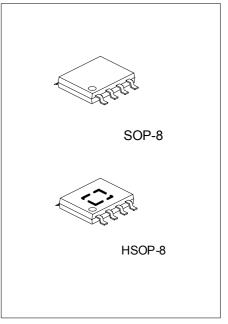
SK6908

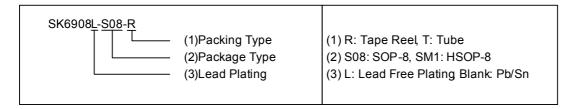
LINEAR INTEGRATED CIRCUIT


SINGLE-PHASE DC-FAN **MOTOR DRIVER**

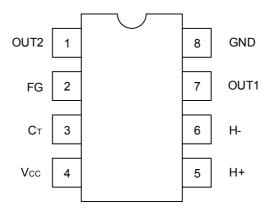
DESCRIPTION

SK6908 is a single-phase driver for dc-fan motors. It provides high efficiency, low noise output and supports the functions of motor lock protection, auto restart and rotation detection.

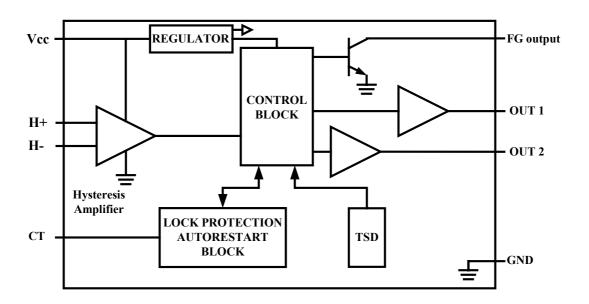
FEATURES


- *Wide supply voltage range of 2.5V to 20V
- *Output current I_{O(MAX)}=600mA
- *Operate with Hall element
- *Lock protection
- *Auto-restart when the motor lock is undone
- *FG(frequency generator) output
- *Package type SOP-8 and HSOP-8 expose pan

*Pb-free plating product number: SK6908L


■ ORDERING INFORMATION

Order Number		Dookogo	Dooking	
Normal	Lead Free Plating	Package	Packing	
SK6908-S08-R	SK6908L-S08-R	SOP-8	Tape Reel	
SK6908-S08-T	SK6908L-S08-T	SOP-8	Tube	
SK6908-SM1-R	SK6908L-SM1-R	HSOP-8	Tape Reel	
SK6908-SM1-T	SK6908L-SM1-T	HSOP-8	Tube	



■ PIN CONFIGURATION

■ BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATINGS** (Ta = 25° C)

PARAMETER			RATINGS	UNIT
Supply voltage		Vcc	20	V
Supply current		Icc	20	mA
Circuit current		Ιο	600	mA
FG output current		I_{FG}	20	mA
Device dissination (Danata at To-25°C radius 5 FraNV°C)	SOP-8	P _D	700	mW
Power dissipation (Derate at Ta=25°C reduce 5.5mW/°C)	HSOP-8	P_D	1000	mW
Output Voltage		V_{OUT}	20	V
Hall input common mode voltage range		V_{HIC}	1.0 ~ Vcc-0.5	V
Operating ambient temperature		T _{OPR}	-20 ~ +100(Note1)	$^{\circ}\!\mathbb{C}$
Storage temperature		T_{STG}	-55 ~ +150	$^{\circ}\!\mathbb{C}$

Note 1.For operation in ambient temperatures above 25° C ,the driver device must be derated based on a 150° C maximum temperature

■ ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc=5V)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Current drain	I _{CC}	In drive mode (C _T =L)		8		mA
Current drain		In lockup protection mode (C _T =H)		4.1		mA
Lockup detection capacitor charge current	I _{CT1}	V 1PIN = 1.1V	2	2.8	4	uA
Capacitor discharge current	I _{CT2}	V 1PIN = 1.1V	0.3	0.5	8.0	uA
Capacitor charge/discharge current ratio	R _{CT}			5.6		
CT charge voltage	V _{CT1}			1.9		V
CT discharge voltage	V_{CT2}			0.7		V
Output low level voltage	V_{OL}	I _O =200mA		0.3	0.7	V
Output high level voltage	Voh	I _O =200mA	3.9	4.1		V
Hall input sensitivity	V_{HIN}	Zero peak value (including offset and hysteresis)	3		15	mV
Hall input-output gain	G _{HO}	_	320	500	680	
FG output pin low voltage	V_{FG}	I _{FG} =5mA		0.3	0.5	V
FG output pin leakage current	I _{FG(LEAK)}	V _{FG} =15V		0	10	uA

■ HALL SINGLE INPUT-OUTPUT TRUTH VALUE TABLE

H+	H-	OUT1	OUT2	FG
Н	L	Н	L	Н
L	Н	L	Н	L

^{*} CT=0V

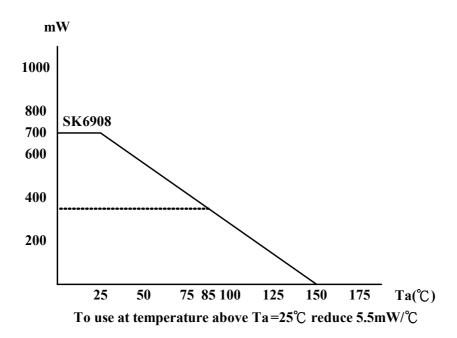
Note 2.Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Note 3.The device is guaranteed to meet performance specification within 0° ~+70° operating temperature range and assured by design from -20°C~+100°.

■ LOCKUP PROTECTION / AUTOMATIC RECOVERY

Fig. 1

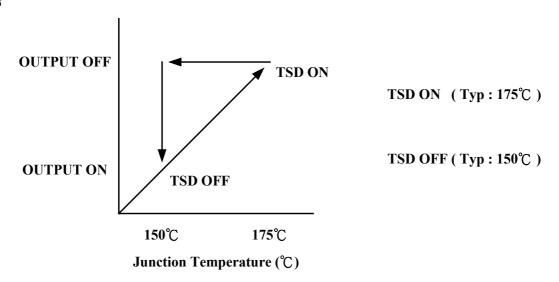
Ton (charge time) =
$$\frac{C \times (VCT1-VCT2)}{ICT1}$$


Toff (charge time) =
$$\frac{C \times (VCT1-VCT2)}{ICT2}$$

C: Value of capcitor at CT terminal

■ POWER DISSIPATION

Fig.-2


The maximum junctions temperature is 150°C in plastic packages, but for reasons of reliability, a lower number may be mandated.

$$P_T = T_{J(MAX)} - Ta_{(MAX)} / \theta_{JA}$$

 P_T = Total Power Dissipated by the Device $T_{J (MAX)}$ = Maximum Junction Temperature $Ta_{(MAX)}$ = Maximum Ambient Temperature θ_{JA} = I75°C/W

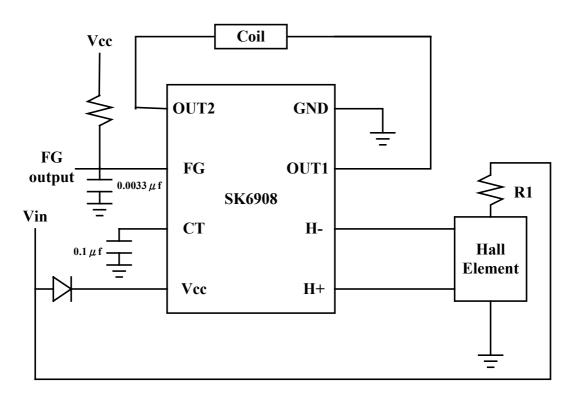

■ THERMAL SHUTDOWN(TSD)

Fig.-3

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.