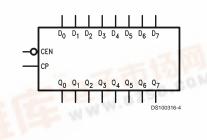


National Semiconductor

100353 Low Power 8-Bit Register


General Description

The 100353 contains eight D-type edge triggered, master/ slave flip-flops with individual inputs (D_n) , true outputs (Q_n) , a clock input (CP), and a common clock enable pin (CEN). Data enters the master when CP is LOW and transfers to the slave when CP goes HIGH. When the CEN input goes HIGH it overrides all other inputs, disables the clock, and the Q outputs maintain the last state.

The 100353 output drivers are designed to drive 50Ω termination to -2.0V. All inputs have 50 k Ω pull-down resistors.

Logic Symbol

Features

Low power operation

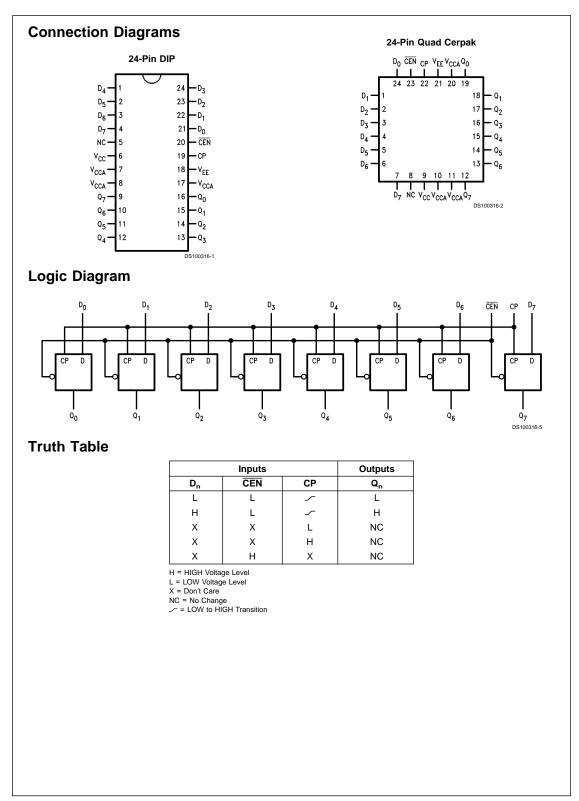
Pin Names

 $D_0 - D_7$

- 2000V ESD protection
- Voltage compensated operating range = -4.2V to -5.7V

Data Inputs

Description


Available to MIL-STD-883

August 1998

CEN Clock Enable Input CP Clock Input (Active Rising Edge) Data Outputs $Q_0 - Q_7$ NC No Connect DS100316 © 1998 National Semiconductor Corporation www.national.com

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Above which the useful life may be impared

Storage Temperature (T _{STG})	–65°C to +150°C
Maximum Junction Temperature (T _J)	
Ceramic	+175°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V
Input Voltage (DC)	V _{EE} to + 0.5V
Output Current (DC Output HIGH)	–50 mA

ESD (Note 2)

Recommended Operating Conditions

Case Temperature (T_C) Military -55°C to +125°C Supply Voltage (V_{EE}) -5.7V to -4.2V Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

≥2000V

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Military Version

DC Electrical Characteristics

 V_{EE} = -4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = -55°C to +125°C

Symbol	Parameter	Min	Max	Units	Tc	Conditions	Notes
V _{он}	Output HIGH Voltage	-1025	-870	mV	0°C to		
					+125°C		
		-1085	-870	mV	–55°C	V _{IN} = V _{IH} (Max) Loading	with (Notes 3, 4, 5)
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to	or V_{IL} (Min) 50 Ω to	-2.0V
					+125°C		
		-1830	-1555	mV	–55°C		
V _{онс}	Output HIGH Voltage	-1035		mV	0°C to		
					+125°C		
		-1085		mV	–55°C	$V_{IN} = V_{IH}$ (Min) Loading	with (Notes 3, 4, 5)
V _{OLC}	Output LOW Voltage		-1610	mV	0°C to	or V _{IL} (Max) 50Ω to	-2.0V
					+125°C		
			-1555	mV	–55°C		
V _{IH}	Input HIGH Voltage	-1165	-870	mV	–55°C to	Guaranteed HIGH Signal for all I	nputs (Notes 3, 4, 5, 6
					+125°C		
VIL	Input LOW Voltage	-1830	-1475	mV	–55°C to	Guaranteed LOW Signal for all Ir	puts (Notes 3, 4, 5, 6
					+125°C		
l _{IL}	Input LOW Current	0.50		μA	–55°C to	$V_{EE} = -4.2V$	(Notes 3, 4, 5)
					+125°C	$V_{IN} = V_{IL}$ (Min)	
I _{IH}	Input HIGH Current		240	μA	0°C to	$V_{EE} = -5.7V$	(Notes 3, 4, 5)
					+125°C	$V_{IN} = V_{IH}$ (Max)	
			340	μA	–55°C		
I _{EE}	Power Supply Current				–55°C to	Inputs Open	
		-132	-42	mA	+125°C	$V_{EE} = -4.2V$ to $-5.7V$	(Notes 3, 4, 5)

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals -55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 4: Screen tested 100% on each device at -55°C, +25°C, and +125°C, Subgroups 1, 2, 3, 7, and 8.

Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 6: Guaranteed by applying specified input condition and testing V_{OH}/V_{OL} .

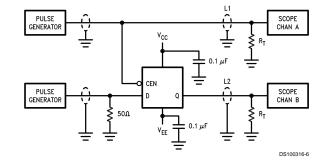
AC Electrical Characteristics

Symbol	Parameter Parameter		–55°C	T _c =	+25°C	T _c = -	+125°C	Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			I
f _{max}	Toggle Frequency	400		400		400		MHz	Figures 1, 2	(Note 10)

www.national.com

AC Electrical Characteristics (Continued)

Symbol	Parameter	T _C = -55°C		T _C = +25°C		T _c = +125°C		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
t _{PLH}	Propagation Delay	0.70	3.30	0.80	3.10	0.80	3.50	ns		(Notes 7, 8,
t _{PHL}	CP to Output								Figures 1, 2	9, 11)
t _{TLH}	Transition Time	0.40	2.20	0.40	2.20	0.40	2.20	ns		(Note 10)
t _{THL}	20% to 80%, 80% to 20%									
t _s	Setup Time									
	D _n	0.30		0.30		0.30				
	CEN (Disable Time)	0.60		0.60		0.60		ns	Figures 1, 3	(Note 10)
	CEN (Release Time)	1.40		1.40		1.40				
t _h	Hold Time D _n	1.50		1.50		1.50		ns	Figures 1, 4	(Note 10)
t _{pw} (H)	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figures 1, 2	(Note 10)

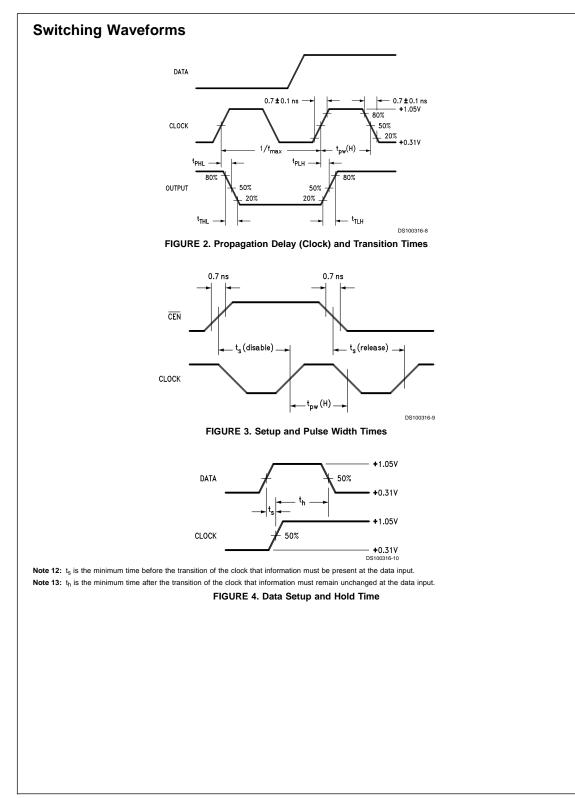

Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals –55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 8: Screen tested 100% on each device at +25°C temperature only, Subgroup A9.

Note 9: Sample tested (Method 5005, Table I) on each manufactured lot at +25°C, Subgroup A9, and at +125°C and -55°C, temperatures, Subgroups A10 and A11. Note 10: Not tested at +25°C, +125°C, and -55°C temperature (design characterization data).

Note 11: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

Test Circuitry



Notes:

 V_{CC} , V_{CCA} = +2V, V_{EE} = -2.5V

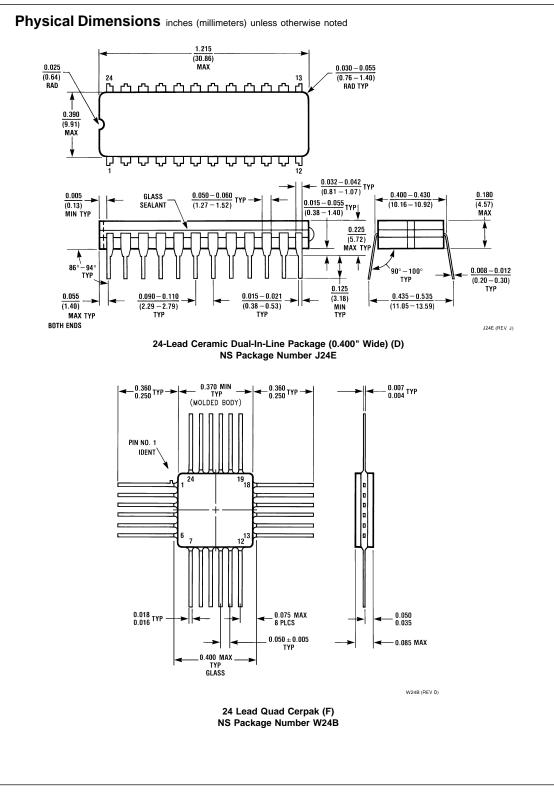

L1 and L2 = equal length 50Ω impedance lines R_T = 50 Ω terminator internal to scopeDecoupling 0.1 µF from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GNDC_L = Fixture and stray capacitance \leq 3 pF

FIGURE 1. AC, Toggle Frequency Test Circuit

www.national.com

查询"100353DM"供应商

7

www.national.com

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

N	National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconducto Japan Ltd.
U	Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5620-6175
	Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
	Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
		Français Tel: +49 (0) 1 80-532 93 58		
www.na	ational.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.