

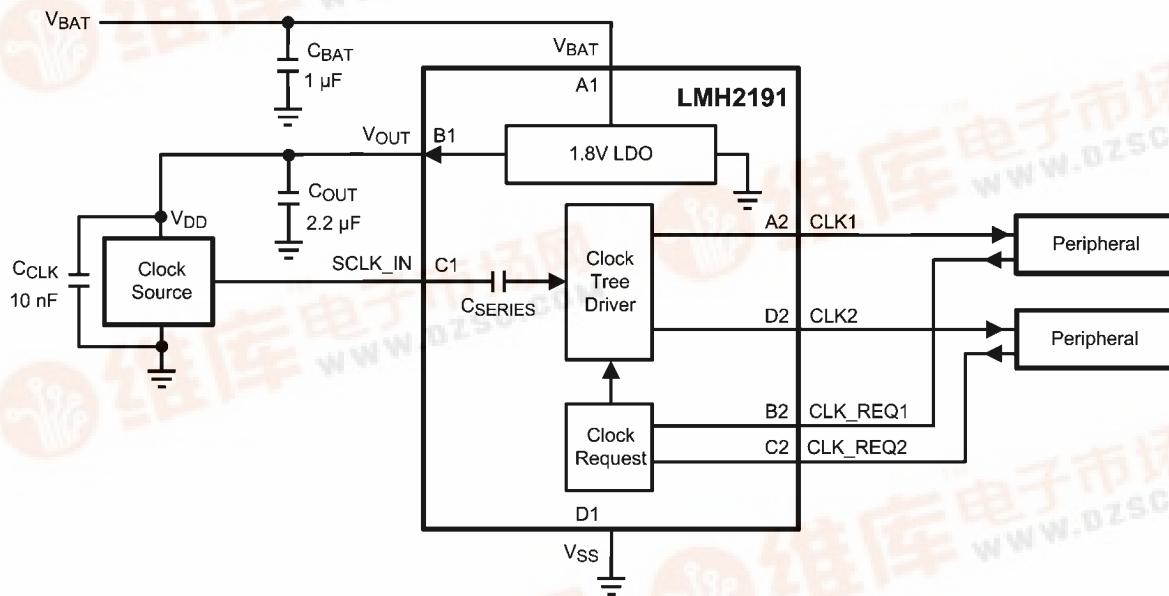
# LMH2191

## Dual Channel 52 MHz Clock Tree Driver

### General Description

The LMH2191 is a dual-channel clock tree driver that supplies a digital system clock to peripherals in mobile handsets or other applications. It provides a solution to clocking issues such as limited drive capability for fanout or longer traces. It also provides protection of the master clock from varying loads and frequency pulling effects, isolation from noisy modules, and crosstalk isolation. It has very low phase noise which enables it to drive sensitive modules such as Wireless LAN and Bluetooth.

The LMH2191 can be clocked up to 52 MHz and has an independent clock request pin for each clock output which allows the peripheral to control the clock. It features an integrated LDO which provides an ultra low-noise voltage supply with 10 mA external load current which can be used to supply the TCXO or other clock source. The LMH2191 dual clock distributor is offered in a tiny 1.615 mm x 1.070 mm 8-bump micro SMD package. Its small size and low supply current make it ideal for portable applications.


### Features

- One input clock, two output clocks
- 1.8V square wave clock outputs
- Inverted clock outputs
- Independent clock requests
- High isolation of supply noise to clock input
- High output-to-output isolation
- Integrated 1.8V Low-Dropout Regulator
  - Low output-noise voltage
  - 10 mA load current
- EMI filtering
- Ultra low standby current
- $V_{BAT}$  range = 2.5V to 5.5V
- micro SMD 8-Bump Package

### Applications

- Mobile handsets
- Portable Equipment

### Typical Application



30097601

## Absolute Maximum Ratings (Note 1)

查询"LMH2191"供应商

If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.

Supply Voltage

$V_{BAT} - V_{SS}$  -0.3V to 6V  
LVCMOS port IO voltage -0.3V to ( $V_{OUT} + 0.3V$ )

ESD Tolerance (Note 2)

Human Body Model 2000V  
Machine Model 200V  
Charge Device Model 1000V

Output Short Circuit Duration (Note 4)

LDO infinite  
Clock Output infinite

For Soldering Information see:

<http://www.national.com/ms/MS-SOLDERING.pdf>

Storage Temperature Range

-65°C to 150°C

Junction Temperature (Note 3)

150°C

## Operating Ratings (Note 1)

Supply Voltage ( $V_{BAT} - V_{SS}$ ) 2.5V to 5.5V

Input Clock, SCLK\_IN

Frequency 10 MHz to 52 MHz

Duty Cycle 45% to 55%

Temperature Range -40°C to +85°C

Package Thermal Resistance  $\theta_{JA}$  Board specification:  
(Note 3) 4LCELLPHONE

Package TMP08 153 °C/W

## 3.5 V Electrical Characteristics (Note 5)

Unless otherwise specified, all limits are guaranteed at  $T_J = 25^\circ C$ ,  $V_{BAT} = 3.5V$ ,  $C_{BAT} = 1\mu F$ ,  $C_{OUT} = 2.2\mu F$  (Note 11),  $f_{SCLK\_IN} = 26\text{ MHz}$ ,  $I_{OUT} = 1\text{ mA}$ , **Boldface** limits apply at the temperature extremes.

| Symbol                                  | Parameter                                    | Condition                                                                                                            | Min<br>(Note 7) | Typ<br>(Note 6) | Max<br>(Note 7)     | Units   |
|-----------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|---------------------|---------|
| <b>Supply Current (Note 9, Note 10)</b> |                                              |                                                                                                                      |                 |                 |                     |         |
| $I_{DD}$                                | Supply Current                               | Active Mode SCLK_IN = 19.2 MHz; both clock outputs toggling; $C_{LOAD}$ CLK1/2 = 0pF; $I_{OUT} = 0\text{ mA}$        |                 | 1.4             | 1.65<br><b>1.7</b>  | mA      |
|                                         |                                              | Active Mode SCLK_IN = 19.2 MHz; both clock outputs toggling; $C_{LOAD}$ for CLK1/2 = 33.5pF; $I_{OUT} = 0\text{ mA}$ |                 | 3.7             | 4.45<br><b>4.50</b> | mA      |
|                                         |                                              | Active Mode SCLK_IN = 26 MHz, both clock outputs toggling, $C_{LOAD}$ for CLK1/2 = 0pF, $I_{OUT} = 0\text{ mA}$      |                 | 1.9             | 2.15<br><b>2.25</b> | mA      |
|                                         |                                              | Active Mode SCLK_IN = 26 MHz, both clock outputs toggling, $C_{LOAD}$ for CLK1/2 = 33.5 pF, $I_{OUT} = 0\text{ mA}$  |                 | 5               | 5.80<br><b>5.95</b> | mA      |
|                                         |                                              | In shutdown. Input clock not active. CLK_REQ1/2=Low                                                                  |                 | 0.1             | <b>1</b>            | $\mu A$ |
|                                         |                                              | In shutdown. Input clock toggling. CLK_REQ1/2=Low                                                                    |                 | 0.1             | <b>1</b>            | $\mu A$ |
| $C_{PD}$                                | Power Dissipation Capacitance per CLK output | $C_{LOAD}$ for CLK1,2 = 0pF, Defined with respect to $V_{OUT} = 1.8V$                                                |                 | 20              | 23.0<br><b>24.0</b> | pF      |

## Clock Outputs (CLK1/2) Figure 1, Figure 2

|              |                                    |                                                                                  |            |     |             |    |
|--------------|------------------------------------|----------------------------------------------------------------------------------|------------|-----|-------------|----|
| $t_{PD\_LH}$ | Propagation Delay - Low to High    | 50% to 50%; $C_{LOAD} = 33\text{ pF}$ ; measured on CLK1                         |            | 6.1 | <b>10.5</b> | ns |
| $t_{PD\_HL}$ | Propagation Delay - High to Low    | 50% to 50%; $C_{LOAD} = 33\text{ pF}$ ; measured on CLK1                         |            | 6.1 | <b>10.5</b> |    |
| $t_{SKEW}$   | Skew Between Outputs (Either Edge) | CLK1 to CLK2. 50% to 50%                                                         |            | 1.5 | <b>3.1</b>  |    |
| $t_{RISE}$   | Rise Time (Note 8)                 | For $C_L$ between 33.5 pF - 50 pF, 20% to 80%; typical value based on 40 pF load | <b>2.1</b> | 3.7 | <b>5.9</b>  | ns |
| $t_{FALL}$   | Fall Time (Note 8)                 | For $C_L$ between 33.5 pF - 50 pF, 20% to 80%; typical value based on 40pF load  | <b>2</b>   | 3.5 | <b>5</b>    |    |
| $CLK\_DC$    | Output Clock Duty Cycle            | For $C_L$ between 33.5 pF - 50 pF                                                | <b>42</b>  | 50  | <b>58</b>   | %  |

| Symbol                                               | Parameter                                                       | Condition                                                       | Min<br>(Note 7)       | Typ<br>(Note 6) | Max<br>(Note 7) | Units            |
|------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------|-----------------|-----------------|------------------|
| Jitter <sub>RMS</sub>                                | Additive RMS period Jitter                                      | $f_{SCLK-IN} = 26 \text{ MHz}$ , BW = 100 Hz to 1MHz            | CLK1                  | 95              |                 | fs               |
|                                                      |                                                                 |                                                                 | CLK2                  | 110             |                 |                  |
| CLK1<br>Phase<br>Noise                               | Additive Phase Noise                                            | All outputs enabled at 26 MHz                                   | $f = 100 \text{ Hz}$  | -128            |                 | dBc/Hz           |
|                                                      |                                                                 |                                                                 | $f = 1 \text{ kHz}$   | -144            |                 |                  |
|                                                      |                                                                 |                                                                 | $f = 10 \text{ kHz}$  | -150            |                 |                  |
|                                                      |                                                                 |                                                                 | $f = 100 \text{ kHz}$ | -160            |                 |                  |
|                                                      |                                                                 |                                                                 | $f = 1 \text{ MHz}$   | -163            |                 |                  |
|                                                      |                                                                 | All outputs enabled at 19.2 MHz                                 | $f = 100 \text{ Hz}$  | -127            |                 |                  |
|                                                      |                                                                 |                                                                 | $f = 1 \text{ kHz}$   | -146            |                 |                  |
|                                                      |                                                                 |                                                                 | $f = 10 \text{ kHz}$  | -153            |                 |                  |
|                                                      |                                                                 |                                                                 | $f = 100 \text{ kHz}$ | -161            |                 |                  |
|                                                      |                                                                 |                                                                 | $f = 1 \text{ MHz}$   | -163            |                 |                  |
| CLK2<br>Phase<br>Noise                               | Additive Phase Noise                                            | All outputs enabled at 26 MHz                                   | $f = 100 \text{ Hz}$  | -127            |                 | dBc/Hz           |
|                                                      |                                                                 |                                                                 | $f = 1 \text{ kHz}$   | -142            |                 |                  |
|                                                      |                                                                 |                                                                 | $f = 10 \text{ kHz}$  | -148            |                 |                  |
|                                                      |                                                                 |                                                                 | $f = 100 \text{ kHz}$ | -160            |                 |                  |
|                                                      |                                                                 |                                                                 | $f = 1 \text{ MHz}$   | -162            |                 |                  |
|                                                      |                                                                 | All outputs enabled at 19.2 MHz                                 | $f = 100 \text{ Hz}$  | -129            |                 |                  |
|                                                      |                                                                 |                                                                 | $f = 1 \text{ kHz}$   | -144            |                 |                  |
|                                                      |                                                                 |                                                                 | $f = 10 \text{ kHz}$  | -151            |                 |                  |
|                                                      |                                                                 |                                                                 | $f = 100 \text{ kHz}$ | -163            |                 |                  |
|                                                      |                                                                 |                                                                 | $f = 1 \text{ MHz}$   | -164            |                 |                  |
| $V_{OH}$                                             | CLK1/2 Output Voltage High Level                                | $I_{OH} = -2 \text{ mA}$ (equivalent output load 800 $\Omega$ ) |                       | 1.6             |                 | V                |
| $V_{OL}$                                             | CLK1/2 Output Voltage Low Level                                 | $I_{OL} = 2 \text{ mA}$                                         |                       |                 | 0.2             |                  |
| <b>System Clock Input (SCLK_IN)</b>                  |                                                                 |                                                                 |                       |                 |                 |                  |
| $V_{I-pp}$                                           | SCLK_IN peak- to- peak input level (Note 8)                     | For duty cycle variation < 1%                                   | 0.6                   | 1               | 1.8             | V                |
| $I_{IH}$                                             | Current into SCLK_IN pin (Input HIGH)                           | SCLK_IN = 1.8V, CLK_REQ1/2=Low                                  |                       | 0               | 0.1             | $\mu\text{A}$    |
| $I_{IL}$                                             | Current into SCLK_IN pin (Input LOW)                            | SCLK_IN = 0V, CLK_REQ1/2=Low                                    | -0.1                  | 0               |                 |                  |
| $C_{IN}$                                             | Input Capacitance (Note 8)                                      | CLK_REQ1/2=High                                                 |                       | 7.5             | 13              | $\text{pF}$      |
| $R_{IN}$                                             | Input Resistance (Note 8)                                       | CLK_REQ1/2=High<br>see Application Note: Input Impedance        |                       | 14              | 20              | $\text{k}\Omega$ |
| <b>Switching Characteristics: System Clock Input</b> |                                                                 |                                                                 |                       |                 |                 |                  |
| $f_{SCLK\_IN}$                                       | System Clock                                                    |                                                                 | 10                    | 26              | 52              | MHz              |
| CLK_DC                                               | Input Clock Duty Cycle                                          |                                                                 | 45                    | 50              | 55              | %                |
| <b>Clock Request Inputs (CLK_REQ1/2)</b>             |                                                                 |                                                                 |                       |                 |                 |                  |
| $t_{SET}$                                            | Setup Time from CLK_REQx to SCLK_IN, to enable CLKx (Figure 3)  |                                                                 | 12                    | 6.2             |                 | ns               |
| $V_{IH}$                                             | CLK_REQ1/2 logic HIGH input level. (clock output = ON)(Note 15) | $V_{BAT} = 2.5\text{V}$                                         | 1.4                   |                 |                 | V                |
|                                                      |                                                                 | $V_{BAT} = 3.5\text{V}$                                         | 1.4                   |                 |                 |                  |
|                                                      |                                                                 | $V_{BAT} = 5.5\text{V}$                                         | 1.4                   |                 |                 |                  |
| $V_{IL}$                                             | CLK_REQ1/2 logic LOW input level. (clock output = OFF)          | $V_{BAT} = 2.5\text{V}$                                         |                       |                 | 0.4             | V                |
|                                                      |                                                                 | $V_{BAT} = 3.5\text{V}$                                         |                       |                 | 0.4             |                  |
|                                                      |                                                                 | $V_{BAT} = 5.5\text{V}$                                         |                       |                 | 0.4             |                  |

| Symbol              | Parameter                      | Condition                                                                                                                            | Min<br>(Note 7)                                                                                   | Typ<br>(Note 6)                        | Max<br>(Note 7) | Units             |
|---------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|-------------------|
| I <sub>IH</sub>     | Current into CLK_REQ pin       | V <sub>IH</sub> = 1.8V, 200 kΩ pull down resistor (Input HIGH)                                                                       |                                                                                                   | 8.5                                    | 14              | µA                |
| I <sub>IL</sub>     | Current into CLK_REQ pin       | V <sub>IL</sub> = V <sub>SS</sub> , (Input LOW)                                                                                      | -0.2                                                                                              | 0                                      |                 | µA                |
| <b>LDO</b>          |                                |                                                                                                                                      |                                                                                                   |                                        |                 |                   |
| V <sub>OUT</sub>    | Output Voltage                 | I <sub>OUT</sub> = 1mA                                                                                                               | 1.73                                                                                              | 1.8                                    | 1.88            | V                 |
| I <sub>LOAD</sub>   | Load Current (Note 12)         | V <sub>OUT</sub> > 1.7V                                                                                                              | 0                                                                                                 |                                        | 10              | mA                |
| V <sub>DO</sub>     | Dropout Voltage (Note 14)      | I <sub>OUT</sub> = 10 mA Vout=1.7V                                                                                                   |                                                                                                   | 125                                    |                 | mV                |
| I <sub>SC</sub>     | Short Circuit Current Limit    |                                                                                                                                      |                                                                                                   | 300                                    |                 | mA                |
| PSRR                | Power Supply Rejection Ratio   | V <sub>BAT</sub> ripple = 200 mV <sub>PP</sub> ,<br>I <sub>OUT</sub> = 10 mA                                                         | f = 100 Hz<br>f = 217.5 Hz<br>f = 1 kHz<br>f = 10 kHz<br>f = 100 kHz<br>f = 1 MHz<br>f = 3.25 MHz | 92<br>90<br>78<br>60<br>50<br>50<br>42 |                 | dB                |
| E <sub>N</sub>      | Output Noise Voltage (Note 13) | BW = 10 Hz to 100 kHz,<br>CLK_REQ1/2=High, Input clock not active                                                                    |                                                                                                   | 18                                     |                 | µV <sub>RMS</sub> |
| T <sub>SHTDWN</sub> | Thermal Shutdown               | Temperature<br>Hysteresis                                                                                                            |                                                                                                   | 160<br>20                              |                 | °C                |
| ΔV <sub>OUT</sub>   | Line Transient                 | V <sub>BAT</sub> = 2.8V to 3.4V in 30 µs, I <sub>OUT</sub> = 1mA<br>V <sub>BAT</sub> = 3.4V to 2.8V in 30 µs, I <sub>OUT</sub> = 1mA | -1                                                                                                |                                        | 1               | mV                |
|                     | Load Transient                 | I <sub>OUT</sub> = 0mA to 10 mA in 10 µs<br>I <sub>OUT</sub> = 10 mA to 0mA in 10 µs                                                 | -15                                                                                               |                                        | 10              | mV                |
|                     | Overshoot on Startup           |                                                                                                                                      |                                                                                                   |                                        | 20              | mV                |
| R <sub>OUT</sub>    | DC Output Resistance           |                                                                                                                                      |                                                                                                   | 5                                      |                 | Ω                 |
| T <sub>ON</sub>     | Turn on Time                   | From rising edge of CLK_REQ1 to 95% of V <sub>OUT</sub> (NOM)                                                                        |                                                                                                   | 200                                    | 260<br>350      | µs                |

**Note 1:** Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics Tables.

**Note 2:** Human body model, applicable std. MIL-STD-883, Method 3015.7. Machine model, applicable std. JESD22-A115-A (ESD MM std of JEDEC). Field-Induced Charge-Device Model, applicable std. JESD22-C101-C. (ESD FICDM std. of JEDEC)

**Note 3:** The maximum power dissipation is a function of T<sub>J(MAX)</sub>, θ<sub>JA</sub> and T<sub>A</sub>. The maximum allowable power dissipation at any ambient temperature is P<sub>D</sub> = (T<sub>J(MAX)</sub> - T<sub>A</sub>)/θ<sub>JA</sub>. All numbers apply for packages soldered directly onto a PC board.

**Note 4:** Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

**Note 5:** Electrical Table values apply only for factory testing (ATE) conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that T<sub>J</sub> = T<sub>A</sub>. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where T<sub>J</sub> > T<sub>A</sub>.

**Note 6:** Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

**Note 7:** Limits are 100% production tested at 25°C. Limits over temperature range are guaranteed through correlations using statistical quality control (SQC) method.

**Note 8:** This parameter is guaranteed by design and/or characterization and is not tested in production.

**Note 9:** Supply current depends on switching frequency and load.

**Note 10:** Positive current is current flowing into the device.

**Note 11:** C<sub>BAT</sub>, C<sub>OUT</sub>: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.

**Note 12:** The device maintains stable, regulated output voltage without a load.

**Note 13:** The noise figure is the noise of the LDO only; harmonics of the output clocks are excluded.

**Note 14:** Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100 mV below its nominal value.

**Note 15:** Clock Request Inputs can tolerate logic high input levels up to V<sub>BAT</sub>.

## Timing Diagrams

查询"LMH2191"供应商

LMH2191

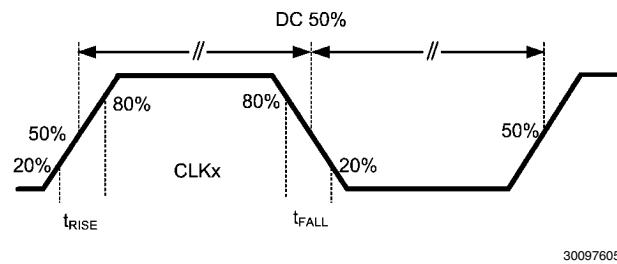



FIGURE 1. Rise / Fall time and Duty Cycle Waveform for Clock Outputs

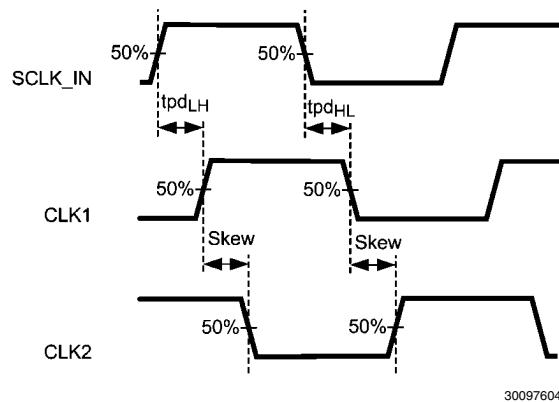
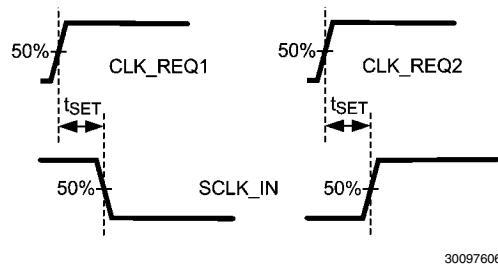
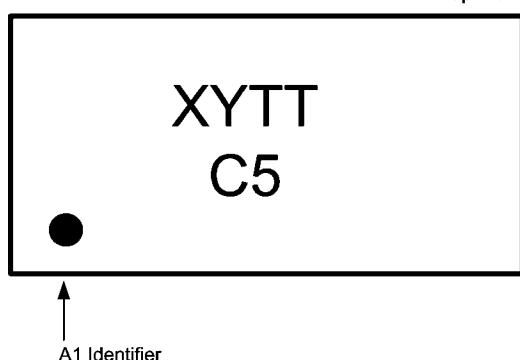
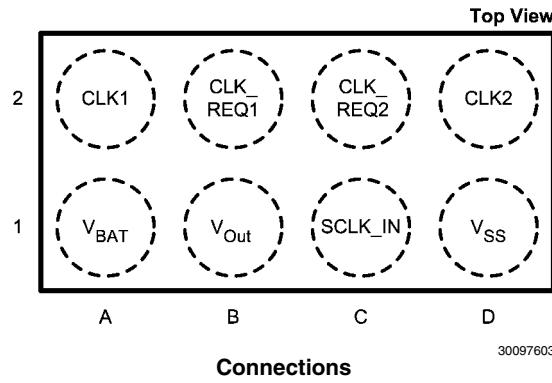



FIGURE 2. Clock Output Timing Waveforms



FIGURE 3. Clock Request Timing Waveforms

## Connection Diagrams

查询"LMH2191"供应商



Top view



Top View

Connections

30097603

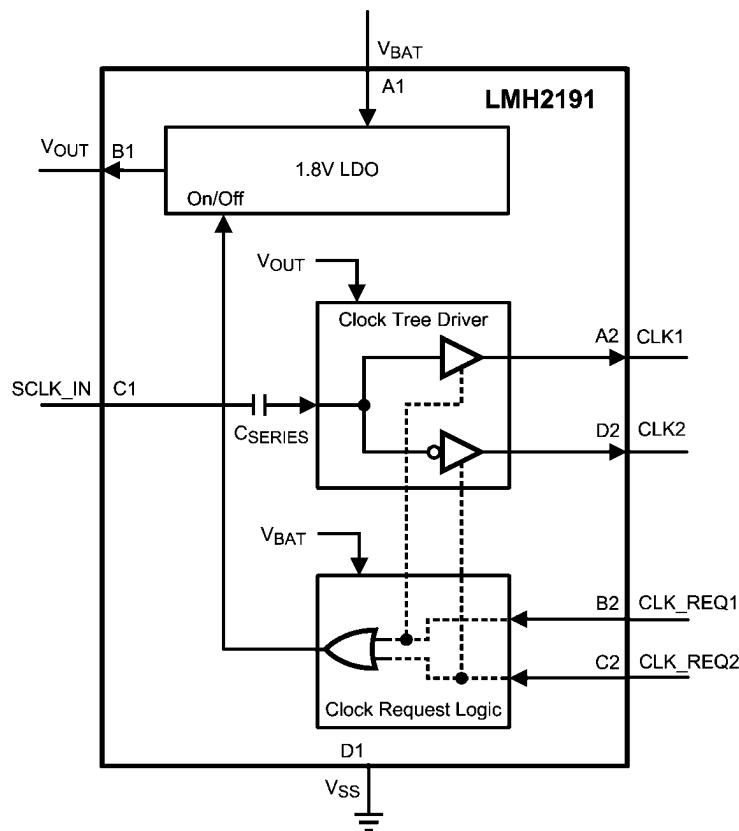
Text Marking

30097612

## Pin Descriptions

| Pin | Pin Name         | Port / Direction | Type   | Description                                     |
|-----|------------------|------------------|--------|-------------------------------------------------|
| C1  | SCLK_IN          | Host             | Input  | Source Clock Input                              |
| A2  | CLK1             | Peripheral       | Output | Clock Output 1                                  |
| B2  | CLK_REQ1         | Peripheral       | Input  | Clock Request Input 1 Clock1 = ON at high level |
| D2  | CLK2             | Peripheral       | Output | Clock Output 2                                  |
| C2  | CLK_REQ2         | Peripheral       | Input  | Clock Request Input 2 Clock2 = ON at high level |
| A1  | V <sub>BAT</sub> | Battery / Input  | Power  | Power Supply                                    |
| B1  | V <sub>out</sub> | LDO / Output     | Power  | Power Supply to Clock Source and clock outputs  |
| D1  | V <sub>SS</sub>  | Ground           | Ground | Ground Pin                                      |

I = Input, O = Output, I/O = Input / Output


## Ordering Information

| Package         | Part Number | Package Marking | Transport Media         | NSC Drawing |
|-----------------|-------------|-----------------|-------------------------|-------------|
| 8-Bump microSMD | LMH2191TME  | XYTT<br>C5      | 250 Units Tape and Reel | TMP0008LAA  |
|                 | LMH2191TMX  |                 | 3K Units Tape and Reel  |             |

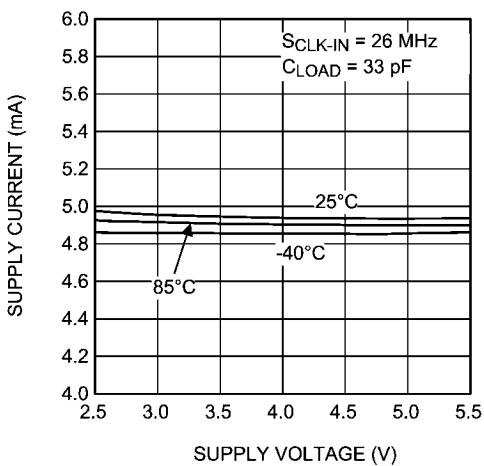
## Block Diagram

查询"LMH2191"供应商

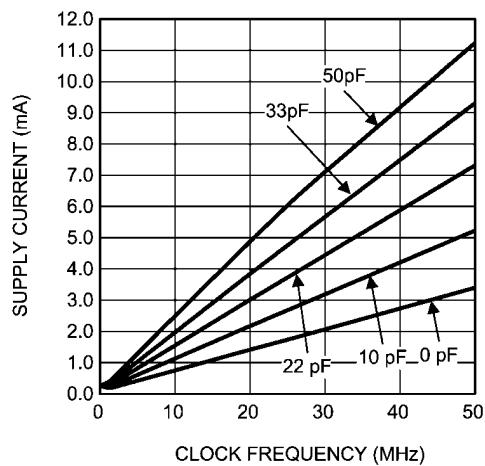
LMH2191



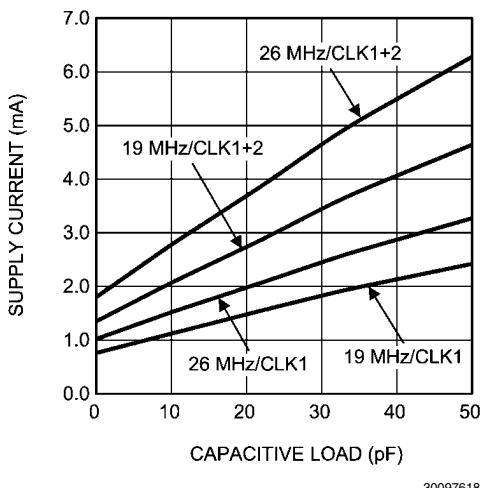
30097613


FIGURE 4. Block Diagram

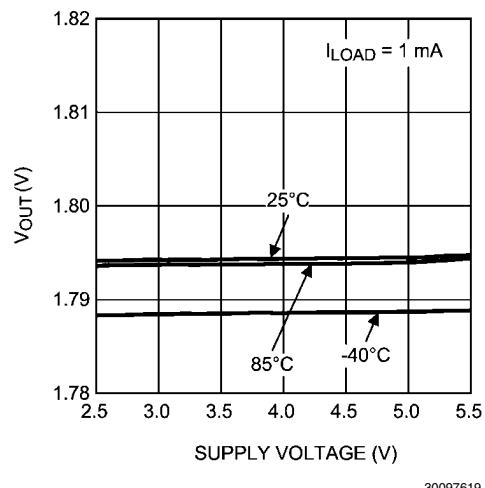
## Typical Performance Characteristics


Unless otherwise specified,  $T_A = 25^\circ\text{C}$ ,  $V_{\text{BAT}} = 3.5\text{V}$ ,  $f_{\text{SCLK\_IN}} =$ 

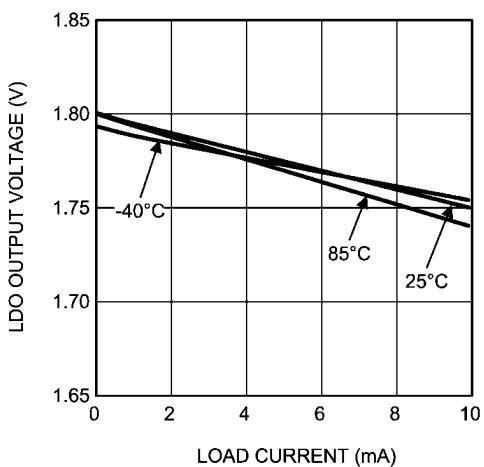
查询LMH2191供应商


## Supply Current vs. Supply Voltage

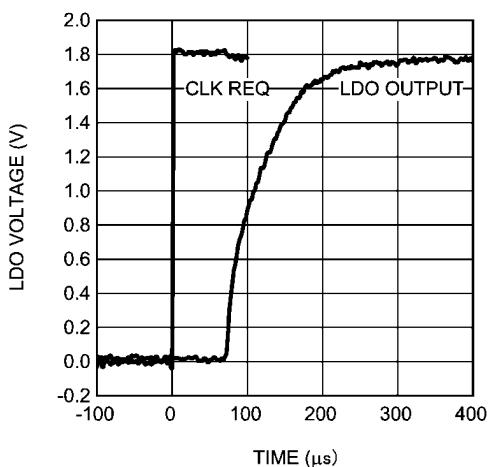


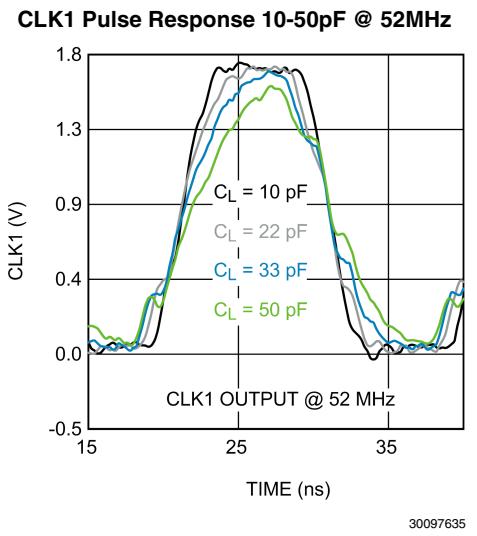
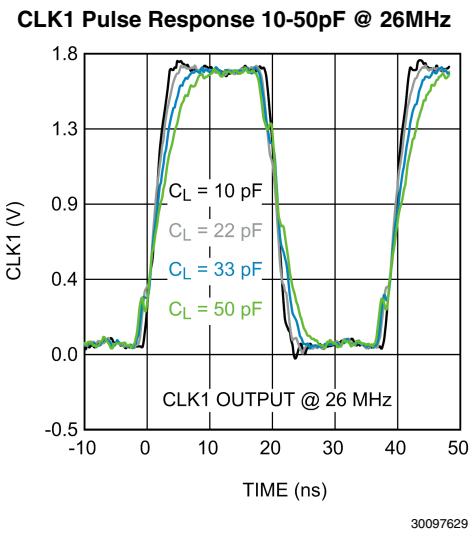
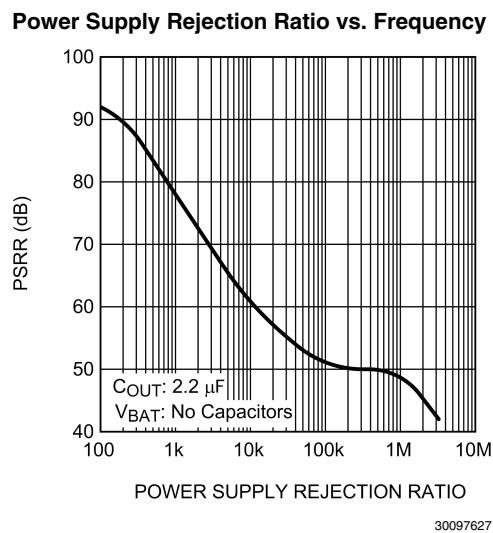
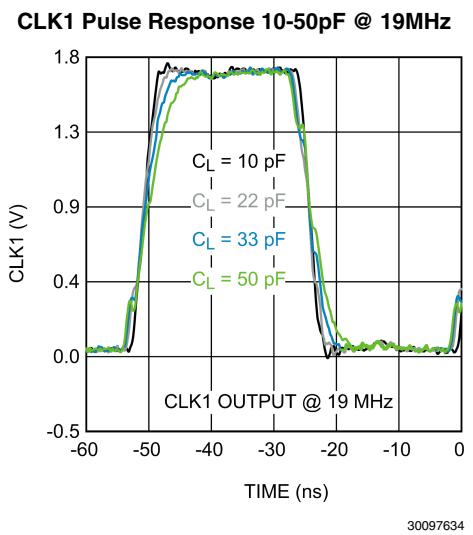
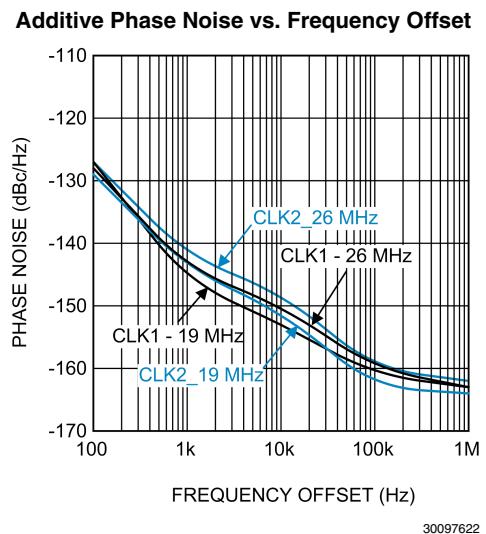
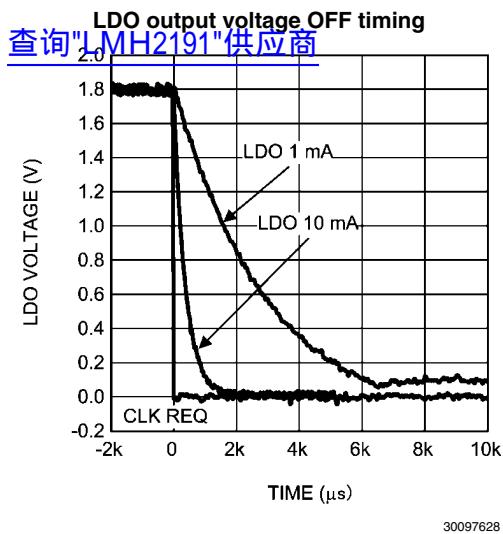

## Supply Current vs. Input Clock Frequency




## Supply Current vs. Capacitive Load




## LDO output Voltage vs. Supply Voltage

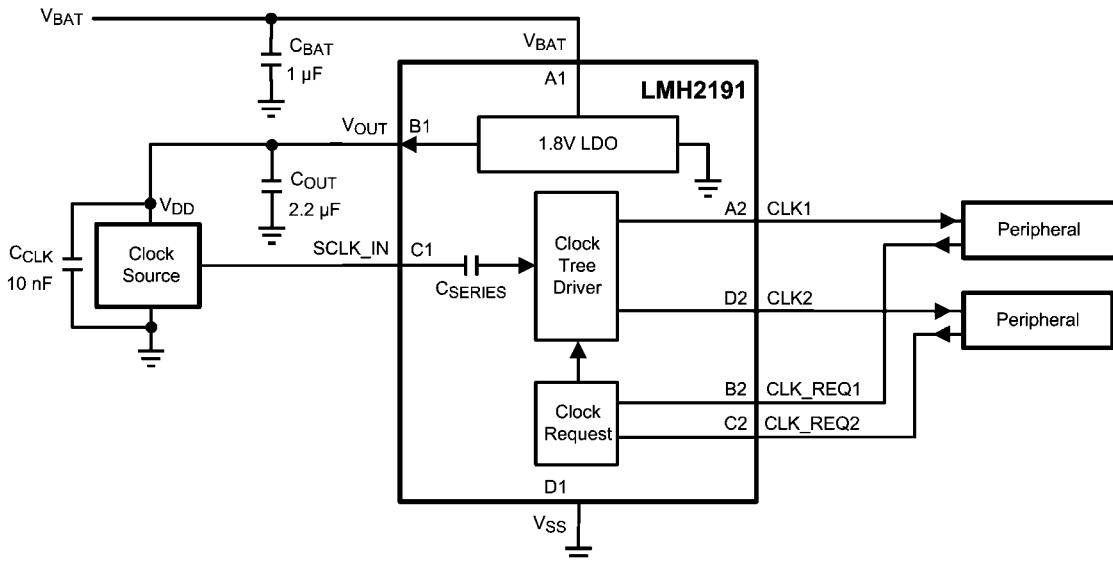








## LDO output Voltage vs. LDO output current



## LDO output voltage ON timing

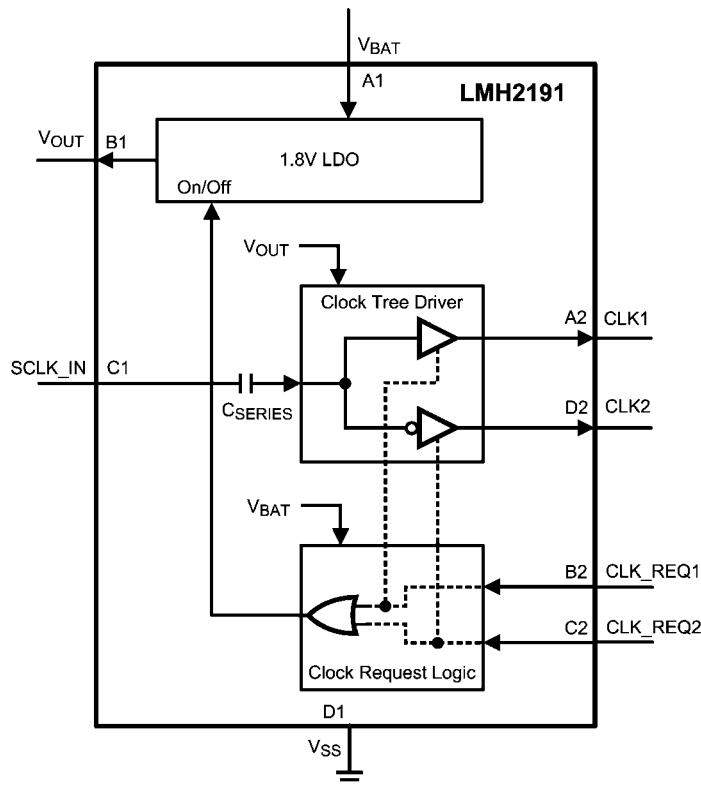





## Application Information

### 查询"LMH2191"供应商

The LMH2191 is a complete 52 MHz clocking conditioner and clock tree driver. The LMH2191 is used to supply a common clock to mobile phone peripherals such as Bluetooth, Wire-


less LAN, and/or Digital Video Broadcast-H (DVB-H). The high isolation between the clock outputs ensures that the peripherals don't disrupt each other. Its excellent phase noise characteristics prevent the clock quality from deteriorating. A typical LMH2191 setup is depicted in [Figure 5](#).



30097601

FIGURE 5. LMH2191 Typical Application Schematic

The internal structure of the LMH2191 is depicted in the block diagram of [Figure 6](#).



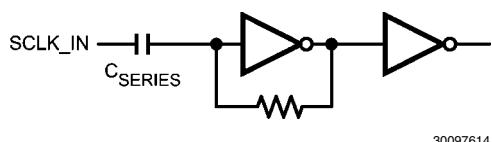
30097613

FIGURE 6. Block Diagram

The LMH2191 clock distribution circuit is comprised of 3 blocks: [查询"LMH2191"供应商](#)

- Clock tree driver
- Clock request logic
- Low Dropout Regulator (LDO)

The clock tree driver provides a clean clock to 2 separately connected peripheral devices. Independent clock request inputs allow the peripheral to control when the particular clock should be enabled. Furthermore, both clock request inputs control the LDO output voltage, e.g., when both request inputs are low (no CLK1 and no CLK2 output required), the LDO voltage is disabled. The LDO provides a low-noise, high-PSRR supply voltage that enables low phase noise on the clock outputs, and low quiescent current for portable applications. It can also be used to supply the TCXO. The following sections provide a detailed description of each block.


### CLOCK TREE DRIVER

The clock tree driver consists of one input that drives 2 outputs. It is supplied by a high-precision voltage regulator of 1.8V, the LDO. The Clock outputs are enabled when the appropriate Clock Request inputs are logic high.

#### Clock Tree Driver Input

The source clock input (SCLK\_IN) is the input for the clock tree driver. This input has an internally connected coupling capacitor ( $C_{SERIES}$ ). In shutdown mode (when both CLK\_REQ inputs are low), the input stage is completely switched off to prevent unnecessary power consumption when the source clock is still present.

Due to the internal coupling capacitor, the clock signal is DC biased, since the coupling capacitor prevents the internal biasing of the input circuitry to be affected by the external DC voltage. Because of the coupling capacitor, the minimum clock frequency is 10 MHz. It is assumed that the input signal is a sine wave or a typical TCXO waveform (the signal from a TCXO has slow edges), enabling the control loop to adjust to a duty cycle of 50% if the input signal differs slightly from 50% duty cycle. The duty cycle is an important timing parameter for the peripheral equipment. The circuit that adjust the duty cycle is shown in [Figure 7](#).



30097614

FIGURE 7. Clock Duty Cycle Regulation

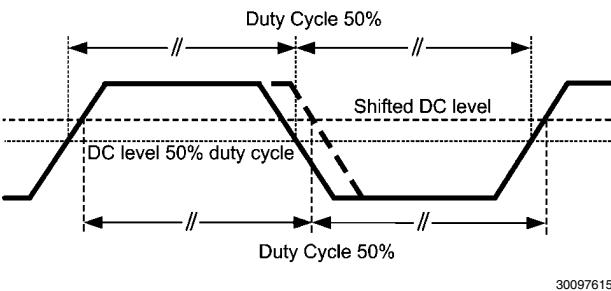



FIGURE 8. Duty Cycle adjust levels

In order to achieve a duty cycle of 50%, the edges of the incoming clock signal (SCLK\_IN) are used to move the switch-

ing point to the level that is needed to create the 50% duty cycle. The simplified input circuit consists of an inverter and a feedback resistor. Together with the input series capacitor of about 30 pF, the circuit creates a DC level depending on the duty cycle of the incoming clock signal. When the duty cycle is exactly 50%, the DC level is in the middle of the upper and lower pulse level. When the duty cycle differs from 50%, the DC level shifts slightly to maintain the duty cycle level at 50%. (See Duty Cycle adjust levels of [Figure 8](#).) As explained above, the slow edges of the SCLK\_IN signal are important to make the control loop work.

#### Input Impedance

The input impedance can be split up into two parts: the DC input resistance and the AC input impedance. Due to the used series capacitor in the input signal path the DC resistance is infinite. The AC input impedance is formed by the circuit drawn in [Figure 7](#). This circuit consists of an inverter and a feedback resistor. A signal fed to the input pin is connected to the inverter input which has a high input impedance and is in parallel to the feedback resistor of 30 kΩ. The other pin of the feedback resistor is connected to the output of the inverter which means that the input current is higher than it would be if it were connected to a decoupled supply connection. For this reason the AC input resistance can be much lower than the connected feedback resistor of 30 kΩ. The input resistance is dependant on the amplitude of the input signal. When an input amplitude of 1.8V is used (the same amplitude as the output of the inverter), the input impedance is theoretical half the value of the feedback resistor. When the amplitude of the input signal lowers, the input resistance becomes lower too. With an input signal of 1V<sub>PP</sub>, the input impedance will be about 10 kΩ.

#### Clock Tree Driver Outputs

The LMH2191's clock tree driver outputs have a drive strength that make each output capable of driving a capacitive load up to 50 pF, together with a minimum of EMI. Further reduction of EMI is achieved by the inversion of the CLK2 output. (See [Figure 9](#).) Both the drive strength and the capacitive load make the edges of the output pulse relatively slow which is favorable for EMI reduction.

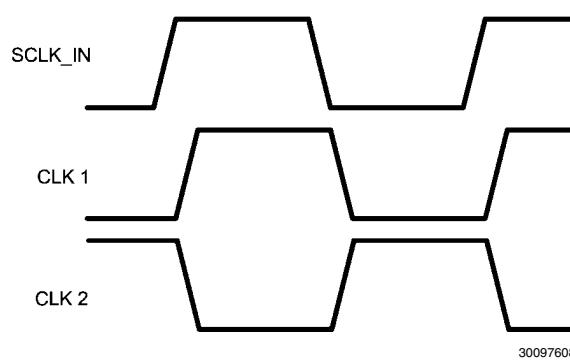



FIGURE 9. Clock Outputs

#### CLOCK REQUEST LOGIC

A clock request input is provided for each clock output. This allows the peripheral device to control when it wants to receive a clock. In case the application does not have clock request functionality, the CLK<sub>x</sub>\_REQ can be hard wired to a logic high level to enable the clock output continuously. The clock request inputs have logic levels compatible with 1.8V logic, but can tolerate logic high levels up to  $V_{BAT}$ .

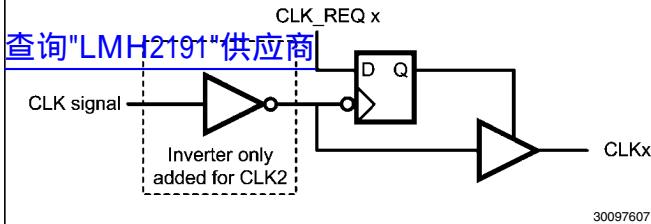



FIGURE 10. Enabling the output

The clock request logic enables an independent control of the clock tree driver outputs, CLK1 and CLK2, as well as an LDO disable when both request inputs are low.

The on and off switching of the clock output drivers is done synchronously with the clock input in order to prevent glitches at the clock output. For this the clock request signal is connected to the D input of a latch. The Q output of this latch enables the clock output driver (see *Figure 10*). For the CLK1 output the CLK input signal is connected via an inverter to the clock input of the latch. In this way the latch enables and disables the CLK1 output buffer on the falling edge of the clock signal. For the CLK2 output an extra inverter is inserted prior to the latch circuit, and the CLK2 output buffer is enabled and disabled on the rising edge of the clock input signal (equal to the falling edge of the CLK2 output signal).

#### LOW DROPOUT REGULATOR

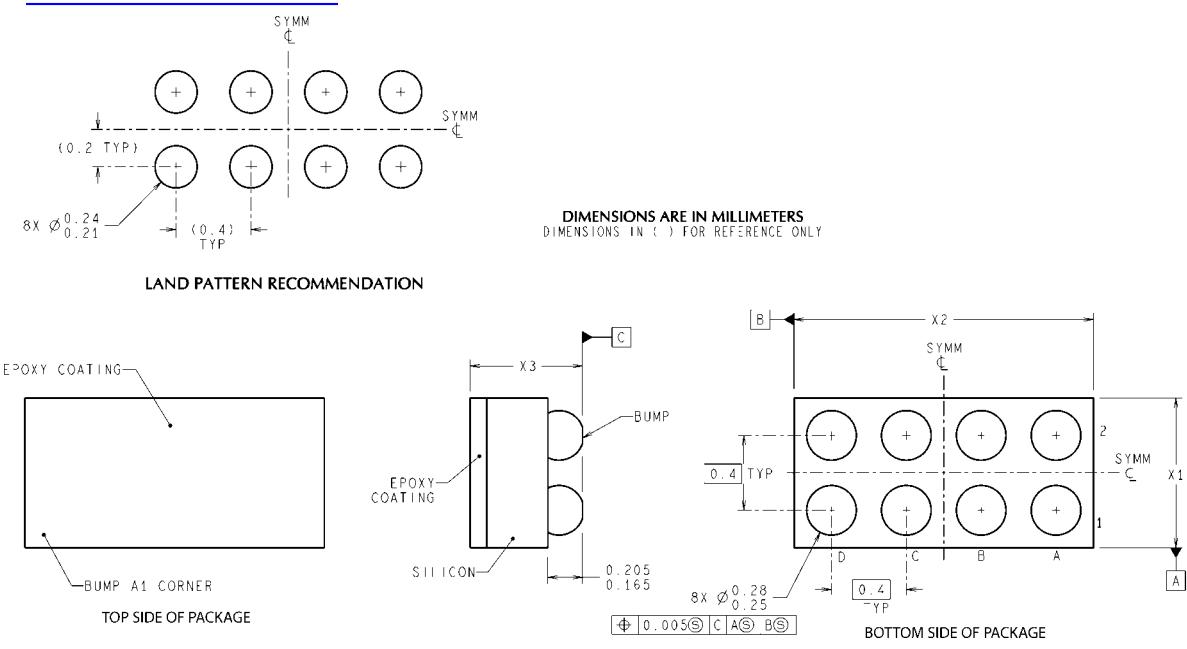
The linear and Low-Dropout regulator (LDO) is used to regulate the input voltage,  $V_{BAT}$ , thus generating a well-defined ultra low noise 1.8V supply voltage. This allows the LMH2191 to suppress  $V_{BAT}$  supply voltage ripple and noise for the

TCXO and the internal Clock Path. Voltage ripple and noise would distort clock edges causing extra phase noise on the distributed clock signal.

The LDO is powered up whenever a Clock Request is active; it supports overheating detection and will switch off in case overheating occurs. The recommended sequence for powering up the LDO is to raise a clock request to a high level with the supply already powered up. Thus the LDO stays in shutdown mode with sub  $\mu$ A current consumption until an output clock is actually needed. The LDO will power up within the turn-on time of about 200  $\mu$ s (as specified in the data sheet tables). Alternatively, the clock request input can be hard wired to  $V_{BAT}$  which powers up the LDO simultaneously with  $V_{BAT}$ . A drawback is that the LDO and clock path (and if connected, the TCXO) will always draw current when  $V_{BAT}$  is powered up. Also, in this setup, care should be taken with supplies with an excessive long startup time of more than about 25 ms. Under this condition the LDO could exhibit excessive long turn-on delay (order of seconds.)

#### LAYOUT RECOMMENDATIONS

As with any other device, careful attention must be paid to the board layout. If the board isn't properly designed, the performance of the device can be less than desired. Care should be taken that the SCLK\_IN input trace and the output traces of CLK1 and CLK2 are as short as possible to reduce extra capacitive load observed by the clock outputs. Also proper de-coupling close to the device is necessary. *Table 1* depicts the advised component values. NSC suggests to use the evaluation board, available from the National Semiconductor web site [www.National.com](http://www.National.com), as a guide for layout and as an aid in device testing and characterization.


TABLE 1. Recommended Component Values

| Symbol    | Parameter                    | Min  | Typ | Max | Units     |
|-----------|------------------------------|------|-----|-----|-----------|
| $C_{BAT}$ | Capacitor on $V_{BAT}$       | 0.47 | 1   |     | $\mu$ F   |
| $C_{OUT}$ | Capacitor on $V_{OUT}$       | 1    | 2.2 |     |           |
| ESR       | Equivalent Series Resistance | 5    |     | 500 | $m\Omega$ |

$C_{BAT}$ ,  $C_{OUT}$ : Low-ESR Surface-Mount Ceramic Capacitors (MLCC's) used in setting electrical characteristics.

## Physical Dimensions

inches (millimeters) unless otherwise noted



**8 bump Thin Micro SMD  
NS Package Number TMP0008LAA  
X1=1.070mm; X2=1.615mm; X3=0.600mm**

[查询"LMH2191"供应商](#)

## Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:  
[www.national.com](http://www.national.com)

| Products                       |                                                                                  | Design Support               |                                                                                    |
|--------------------------------|----------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------|
| Amplifiers                     | <a href="http://www.national.com/amplifiers">www.national.com/amplifiers</a>     | WEBENCH® Tools               | <a href="http://www.national.com/webench">www.national.com/webench</a>             |
| Audio                          | <a href="http://www.national.com/audio">www.national.com/audio</a>               | App Notes                    | <a href="http://www.national.com/appnotes">www.national.com/appnotes</a>           |
| Clock and Timing               | <a href="http://www.national.com/timing">www.national.com/timing</a>             | Reference Designs            | <a href="http://www.national.com/refdesigns">www.national.com/refdesigns</a>       |
| Data Converters                | <a href="http://www.national.com/adc">www.national.com/adc</a>                   | Samples                      | <a href="http://www.national.com/samples">www.national.com/samples</a>             |
| Interface                      | <a href="http://www.national.com/interface">www.national.com/interface</a>       | Eval Boards                  | <a href="http://www.national.com/evalboards">www.national.com/evalboards</a>       |
| LVDS                           | <a href="http://www.national.com/lvds">www.national.com/lvds</a>                 | Packaging                    | <a href="http://www.national.com/packaging">www.national.com/packaging</a>         |
| Power Management               | <a href="http://www.national.com/power">www.national.com/power</a>               | Green Compliance             | <a href="http://www.national.com/quality/green">www.national.com/quality/green</a> |
| Switching Regulators           | <a href="http://www.national.com/switchers">www.national.com/switchers</a>       | Distributors                 | <a href="http://www.national.com/contacts">www.national.com/contacts</a>           |
| LDOs                           | <a href="http://www.national.com/ldo">www.national.com/ldo</a>                   | Quality and Reliability      | <a href="http://www.national.com/quality">www.national.com/quality</a>             |
| LED Lighting                   | <a href="http://www.national.com/led">www.national.com/led</a>                   | Feedback/Support             | <a href="http://www.national.com/feedback">www.national.com/feedback</a>           |
| Voltage References             | <a href="http://www.national.com/vref">www.national.com/vref</a>                 | Design Made Easy             | <a href="http://www.national.com/easy">www.national.com/easy</a>                   |
| PowerWise® Solutions           | <a href="http://www.national.com/powerwise">www.national.com/powerwise</a>       | Applications & Markets       | <a href="http://www.national.com/solutions">www.national.com/solutions</a>         |
| Serial Digital Interface (SDI) | <a href="http://www.national.com/sdi">www.national.com/sdi</a>                   | Mil/Aero                     | <a href="http://www.national.com/milaero">www.national.com/milaero</a>             |
| Temperature Sensors            | <a href="http://www.national.com/tempssensors">www.national.com/tempssensors</a> | SolarMagic™                  | <a href="http://www.national.com/solarmagic">www.national.com/solarmagic</a>       |
| PLL/VCO                        | <a href="http://www.national.com/wireless">www.national.com/wireless</a>         | PowerWise® Design University | <a href="http://www.national.com/training">www.national.com/training</a>           |

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

### LIFE SUPPORT POLICY

**NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.** As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at [www.national.com](http://www.national.com)



National Semiconductor  
 Americas Technical  
 Support Center  
 Email: [support@nsc.com](mailto:support@nsc.com)  
 Tel: 1-800-272-9959

National Semiconductor Europe  
 Technical Support Center  
 Email: [europe.support@nsc.com](mailto:europe.support@nsc.com)

National Semiconductor Asia  
 Pacific Technical Support Center  
 Email: [ap.support@nsc.com](mailto:ap.support@nsc.com)

National Semiconductor Japan  
 Technical Support Center  
 Email: [jpn.feedback@nsc.com](mailto:jpn.feedback@nsc.com)