OPERATION AMPLIFIER

General Description

The LM101A is a general purpose operational amplifier which features improved performance over industry standards such as the LM709．Advanced processing techniques make possible an order of magnitude reduction in input currents，and a redesign of the biasing circuitry reduces the temperature drift of input current．Improved specifications include：
－Offset voltage 3 mV maximum over temperature
－Input current 100 nA maximum over temperture
－Offset current 20 nA maximum over temperature
－Offsets guaranteed over entire common mode and supply voltage ranges
－Slew rate of $10 V / u S$ as a summing amplifier
This amplifier offers many features which make its application nearly foolproof：overload protection on the input and output，no latch－up when the common mode range is exceeded， and freedom from oscillations and compensation with a single 30 pF capacitor．It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application．For example，in low frequency circuits it can be overcompensated for increased stability margin．Or the compensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications．
In addition，the device provides better accuracy and lower noise in high impedance circuitry．The low input currents also make it particularly well suited for long interval integrators or timers，sample and hold circuits，and low frequency waveform generators． Further，replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps，it can give lower offset voltage and a drift at a lower cost．

Industry Part Number

NS Part Numbers

LM101A
LM101AH／883
LM101AJ－14／883
LM101AJ／883
Prime Die
LM1 01AW／883

LM101F

Processing

MIL－STD－883，Method 5004

Quality Conformance Inspection

1
2
3
4
5
6
7
$8 A$
$8 B$
9
10
11

Static tests at Static tests at Static tests at Dynamic tests at Dynamic tests at Dynamic tests at Functional tests at Functional tests a Functional tests at Switching tests at Switching tests at Switching tests at

Temp（ ${ }^{\circ} \mathrm{C}$ ）
$+25$
$+125$
－55
$+25$
$+125$
－55
$+25$
$+125$
－55
＋25
$+125$

（Absolute Maximum Ratings）
 （Note 1）

Supply Voltage	
	$\pm 22 \mathrm{~V}$
Differential Input Voltage	
	$\pm 30 \mathrm{~V}$
Input Voltage （Note 3）	
	$\pm 15 \mathrm{~V}$
Ouput Short Circuit Duration （Note 4）	
	Continuous
Operating Ambient Temperature Range	
Maximum Junction Temperature	
	150 C
Power Dissipation at $\mathrm{TA}=25 \mathrm{C}$ （Note 2）	
H－Package（Still Air）	500 mW
H－Package（500LF／Min Air Flow）	1200 mW
J－Package	1000 mW
J－14－Package	TBD
W－Package	TBD
Thermal Resistance	
ThetaJA	
H－Pkg（Still Air）	$165 \mathrm{C} / \mathrm{W}$
H－Pkg（500LF／Min Air flow）	$67 \mathrm{C} / \mathrm{W}$
J－Pkg（Still Air）	$110 \mathrm{C} / \mathrm{W}$
J－Pkg（500LF／Min Air flow）	TBD
J－14－Pkg（Still Air）	TBD
J－14－Pkg（500LF／Min Air flow）	TBD
W－Pkg（Still Air）	$233 \mathrm{C} / \mathrm{W}$
W－Pkg（500LF／Min Air flow）	$155 \mathrm{C} / \mathrm{W}$
ThetaJC	
H－Pkg	$25 \mathrm{C} / \mathrm{W}$
$J-P k g$	TBD
J－14－Pkg	TBD
W－Pkg	$26 \mathrm{C} / \mathrm{W}$
Storage Temperature Range	
	－65 C to＋150 C
Lead Temperature	300 C
ESD Tolerance （Note 5）	
	2000 V

Note 1：Absolute Maximum Ratings indicate limits beyond which damage to the device may occur． Operating Ratings indicate conditions for which the device is functional，but do not guarantee specific performance limits．For guaranteed specifications and test conditions，see the Electrical Characteristics．The guaranteed specifications apply only for the test conditions listed．Some performance characteristics may degrade when the device is not operated under the listed test conditions．
Note 2：The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax（maximum junction temperature），ThetaJA（package junction to ambient thermal resistance），and TA（ambient temperature）．The maximum allowable
 given in the Absolute Maximum Ratings，whichever is lower．
Note 3：For supply voltages less than $\pm 15 \mathrm{~V}$ ，the absolute maximum input voltage is equal to the supply voltage．
Note 4：Continuous short circuit is allowed for case temperatures to 125 and ambient temperatures to 75 C for LM101A．
Note 5：Human body model， 100 pF discharged through 1．5K Ohms．

Electrical Characteristics

DC PARAMETERS

（The following conditions apply to all the following parameters，unless otherwise specified．） DC： $\mathrm{Vcc}= \pm 20 \mathrm{~V}, \mathrm{Vcm}=0$

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN－ NAME	MIN	MAX	UNIT	SUB－ GROUPS
Vio	Input Offset Voltage	$\mathrm{Vcm}=-15 \mathrm{~V}, \mathrm{Rs}=50$ Ohms			－2	2	mV	1
					－3	3	mV	2， 3
		$\mathrm{Vcm}=15 \mathrm{~V}$ ，Rs $=50$ Ohms			－2	2	mV	1
					－3	3	mV	2， 3
		Rs $=50$ Ohms			－2	2	mV	1
					－3	3	mV	2， 3
		$\mathrm{Vcc}= \pm 5 \mathrm{~V}, \mathrm{Rs}=50$ Ohms			－2	2	mV	1
		$\mathrm{Vcc}= \pm 5 \mathrm{~V}, \mathrm{Rs}=50$ Ohms			－3	3	mV	2， 3
Iio	Input Offset Current	$\mathrm{Vcm}=-15 \mathrm{~V}$			－10	10	nA	1
					－20	20	nA	2， 3
		$\mathrm{Vcm}=15 \mathrm{~V}$			－10	10	nA	1
					－20	20	nA	2， 3
					－10	10	nA	1
					－20	20	nA	2， 3
		$\mathrm{Vcc}= \pm 5 \mathrm{~V}$			－10	10	nA	1
		$\mathrm{VCc}= \pm 5 \mathrm{~V}$			－20	20	nA	2， 3
Iib＋	Input Bias Current	$\mathrm{Vcm}=-15 \mathrm{~V}$			1	75	nA	1
					1	100	nA	2， 3
		$\mathrm{Vcm}=15 \mathrm{~V}$			1	75	nA	1
					1	100	nA	2， 3
					1	75	nA	1
					1	100	nA	2， 3
		$\mathrm{VCc}= \pm 5 \mathrm{~V}$			1	75	nA	1
		$\mathrm{Vcc}= \pm 5 \mathrm{~V}$			1	100	nA	2， 3

Electrical Characteristics

DC PARAMETERS（Continued）

（The following conditions apply to all the following parameters，unless otherwise specified．） DC：$V C c= \pm 20 \mathrm{~V}, \mathrm{Vcm}=0$

SYMBOL	PARAMETER	CONDITIONS	NOTES	$\begin{aligned} & \text { PIN- } \\ & \text { NAME } \end{aligned}$	MIN	MAX	UNIT	SUB－ GROUPS
Iib－	Input Bias Current	$\mathrm{Vcm}=-15 \mathrm{~V}$			1	75	nA	1
					1	100	nA	2， 3
		$\mathrm{Vcm}=15 \mathrm{~V}$			1	75	nA	1
					1	100	nA	2， 3
					1	75	nA	1
					1	100	nA	2， 3
		$\mathrm{Vcc}= \pm 5 \mathrm{~V}$			1	75	nA	1
		$\mathrm{Vcc}= \pm 5 \mathrm{~V}$			1	100	nA	2， 3
PSRR＋	Power Supply Rejection Ratio	$\begin{aligned} & +\mathrm{Vcc}=+20 \mathrm{~V} \text { and }+5 \mathrm{~V},-\mathrm{Vcc}=-20 \mathrm{~V}, \\ & \mathrm{Rs}=50 \text { Ohms } \end{aligned}$			80		dB	$\begin{aligned} & 1,2, \\ & 3 \end{aligned}$
PSRR－	Power Supply Rejection Ratio	$\begin{aligned} & +\mathrm{Vcc}=+20 \mathrm{~V}, \quad-\mathrm{Vcc}=-20 \mathrm{~V} \text { and }-5 \mathrm{~V}, \\ & \mathrm{Rs}=50 \text { Ohms } \end{aligned}$			80		dB	$\begin{aligned} & 1,2, \\ & 3 \end{aligned}$
CMRR	Common Mode Rejection Ratio	$-15 \mathrm{~V}<=\mathrm{Vcm}<=15 \mathrm{~V}, \mathrm{Rs}=50 \mathrm{Ohms}$			80		dB	$\begin{aligned} & 1,2, \\ & 3 \end{aligned}$
Icc	Supply Current					3	mA	1
						2.5	mA	2
						3.5	mA	3
VioAdj＋	Input Offset Voltage Adjust				4		mV	$\begin{aligned} & 1,2, \\ & 3 \end{aligned}$
VioAdj－	Input Offset Voltage Adjust					－4	mV	$\begin{aligned} & 1,2, \\ & 3 \end{aligned}$
Ios＋	Short Circuit Current				－45	－7	mA	$\begin{aligned} & 1,2, \\ & 3 \end{aligned}$
Ios－	Short Circuit Current				7	45	mA	$\begin{aligned} & 1,2, \\ & 3 \end{aligned}$
Vin	Input Voltage Range	$\mathrm{Vcc}= \pm 20 \mathrm{~V}$	1		－15	15	V	$\begin{aligned} & 1,2, \\ & 3 \end{aligned}$
Avs＋	Large Signal Gain	$\mathrm{Vcc}= \pm 15 \mathrm{~V}, \mathrm{Rs}=0, \mathrm{Rl}=2 \mathrm{~K}$ Ohms， $\mathrm{Vo}=10 \mathrm{~V}$			50		V / mV	4
		$\mathrm{Vcc}= \pm 15 \mathrm{~V}, \mathrm{Rs}=0, \mathrm{Rl}=2 \mathrm{~K}$ Ohms， $\mathrm{Vo}=10 \mathrm{~V}$			25		V / mV	5， 6
Avs－	Large Signal Gain	$\begin{aligned} & \mathrm{Vcc}= \pm 15 \mathrm{~V}, \mathrm{Rs}=0, \mathrm{Rl}=2 \mathrm{~K} \text { Ohms, } \\ & \mathrm{Vo}=-10 \mathrm{~V} \end{aligned}$			50		V / mV	4
		$\begin{aligned} & \mathrm{Vcc}= \pm 15 \mathrm{~V}, \mathrm{Rs}=0, \mathrm{Rl}=2 \mathrm{~K} \text { Ohms, } \\ & \mathrm{Vo}=-10 \mathrm{~V} \end{aligned}$			25		V / mV	5， 6
Rin	Input Resistance		2		1.5		MOhm $\$$	4
			2		0.5		MOhm $\$$	5， 6

Electrical Characteristics

DC PARAMETERS（Continued）

（The following conditions apply to all the following parameters，unless otherwise specified．） DC： $\mathrm{Vcc}= \pm 20 \mathrm{~V}, \mathrm{Vcm}=0$

SYMBOL	PARAMETER	CONDITIONS	NOTES	$\begin{aligned} & \text { PIN- } \\ & \text { NAME } \end{aligned}$	MIN	MAX	UNIT	SUB－ GROUPS
Vop＋	Output Voltage Swing	$\mathrm{Rl}=10 \mathrm{~K}$ Ohms			16		V	$\begin{array}{ll} 4,5, \\ 6 \end{array}$
		$\mathrm{Rl}=2 \mathrm{~K}$ Ohms			15		V	$4,5,$
		$\mathrm{Rl}=10 \mathrm{~K}$ Ohms， $\mathrm{Vcc}= \pm 15 \mathrm{~V}$			12		V	$\begin{aligned} & 4,5, \\ & 6 \end{aligned}$
		$\mathrm{Rl}=2 \mathrm{~K}$ Ohms， $\mathrm{Vcc}= \pm 15 \mathrm{~V}$			10		V	$\begin{aligned} & 4,5, \\ & 6 \end{aligned}$
Vop－	Output Voltage Swing	$\mathrm{Rl}=10 \mathrm{~K}$ Ohms				－16	V	$4,5,$
		$\mathrm{Rl}=2 \mathrm{~K}$ Ohms				－15	V	$\begin{aligned} & 4,5, \\ & 6 \end{aligned}$
		$\mathrm{Rl}=10 \mathrm{~K}$ Ohms， $\mathrm{Vcc}= \pm 15 \mathrm{~V}$				－12	V	$\begin{aligned} & 4,5, \\ & 6 \end{aligned}$
		$\mathrm{Rl}=2 \mathrm{~K}$ Ohms， $\mathrm{Vcc}= \pm 15 \mathrm{~V}$				－10	V	$4,5,$

AC PARAMETERS

（The following conditions apply to all the following parameters，unless otherwise specified．）
AC：$\quad \mathrm{Vcc}= \pm 20 \mathrm{~V}, \mathrm{Rl}=2 \mathrm{~K}$ Ohms， $\mathrm{Av}=1$

Note 1：Parameter guaranteed by the input conditions of several DC parameters．
Note 2：Parameter guaranteed，not tested．

