2700 2750

－Combines functions of DMM， switch system，and datalogger
－True 61／2－digit（22－bit）resolution
－Choice of 9 switch／control plug－in modules
－Up to 200 differential input channels（with 300V isolation） for measurement and control
－Convenient front panel inputs
－TestPoint＂＇start－up software
－LabVIEWTM，LabWindows＂／CVI， Visual Basic，C／C＋＋，and TestPoint drivers
－Optional ExceLINX－1A datalogging software

Screw terminals use oversize connectors for easier，mistake－ free wiring．

Fast Setup and Operation

The Model 2700 and Model 2750 are fully integrated，off－the－shelf measurement and control systems． Their DMM－like interfaces make it easy for users to collect data and／or perform troubleshooting within minutes of installation and startup．Once sensor or DUT leads are hooked to the instrument＇s input，use the front panel controls to select the measurement function，range，filtering，scaling，trigger source，scan－ ning sequence，alarms，and more．The TestPoint runtime start－up software included with both the Model 2700 and 2750 makes it easy to configure and use the system in a graphical＂point－and－click＂environ－ ment．This gives developers the basic tools needed to create a simple application without writing pro－ gram code．If the application demands greater functionality，this free runtime can be modified with the TestPoint software application package（sold separately）

The Advantage of Integrated Design

The Model 2700 and 2750 offer a variety of advantages over existing solutions for ATE and data acquisition applications．For example，their flexible modular architecture and integrated measurement，switching，and control capabilities save rack space by reducing the number of separate instruments needed．This design also simplifies expanding the system as the number of channels grows or re－purposing it as new test requirements evolve．Integrated signal conditioning，scaling，stimulus，filtering and I／O capabilities elimi－ nate the need for external circuitry when designing and building data acquisition systems．This architec－ ture also makes it unnecessary to open the computer to install plug－in boards．The Model 2700 and 2750 offer accuracy and repeatability superior to plug－in data acquisition boards and VXI／PXI systems，while providing faster test times than typical DMM／switch systems．This makes it possible to combine higher test yields with higher test throughput．

ACCESSORIES AVAILABLE
ExceIINX－1A Excel Add－In Software for 2700 and 2750 Instruments
50－Pin D－Shell Connector Kit（2 each）（for Models 7703， 7705 Modules w／D－sub Connectors）
50 －Pin／25－Pin D－Shell Kit（1 each）
50 －Pin Male， 50 －Pin Female and 25 －Pin Male IDC D－Shell Connector Kit（1 each）（Ribbon Cable not Included）
Calibration Extender Board（for Model 2750） 50 －Pin Male to Female D－Sub Cable， 2 m 25 －Pin Male to Female D－Sub Cable， 2 m

1．888．KEITHLEY（u．s．only）

2700 2750

Ordering Information

2700 DMM，Data Acquisition， Datalogging System w／2 Slots
2750 DMM，Data Acquisition， Switching，Datalogging System w／5 Slots
7700 20－Channel Differential Multiplexer Module w／Automatic CJC and Screw Terminals
7701 32－Channel Differential Multiplexer Module with a 25－and 50－Pin Female D Connector．Supplied with Male IDC Ribbon Cable Connectors
7702 40－Channel Differential Multiplexer Module w／Screw Terminals
7703 32－Channel High Speed， Differential Multiplexer Module with 2 50－Pin Female D Connectors．Includes 2 Mating Connectors
7705 40－Channel Single－Pole Control Module with 2 50－Pin Female D Connectors． Includes 2 Mating Connectors．
7706 All－in－One I／O Module：20－ Channel Differential Multiplexer w／Automatic CJC， 16 Digital Outputs， 2 Analog Outputs，a Counter／Totalizer， and Screw Terminals
7707 32－Channel Digital I／O w／10－Channel Differential Multiplexer Module with a 25－ Pin Female and 50－Pin Male D Connectors．Supplied with Mating IDC Ribbon Cable Connectors
7708 40－Channel Differential Multiplexer Module w／Automatic CJC and Screw Terminals
7709 6x9 Matrix Module with 25－ and 50－Pin Female D Connectors．Supplied with Male IDC Ribbon Cable Connectors

These products are available with an Extended Warranty．

Accessories Supplied
TestPoint runtime start－up software； LabVIEW，LabWindows＂＇／CVI，Visual Basic，C／C＋＋，and TestPoint drivers； manual；and Model 1751 Safety Test Leads．

1．888．KEITHLEY（U．s．only）

Install up to five input modules in the 2750 mainframe．All switch／control modules are fully enclosed in impact－ resistant plastic for exceptional ruggedness．Three connector alternatives simplify connecting the modules to DUTs．Rugged D－sub connectors allow quick，secure connections and are especially convenient when performing routine maintenance or when the system is installed in a rack．IDC ribbon cable adapters are supplied with the Model 7701，7707，and 7709 modules for fast，uncomplicated hookups in production test and process monitoring applications．Oversize screw－terminal connectors simplify setup in applications that require the greatest connec－ tion flexibility．Additional D－sub and IDC ribbon cable connector kits and pre－wired cable assemblies are sold separately．

All modules are compatible with the two－slot Model 2700 Multimeter／Data Acquisition System and the five－slot Model 2750 Multimeter／Switch System．When the application＇s needs change，simply change modules．Integra systems reconfigure themselves automatically．

Module	7700	7701	7702	7703	7705	7706	7707	7708	7709
AC and DC Volts	－	－	－	－		－	－	－	－
AC and DC Current	－		－						
Temperature：									
T／C w／Automatic CJC	－					－		－	
T／C w／External CJC	－	－	－	－		－	－	－	－
RTD	－	－	－	－		－	－	－	－
Thermistor	－	－	－	－		－	－	－	－
Resistance（2－or 4－wire）	－	－	－	－		－	－	－	－
Frequency	－	－	－	－		－	－	－	－
Event／Counter／Totalizer						－			
Signal Routing／Control	－	－	－	－	－	－	－	－	－
Digital Input							－		
Digital Output						－	－		
Analog Output						－			
Analog Input Channels	20	32	40	32	40	20	10	40	6×8

Multimeter／Data Acquisition／ Switch Systems

Integra Series Module Selector Guide

This selector guide may prove helpful in identifying the best module for a specific application．Install up to two modules at a time in the Model 2700 mainframe or five at a time in the Model 2750 mainframe．

Keithley＇s Integra Systems provide precision measurement and control in a single，tightly integrated enclosure for either rack－mounted or benchtop use．These cost－effective，high－performance test platform are affordable alternatives to separate DMMs and switch systems，dataloggers／recorders，and plug－in card data acquisition equipment．Integra Series plug－in modules offer unmatched flexibility and testing efficien－ cy for a wide range of industries and applications．Users can create test systems with a combination of channel count，cost per channel，and system performance unmatched by any other single－box measure－ ment system．The modules provide the flexibility to vary channel count from 20 to 200 （2－pole），apply a stimulus to devices under test，route signals，control system components，and make precision measure－ ments with up to 14 functions．Robust digital I／O capabilities can be used for triggering，handshaking with other automation equipment，and alarm limit outputs．Scan rates of more than 200 channels／second（up to 2500 readings／second）increase test productivity．

Module	\＃Analog Inputs	Configuration	Differential＊	4－pole	Type of Connector	Max． Voltage	Max． Switched Current	\qquad	Digital I／O	Switch Speed	Other
7700	20	Multiplexer w／CJC	$\begin{aligned} & 1 \times 20 \text { or } \\ & \text { two } 1 \times 10 \end{aligned}$	1×10	Screw terminals	300 V	1A	2 channels ＠3A	N／A	$<3 \mathrm{~ms}$	Automatic thermocouple linearization
7701	32	Multiplexer	$\begin{aligned} & 1 \times 32 \text { or } \\ & \text { two } 1 \times 16 \end{aligned}$	1×16	D－sub（IDC）	150V	1A	N／A	N／A	$<3 \mathrm{~ms}$	32 channels of common－side 4 －wire ohms
7702	40	Multiplexer	$\begin{aligned} & 1 \times 40 \text { or } \\ & \text { two } 1 \times 20 \end{aligned}$	1×20	Screw terminals	300 V	1A	2 channels ＠3A	N／A	$<3 \mathrm{~ms}$	$\begin{aligned} & \text { Maximum power } \\ & \quad=125 \mathrm{VA} \end{aligned}$
7703	32	Multiplexer	$\begin{aligned} & 1 \times 32 \text { or } \\ & \text { two } 1 \times 16 \end{aligned}$	1×16	D－sub （solder or crimp）	300 V	500 mA	N／A	N／A	$<1 \mathrm{~ms}$	Reed relays
7705	40	Independent SPST	N／A	N／A	D－sub （solder or crimp）	300 V	2A	N／A	N／A	$<3 \mathrm{~ms}$	Software programmable for SPDT（Form C）
7706	20	Multiplexer w／CJC	$\begin{aligned} & 1 \times 20 \text { or } \\ & \text { two } 1 \times 10 \end{aligned}$	1×10	Screw terminals	300 V	1A	N／A	16 Digital Out Only	$<3 \mathrm{~ms}$	Two $\pm 12 \mathrm{~V}$ analog output channels \＆ 100 kHz event counter／totalizer
7707	10	Digital I／O	$\begin{aligned} & 1 \times 10 \text { or } \\ & \text { two } 1 \times 5 \end{aligned}$	1×5	D－sub （IDC）	300 V	1A	N／A	$\begin{gathered} 32 \text { Digital } \\ \text { I/O } \end{gathered}$	$<3 \mathrm{~ms}$	Four 8－bit I／O ports （ $33 \mathrm{~V}, 100 \mathrm{~mA}$ ）
7708	40	Multiplexer w／CJC	$\begin{aligned} & 1 \times 40 \text { or } \\ & \text { two } 1 \times 20 \end{aligned}$	1×20	Screw terminals	300 V	1A	N／A	N／A	$<3 \mathrm{~ms}$	Automatic thermocouple linearization
7709	48	6×8 Matrix	Yes	Yes	D－sub （IDC）	300 V	1A	N／A	N／A	$<3 \mathrm{~ms}$	Connects to internal DMM．Daisy chain multiple cards to create larger matrix

＊Can be disconnected from internal DMM for routing external signals • Refer to the Model 2750 or Model 2700 brochure for additional information．

Multimeter／Data Acquisition／ Switch Systems

Important Features and Benefits

－Full per－channel configurability－Each channel can be independently configured for making meas－ urements．The parameters that can be chosen for each channel include speed，range，resolution， number of power line cycles（NPLC），filtering type， offset compensation，math functions to be dis－ played，CJC type，RTD type，frequency gate time， ＂m＂and＂b＂values in $m X+b$ format，HI／LO limits， low Ω（Model 2750 only），ratio calculation，and thermistor type．
－Channel monitor feature－Monitor any specific input channel on the front panel display during a scan．This feature can also serve as an analog trig－ ger to initiate a scan sequence based on some external factor，such as a temperature rising above a pre－set limit．Only the data of interest is acquired， so there＇s no need to spend hours searching through reams of normal readings to find anom－ alous data．
－Front／rear switch－Switching between the front and rear panel measurement inputs is as easy as pressing a button．Users can select the front panel inputs for tasks such as system set－up and verifi－ cation，manual probing，troubleshooting，and cali－ bration，while the rear panel inputs through the modules allow fast，automated multiplexing and control．
－Battery－backed set－up memory－Up to four differ－ ent set－up configurations can be stored in onboard memory．If the line power fails during a scan，the system will resume scanning where it stopped once power is restored．
－110K reading data buffer－The mainframe＇s non－ volatile wrap－around reading memory allows con－ tinuous，unattended datalogging over long peri－ ods－data in the buffer can be transferred to a PC controller automatically as new data is acquired． The real－time clock can be used to time－and date－ stamp readings for later review and interpretation．
－ 2 TTL－level digital inputs－For implementing exter－ nal triggers to initiate a scan sequence．
－ 5 ＂per－channel＂HI／LO alarm limit TTL outputs－ Trigger external alarms or perform other control functions without a PC controller．
－Dry circuit ohms（ 20 mV clamp）－Protects sensitive devices from damage and prevents self－heating errors during testing（Model 2750 only）．
－Virtual channel－Stores the results of channel－to channel ratio and average math operations．
－Onboard statistical analysis－Mathematical func－ tions available at the push of a button are channel average， $\mathrm{mX}+\mathrm{b}$ scaling，minimum，maximum，aver－ age，and standard deviation．
－GPIB and RS－232 interfaces
－3－year warranty

Temperature Capabilities

Integra Series mainframes support three major types of temperature sensors with built－in signal conditioning and 300 V isolation：thermocouples，RTDs，and thermistors．To begin using a sensor，simply hook it up and the instrument does the rest．If a thermocouple is broken or disconnected，the instrument will alert the operator．The mainframes also sup－ port three methods for cold－junction compensation（CJC）：automatic（built－in），external （built－in），and simulated．

Software Solutions

Whether the task calls for a simple start－up package to acquire several channels of data or the tools to create a fully custom acquisition and analysis solution，Keithley has the software need－ ed to get the most performance from a Model 2700 or 2750
 Multimeter／Switch System．Our broad range of software solutions makes it easy to get applications＂Up \＆Running＂quickly and economically．

Our free start－up software package provides basic data－ logging capabilities， so a system can be up and running almost immediately．It also can be used to configure instrument functions．Data from multiple channels from a single instru－ ment can be saved to disk；up to eight channels of data can be graphed automati－ cally and multiple configurations can be saved to disk．

The new version of ExceLINX is an eco－ nomical，easy－to－use， add－in utility for Microsoft Excel． Within minutes of installing ExceLINX－ 1A on a PC，users can acquire data directly from the Model 2700 or 2750 then employ Excel＇s graphics，charting， and analysis capabili－ ties to turn that data into useful informa－ tion．No programming is required to use it－ mouse clicks are all it takes to con－ figure channels，set parameters，and get your measurements into Excel．

2700 2750

Multimeter／Data Acquisition／ Switch Systems

Instrument Drivers

For experienced programmers who prefer to build fully custom systems from scratch，Keithley pro－ vides a Series 2700／2750 instrument driver for use with Application Development Environments such as LabVIEW ${ }^{\text {m＂}}$ ，LabWindows ${ }^{\text {＂} / \text {／CVI，Visual Basic，}}$ C／C＋＋，and TestPoint．This IVI－style driver（VISA based）supports all of the functionality of the Model 2700 and 2750 ．Numerous examples and an on－line help utility are provided to help program－ mers get their applications up and running．
Which Integra Mainframe is the
 Best Choice for the Application？
Use this selector guide to decide which Integra Series mainframe offers the combination of features and capacity that＇s right for a specific application．If testing requirements change in the future，switch／control modules and test code can be easily re－used．

	2700	$\mathbf{2 7 5 0}$
No．of different input channels	80	200
Matrix crosspoints	96	240
Ohms resolution	$100 \mathrm{~m} \Omega$	$1 \mathrm{~m} \Omega$
Dry circuit ohms（20mV clamp）	No	Yes
No．of slots	2	5
Memory buffer	55,000 rdgs	110,000 rdgs
Size（2U height）	Half－rack width	Full－rack width $\left(19^{\prime \prime}\right)$

DC CHARACTERISTICS

CONDITIONS：MED（1 PLC）or 10 PLC or MED（1 PLC）with Digital Filter of 10									
				TEST CURRENT $\pm 5 \%$	INPUT RESISTANCE	$\begin{aligned} & \text { ACCURAC } \\ & (\mathrm{ppm}=\mathrm{p} \end{aligned}$	m of reading million）（e．g	$\begin{aligned} & \text { f range) } \\ & =0.001 \%) \end{aligned}$	TEMPERATURE
FUNCTION	RANGE		RESOLUTION	OR BURDEN VOLTAGE	OR OPEN CKT． VOLTAGE	$24 \text { Hour }$ $23^{\circ} \mathrm{C} \pm 1^{\circ}$	$\begin{gathered} 90 \text { Day } \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \end{gathered}$	$\begin{gathered} 1 \text { Year } \\ 23^{\circ} \mathrm{C} \pm 5^{\circ} \end{gathered}$	$\begin{gathered} \text { COEFFICIENT } \\ 0^{\circ}-18^{\circ} \mathrm{C} \& 28^{\circ}-50^{\circ} \mathrm{C} \end{gathered}$
VOLTAGE	100.0000		0.1 MV		$>10 \mathrm{G} \Omega$	$15+30$	$25+35$	$30+35$	$(1+5) /{ }^{\circ} \mathrm{C}$
	1.000000	V	1.0 V V		$>10 \mathrm{G} \Omega$	$15+6$	$25+7$	$30+7$	$(1+1) /{ }^{\circ} \mathrm{C}$
	10.00000	V	$10 \mu \mathrm{~V}$		$>10 \mathrm{G} \Omega$	$10+4$	$20+5$	$30+5$	$(1+1) /{ }^{\circ} \mathrm{C}$
	100.0000	V	$100 \mu \mathrm{~V}$		$10 \mathrm{M} \Omega \pm 1 \%$	$15+6$	$35+9$	$45+9$	$(5+1) /{ }^{\circ} \mathrm{C}$
	1000.000	V	1 mV		$10 \mathrm{M} \Omega \pm 1 \%$	$20+6$	$35+9$	$50+9$	$(5+1) /{ }^{\circ} \mathrm{C}$
RESISTANCE2750 Only2700 and 2750	1.000000	Ω	$1 \mu \Omega$	10 mA	5.9 V	$80+40$	$80+40$	$100+40$	$(8+1) /{ }^{\circ} \mathrm{C}$
	10.00000	Ω	$10 \mu \Omega$	10 mA	5.9 V	$20+20$	$80+20$	$100+20$	$(8+1) /{ }^{\circ} \mathrm{C}$
	100.0000	Ω	$100 \mu \Omega$	1 mA	12.2 V	$20+20$	$80+20$	$100+20$	$(8+1) /{ }^{\circ} \mathrm{C}$
	1.000000	$\mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	1 mA	12.2 V	$20+6$	$80+6$	$100+6$	$(8+1) /{ }^{\circ} \mathrm{C}$
	10.00000		$10 \mathrm{~m} \Omega$	$100 \mu \mathrm{~A}$	$6.8 \mathrm{~V}$	$20+6$	$80+6$	$100+6$	$(8+1) /{ }^{\circ} \mathrm{C}$
	100.0000		$100 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$	12.8 V	$20+6$	$80+10$	$100+10$	$(8+1) /{ }^{\circ} \mathrm{C}$
	1.000000	$\mathrm{M} \Omega$	1.0 S	$10 \mu \mathrm{~A}$	12.8 V	$20+6$	$80+10$	$100+10$	$(8+1) /{ }^{\circ} \mathrm{C}$
	10.00000		$10 \quad \Omega$	$0.7 \mu \mathrm{~A} / / 10 \mathrm{M} \Omega$	$7.0 \mathrm{~V}$	$150+6$	$200+10$	$400+10$	$(70+1) /{ }^{\circ} \mathrm{C}$
	100.0000		100Ω	$0.7 \mu \mathrm{~A} / / 10 \mathrm{M} \Omega$	$7.0 \mathrm{~V}$	$800+30$	$2000+30$	$2000+30$	$(385+1) /{ }^{\circ} \mathrm{C}$
DRY CIRCUIT RESISTANCE 2750 Only	1.000000	Ω	$1 \mu \Omega$	10 mA	20 mV	$80+40$	$80+40$	$100+40$	$(8+1) /{ }^{\circ} \mathrm{C}$
	10.00000	Ω	$10 \mu \Omega$	1 mA	20 mV	$25+40$	$80+40$	$100+40$	$(8+1) /{ }^{\circ} \mathrm{C}$
	100.0000	Ω	$100 \mu \Omega$	$100 \mu \mathrm{~A}$	20 mV	$25+40$	$90+40$	$140+40$	$(8+1) /{ }^{\circ} \mathrm{C}$
	1.000000	$\mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	$10 \mu \mathrm{~A}$	20 mV	$25+90$	$180+90$	$400+90$	$(8+1) /{ }^{\circ} \mathrm{C}$
CONTINUITY (2W)	1.000	$\mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	1 mA	12.2 V	$40+100$	$100+100$	$100+100$	$(8+1) /{ }^{\circ} \mathrm{C}$
	20.00000	mA	10 nA	<0.2 V		$60+30$	$300+80$	$500+80$	$(50+5) /{ }^{\circ} \mathrm{C}$
CURRENT	100.0000		100 nA	$<0.1 \quad$ V		$100+300$	$300+800$	$500+800$	$(50+50) /{ }^{\circ} \mathrm{C}$
	1.000000	A	$1.0 \mu \mathrm{~A}$	<0.5 V		$200+30$	$500+80$	$800+80$	$(50+5) /{ }^{\circ} \mathrm{C}$
	3.000000	A	$10 \mu \mathrm{~A}$	<1.5 V		$1000+15$	$1200+40$	$1200+40$	$(50+5) /{ }^{\circ} \mathrm{C}$
CHANNEL（RATIO）${ }^{10}$			Ratio Accuracy＝Accuracy of selected Channel Range＋Accuracy of Paired Channel Range						
CHANNEL（AVERAGE）${ }^{10}$			Average Accuracy＝Accuracy of selected Channel Range＋Accuracy of Paired Channel Range						

TEMPERATURE

（Displayed in ${ }^{\circ} \mathrm{C}$ ，${ }^{\circ} \mathrm{F}$ ，or K ．Exclusive of probe errors．）
THERMOCOUPLES（ACCURACY BASED ON ITS－90．）

Type	Range		Resolution	90 Day／1 Year（ $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ）		$\begin{gathered} \text { Temperature } \\ \text { Coefficient } \\ 0^{\circ}-18^{\circ} \mathrm{C} \& 28^{\circ}-50^{\circ} \mathrm{C} \end{gathered}$	
			Relative toSimulatedReference Junction	Using			
			Plug－In				
			Module				
J	－200 to	$+760{ }^{\circ} \mathrm{C}$		$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
K	－200 to	$+1372{ }^{\circ} \mathrm{C}$		$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
N	－200 to	$+1300^{\circ} \mathrm{C}$	$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$	
T	－200 to	$+400^{\circ} \mathrm{C}$	$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$	
E	－200 to	$+1000^{\circ} \mathrm{C}$	$0.001{ }^{\circ} \mathrm{C}$	$0.2{ }^{\circ} \mathrm{C}$	$1.0{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$	
R	0 to	$+1768^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$	
S	0 to	$+1768^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$	
B	＋350 to	$+1820^{\circ} \mathrm{C}$	$0.1{ }^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$	

4－Wire RTD：

（100 1 platinum［PT100］，D100，F100，PT385，PT3916，or user type．Offset Compensation On）

-200° to	$630^{\circ} \mathrm{C}$	0.01	${ }^{\circ} \mathrm{C}$	$0.06^{\circ} \mathrm{C}$

DC SYSTEM SPEEDS

RANGE CHANGES：50／s（42／s）．
FUNCTION CHANGES：50／s（42／s）．
AUTORANGE TIME：＜30ms．
ASCII READINGS TO RS－232（19．2K BAUD）：55／s．
MAX．INTERNAL TRIGGER RATE：2000／s．
MAX．EXTERNAL TRIGGER RATE：375／s．

DC MEASUREMENT SPEEDS
Single Channel， $60 \mathrm{~Hz}(50 \mathrm{~Hz})$ Operation

FUNCTION	DIGITS	READINGS／s		PLCs
DCV，DCI，$\Omega(<10 M)$,	6.5	5	(4)	10
THERMOCOUPLE，	6.5	35	(28)	1
THERMISTOR	6.5	45	(36)	1
	5.5	150	(120)	0.1
	5.5	300	(240)	0.1
	5.5	500	(400)	0.1
4WS（＜10M）	4.5	2500	(2000)	0.01
4WS OCOMP，RTD	6.5	1.4	(1.1)	10
	6.5	15	(12)	1
CHANNEL（RATIO），	5.5	33	(25)	0.1
CHANNEL（AVG）	6.5	0.9	(0.7)	10
	6.5	8	(6.4)	1

MULTIPLE CHANNELS，INTO AND OUT OF MEMORY TO GPIB

	Channels／s
7703 Scanning DCV	$200 / \mathrm{s}$

200／s
7703 Scanning DCV with Limits or Time Stamp On 180／s
7703 Scanning DCV alternating 2W 58／s
7702 Scanning DCV
7700 and 7708 Scanning Temperature（T／C）

AC SPECIFICATIONS

FUNCTION	RANGE		RESOLUTION	$\begin{aligned} & \text { CALIBRATION } \\ & \text { CYCLE } \end{aligned}$	ACCURACY：\pm（\％of reading $+\%$ of range）， $23{ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$					
			$\begin{aligned} & 3 \mathrm{~Hz}- \\ & 10 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 10 \mathrm{~Hz}- \\ & 20 \mathrm{kHz} \end{aligned}$	$\begin{gathered} 20 \mathrm{kHz}- \\ 50 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & 50 \mathrm{kHz}- \\ & 100 \mathrm{kHz} \end{aligned}$	$\begin{gathered} 100 \mathrm{kHz}- \\ 300 \mathrm{kHz} \end{gathered}$		
VOLTAGE	$\begin{aligned} & 100.0000 \mathrm{n} \\ & 1.000000 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$		$\begin{aligned} & \hline 0.1 \mu \mathrm{~V} \\ & 1.0 \mu \mathrm{~V} \end{aligned}$	90 Days	$0.35+0.03$	$0.05+0.03$	$0.11+0.05$	$0.6+0.08$	$4.0+0.5$
	$\begin{array}{r} 10.00000 \\ 100.0000 \\ 750.000 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$		1 Year	$0.35+0.03$	$0.06+0.03$	$0.12+0.05$	$0.6+0.08$	$4.0+0.5$	
				（TEMP．COEFE）$/{ }^{\circ} \mathrm{C}$	$0.035+.003$	$0.005+.003$	$0.006+.005$	$0.01+.006$	$0.03+.01$	
CURRENT	$\begin{array}{r} 1.000000 \\ 3.00000 \end{array}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{r} 1.0 \mu \mathrm{~A} \\ 10 \mu \mathrm{~A} \end{array}$	90 Day／1 Yr．	$\begin{aligned} & 3 \mathrm{~Hz}-10 \mathrm{~Hz} \\ & 0.30+0.04 \\ & 0.35+0.06 \end{aligned}$	$\begin{gathered} 10 \mathrm{~Hz}-\mathbf{5} \mathrm{kHz} \\ 0.10+0.04 \\ 0.15+0.06 \end{gathered}$				
				（TEMP．COEFF）$/{ }^{\circ} \mathrm{C}$	$0.035+0.006$	$0.015+0.006$				
FREQUENCY AND PERIOD	$\begin{aligned} & 100 \mathrm{n} \\ & 750 \end{aligned}$	$\begin{array}{r} \mathrm{mV} \\ \text { to } \\ \mathrm{V} \\ \hline \end{array}$	$\begin{array}{ll} 0.333 & \mathrm{ppm} \\ 3.33 & \mathrm{ppm} \\ 33.3 & \mathrm{ppm} \\ \hline \end{array}$	90 Day／ 1 Yr．	$\begin{aligned} & \mathbf{3} \mathbf{H z}-\mathbf{5 0 0} \mathbf{~ k H} \\ & \mathbf{1 0 0} \mathrm{ppm}+0.3 \\ & 100 \mathrm{ppm}+3.3 \\ & 100 \mathrm{ppm}+33 . \end{aligned}$	ms－2 $\mu \mathrm{s}$ ） （SLOW， 1 s gate） MED， 100 ms gate） FAST， 10 ms gate）				

AC MEASUREMENT SPEEDS

SINGLE CHANNEL，60Hz $(\mathbf{5 0 H z})$ Operation				
Function	Digits	Readings／s	Rate	Bandwidth
ACV，ACI	6.5	2s／Reading	SLOW	$3 \mathrm{~Hz}-300 \mathrm{kHz}$
	6.5	$1.4(1.1)$	MED	$30 \mathrm{~Hz}-300 \mathrm{kHz}$
	6.5	$4.8(4)$	MED	$30 \mathrm{~Hz}-300 \mathrm{kHz}$
	6.5	$40(32)$	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$
FREQUENCY，	6.5	$1(1)$	SLOW	$3 \mathrm{~Hz}-300 \mathrm{kHz}$
PERIOD	5.5	$9(9)$	MED	$30 \mathrm{~Hz}-300 \mathrm{kHz}$
	4.5	$35(35)$	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$
	4.5	$65(65)$	FAST	$300 \mathrm{~Hz}-300 \mathrm{kHz}$

MULTIPLE CHANNEL
7703 SCANNING ACV：180／s

AC SYSTEM SPEEDS

RANGE CHANGES：4／s（3／s）．
FUNCTION CHANGES：4／s（3／s）．
AUTORANGE TIME：＜3s．
ASCII READINGS TO RS－232（19．2K baud）：50／s．
MAX．INTERNAL TRIGGER RATE：300／s．
MAX．EXTERNAL TRIGGER RATE：250／s．

1．888．KEITHLEY（u．s．only）

GENERAL

EXPANSION SLOTS： 5 （Model 2750）； 2 （Model 2700）．
MEMORY SIZE： 110,000 readings（Model 2750）；55，000 readings（Model 2700）． POWER SUPPLY：100V／120V／220V／ $240 \mathrm{~V} \pm 10 \%$ ．
LINE FREQUENCY： 45 Hz to 66 Hz and 360 Hz to 440 Hz ，automatically sensed at power－up．
POWER CONSUMPTION：80VA（Model 2750）；28VA（Model 2700）．
OPERATING ENVIRONMENT：Specified for $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ ．Specified to $80 \% \mathrm{RH}$ at $35^{\circ} \mathrm{C}$ ．
BATTERY：Lithium battery－backed memory， 3 years＠ $23^{\circ} \mathrm{C}$ ． WARRANTY： 3 years．
EMC：Conforms to European Union Directive 89／336／EEC EN61326－1． SAFETY：Conforms to European Union Directive 73／23／EEC EN61010－1，CAT I． DIMENSIONS（Model 2700）： 89 mm high $\times 213 \mathrm{~mm}$ wide $\times 370 \mathrm{~mm}$ deep（ 3.5 in $\times 8.39 \mathrm{in} \times 14.563 \mathrm{in})$ ．
DIMENSIONS（Model 2750）：
RACK MOUNTING： 89 mm high $\times 485 \mathrm{~mm}$ wide $\times 370 \mathrm{~mm}$ deep（ 3.5 in $\times 19$ in $\times 14.563 \mathrm{in}$ ）．
BENCH CONFIGURATION（WITH HANDLE AND FEET）： 104 mm high \times
485 mm wide $\times 370 \mathrm{~mm}$ deep（ $4.125 \mathrm{in} \times 19$ in $\times 14.563 \mathrm{in}$ ）．
SHIPPING WEIGHT： 13 kg （ 28 lbs ．）（Model 2750）； 6.5 kg （ 14 lbs ）（Model 2700）．

For more detailed specifications，see Keithley＇s Web site，www．keithley．com．

