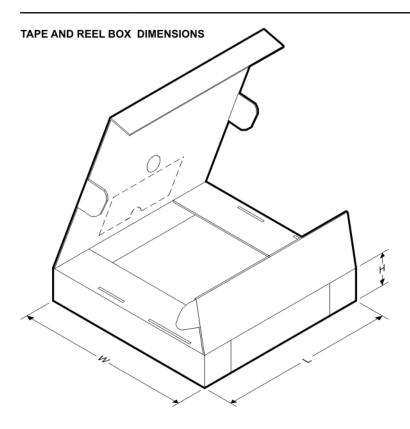
查询"JLC4502AM"供应商

27-Aug-2010


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

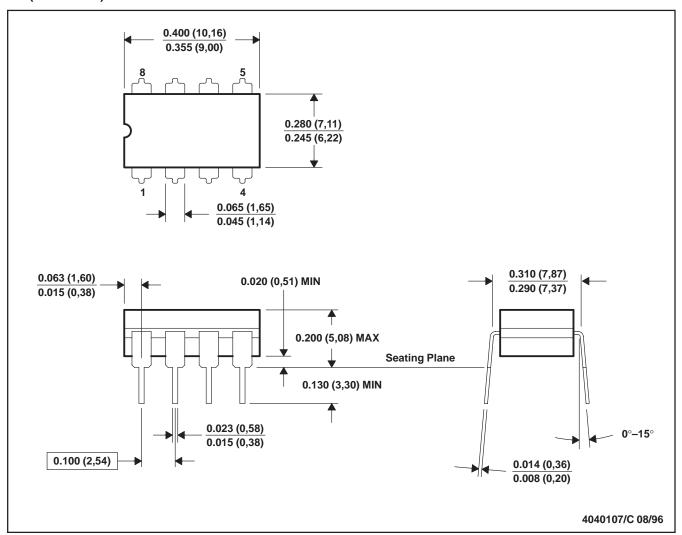


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC4501AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC4501IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC4502ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC4502AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC4502CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC4502IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

查询"CLC4502AM"供应商

27-Aug-2010

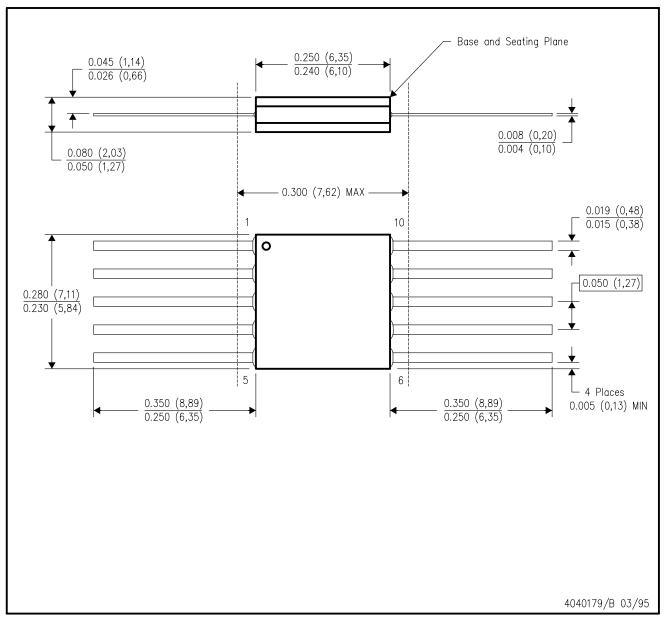


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC4501AIDR	SOIC	D	8	2500	346.0	346.0	29.0
TLC4501IDR	SOIC	D	8	2500	346.0	346.0	29.0
TLC4502ACDR	SOIC	D	8	2500	346.0	346.0	29.0
TLC4502AIDR	SOIC	D	8	2500	346.0	346.0	29.0
TLC4502CDR	SOIC	D	8	2500	346.0	346.0	29.0
TLC4502IDR	SOIC	D	8	2500	346.0	346.0	29.0

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE



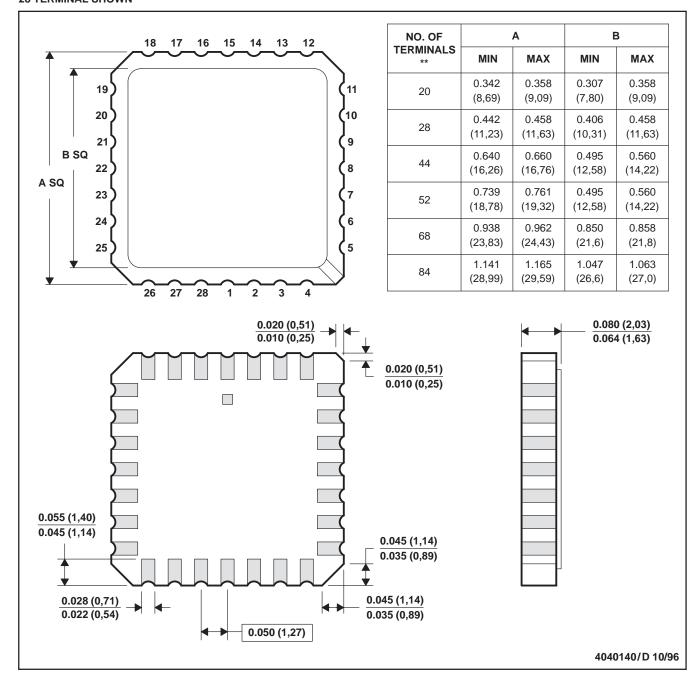
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

U (S-GDFP-F10)

CERAMIC DUAL FLATPACK

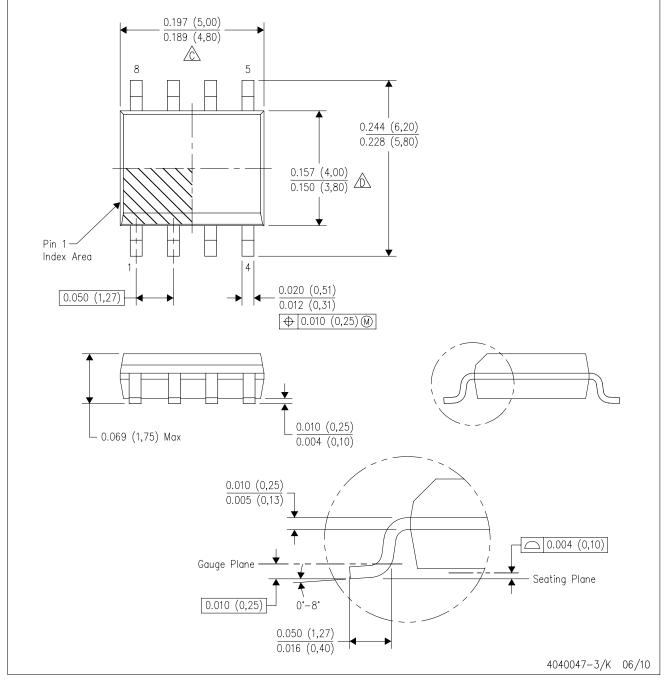
NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA

FK (S-CQCC-N**)

28 TERMINAL SHOWN

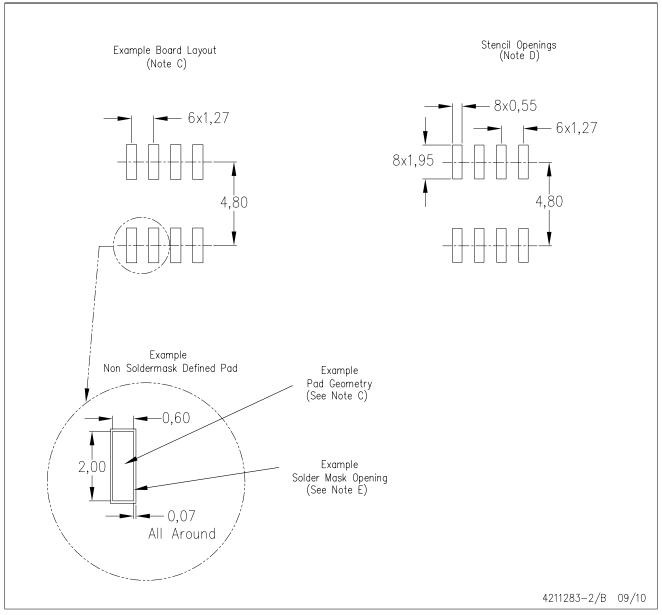
LEADLESS CERAMIC CHIP CARRIER


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

查询"TLC4502AM"供应商

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps