
	70301V	VA"	供心	ソ営	1					Y) E'	/ISI		46							
					L											12		2	TE	+	ADD	ROV	ED
					-	TR				DE	SC	RIP.	110	N			_			+	A	-	
					l																		
					•	,	,													•			
			_		_		_		_	_	_	_								r		一	Ŧ
REV	+++	┿	+-	╀┈	-		-	\vdash	┝	╁╴	┢	├	Н	Н		 	-			一	Н	\dashv	十
	┸	┿	┿		-	\vdash			\vdash	├	\vdash	\vdash	Н	Н				_	H	-	Н	\dashv	\top
	DEV		+-	2	7	_	6	7	8	9	10	11	12	13								寸	十
REV STATUS	REV	T 1	12		4		-		<u> </u>	<u> </u>													
REV STATUS OF PAGES	PAGES		2	_								I .											
REV STATUS OF PAGES Defense Electron	PAGES	1	_	_) В (!		بنال	N			Ň		LI	1/	41	\ T	L	ļΠ		AA	IN	IG
REV STATUS OF PAGES Defense Electron Supply Center	PAGES	1	PRI	EPA US	REI) в С.	01	fice	<u>~</u>			Th all	is c	Irawi partr	ng	is a	vaila	able	for	use	by	IN	IG
REV STATUS OF PAGES Defense Electron Supply Center	PAGES	1	PRI	_	REI) в С.	01	fús Co	~ ?	— عم	-	all	De	irawi	ng nen	is a ts a	vaila nd /	able Agen	for	use	by	IN	IG
REV STATUS OF PAGES Defense Electron Supply Center Dayton, Ohio	PAGES	1	PRI CH CH	ECK	REI ED		Of	fii.	~ 0 m		→	all De	De	irawi partr tmen	ng nen t o	is a its a i Dei	vaila nd / iense	able Agen RCUI	for ncies	use s of DI	the		IG
REV STATUS OF PAGES Defense Electron Supply Center Dayton, Ohio	PAGES		PRI CH CH	ECK	KED YEI) в С.	Of	[fin	~ 0 m	<u> </u>	→	all De	De	irawi partr tmen	ng nen to	is a ts a f Def	vaila nd / iensa OCII X 9-	Agen RCUI BIT	for ncies TS, BI	DIC	the GITA		G
REV STATUS OF PAGES Defense Electron Supply Center Dayton, Ohlo Original date of drawing:	PAGES		CHI CHI	ECK PRO	REI (ED)		v 0.4	<u>6</u>	on to	NO NO	>	all De	De	irawi partr tmen	ng nen t o	is a ts a Def MICR 256 MONO	valla ind / iense OCII X 9- LITI	Agen RCUI BIT	for ncies TS, BI	DICO	the GITA AR R	L, AM,	G
REV STATUS OF PAGES Defense Electron Supply Center Dayton, Ohio Original date	PAGES		CHI CHI API SIZ	ECK PRO	REI (ED)	B' B' C B	101	S DEN	ON TO	NO NO	>	all De	TLE	drawi partr tmen	ng nen t o	is a ts a Def MICR 256 MONO	valla ind / iense OCII X 9- LITI	Agen RCUI BIT	for ncies TS, BI	DICO	the GITA	L, AM,	G
PAGE REV STATUS OF PAGES Defense Electron Supply Center Dayton, Ohio Original date of drawing: 09 November	PAGES		CHI CHI	ECK PRO	REI (ED)	B' B' C B	101	<u>6</u>	ON TO	NO NO	>	all De	TLE WG	drawi partr tmen	ng nen t o	is a ts a Def MICR 256 MONO	valla ind / iense OCII X 9- LITI	RCUI-BIT	for ncies TS, BI	DICO	the GITA AR R	L, AM,	G

<u>DISTRIBUTION STATEMENT A.</u> Approved for public release; distribution is unlimited. **DESC FORM 193**MAY 86

1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".

1.2 Part number. The complete part number shall be as shown in the following example:

1.2.1 Device types. The device types shall identify the circuit function as follows:

Device type	Generic number	Circuit function	Access time
01	(See 6.4)	2304-bit bipolar RAM (three-state)	70 ns
02	(See 6.4)	2304-bit bipolar RAM (three-state)	60 ns
03	(See 6.4)	2304-bit bipolar RAM (three-state)	45 ns

1.2.2 <u>Case outline</u>. The case outline shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter

u

Case outline

D-7 (22-lead, 3/8" x 1 1/8"), dual-in-line package

1.3 Absolute maximum ratings.

1.4 Recommended operating conditions.

Supply voltage range (V_{CC}) - - - - - - - - - - +4.75 V dc to +5.25 V dc Case operating temperature range (T_C) - - - - - - - - - - - - 55°C to +125°C Minimum high level input voltage - - - - - - - - - - - 2.0 V dc Maximum low level input voltage - - - - - - - - - - - 0.8 V dc

 $\underline{1}$ / Must withstand the added PD due to short circuit test (e.g., I_{OS}).

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO

SIZE
A

5962-87703

REV

PAGE
2

章询p5962ge/6030MEMysA"供应商

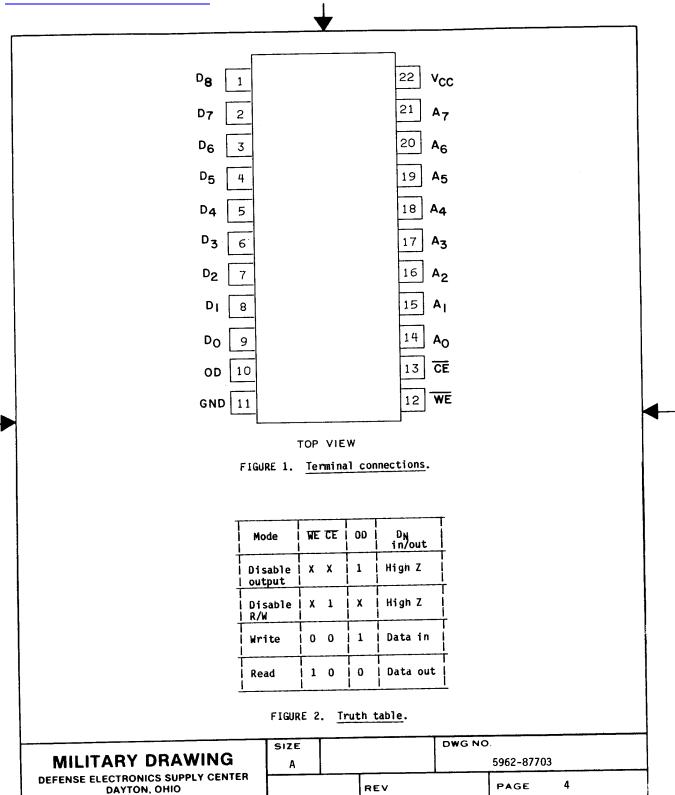
2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

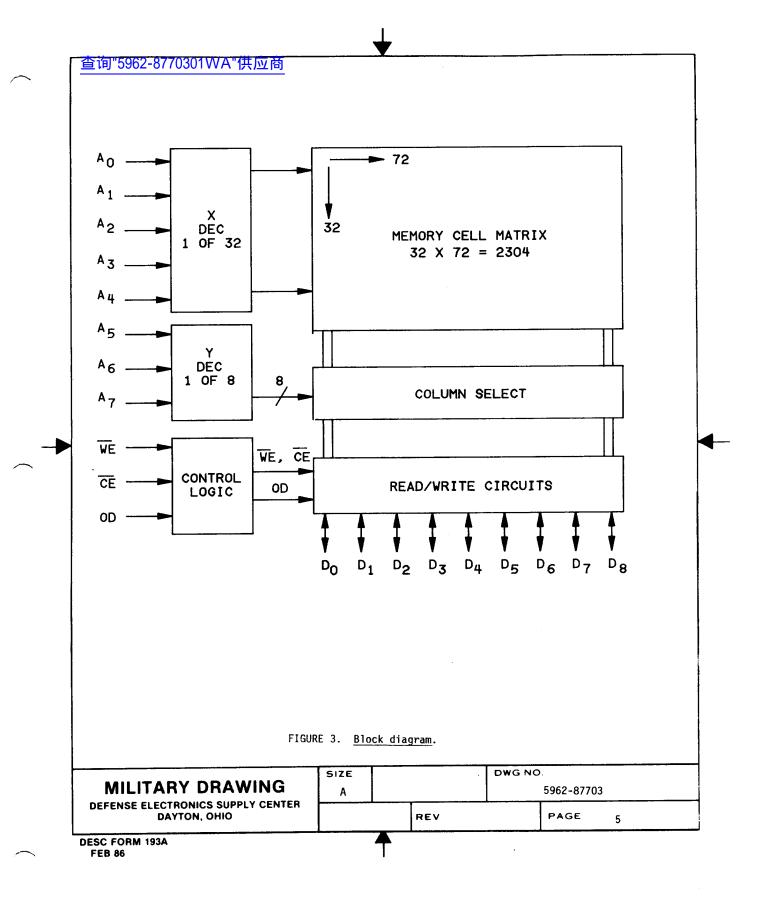
SPECIFICATION

MILITARY

MIL-M-38510 - Microcircuits, General Specification for.

STANDARD


MILITARY


MIL-STD-883 - Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.3 Block diagram. The block diagram shall be as specified on figure 3.
 - 3.2.4 Case outline. The case outline shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range.
- 3.4 Marking. Marking snall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 Certificate of compliance. A certificate of compliance snall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply snall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).

MILITARY DRAWING	SIZE A	,	`•	DWG NC). 52-87703	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO			REV		PAGE	3

Test	Symbol	nbol Conditions 1/2/		Group A			
 		$-55^{\circ}C < T_C < +125^{\circ}C$ 4.75 V $< V_{CC} < 5.25$ V See figures 4 and 5	type 	subgroups 	Min	Max	
nput voltage low	۸I۲		A11	1, 2, 3	1	0.8	٧
nput voltage high	٧ _{IH}		A11	1, 2, 3	2.0		٧
nput voltage clamp 3/	ν _{IC}	V _{CC} = minimum, I _{IN} = -18 mA	A11	1, 2, 3		-1.5	٧
output voltage low	v _{OL}	V _{CC} = minimum, I _{OL} = 9.6 mA	A11	1, 2, 3		0.5	V
Output voltage high	ν _{ОН}	V _{CC} = minimum, I _{OH} = -2 mA	A11	1, 2, 3	2.4		 V
Input current low	IIL	V _{CC} = maximum,	01	1, 2, 3		-150	μA
	•- 	V _{IN} = 0.45 V	02,03			-400	
Input current high	I _{IH}	V _{CC} = maximum, V _{IN} = 5.5 V	A11	1, 2, 3		40	μA μA
Output current high Z state	I I _{OZ}	$\frac{V_{CC}}{CE}$ = maximum, $\frac{CE}{CE}$ = high, V_{OUT} = 5.5 V $\frac{CE}{CE}$ = high, V_{OUT} = 0.5 V	A11	1, 2, 3		 80 -100	 μΑ
Output short circuit current 3/6/	Ios	CE = OD, low, V _{OUT} = O V, stored nign, V _{CC} = maximum	A11	1, 2, 3	-15	 -85 	mA
V _{CC} supply current	Icc	CE = high, V _{CC} = maximum	A11	1, 2, 3		200	l mA
Address access time	i It _{AA}	See figures 6 and 7	01	9,10,11		70	ns
	""		02	i -		60	<u> </u>
	<u> </u>	 	03			45	<u>i</u>
Output enable time from OD to output	l t _{OE} 	 	A11	9,10,11		50	ns
See footnotes at end	of table						

REV

6

PAGE

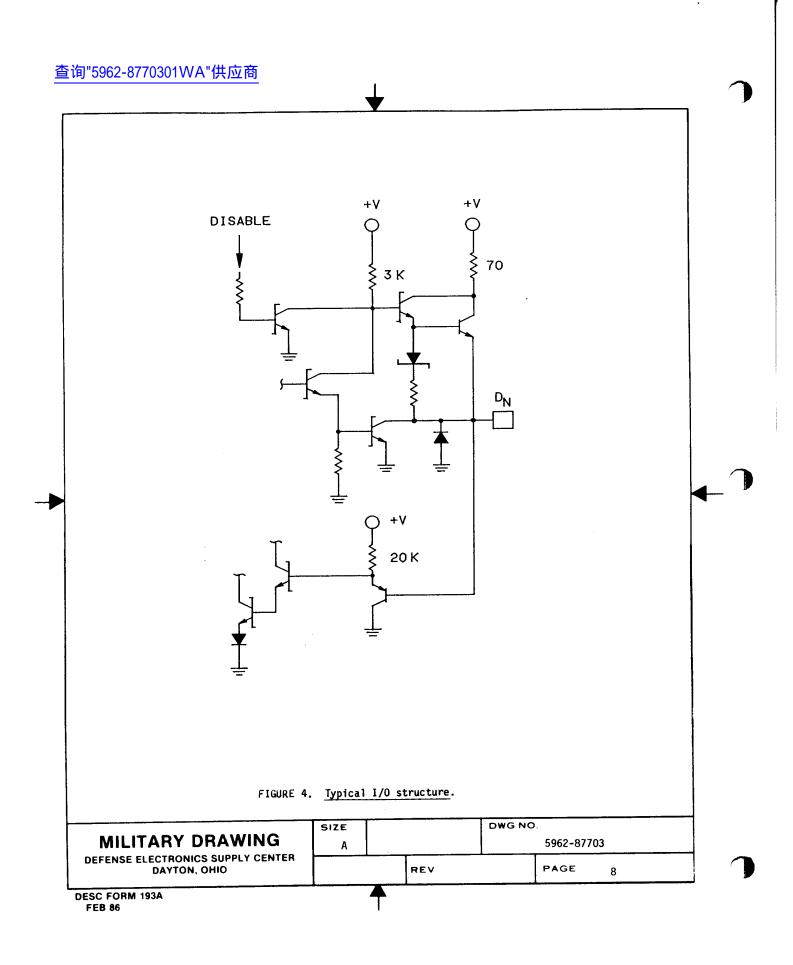
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO

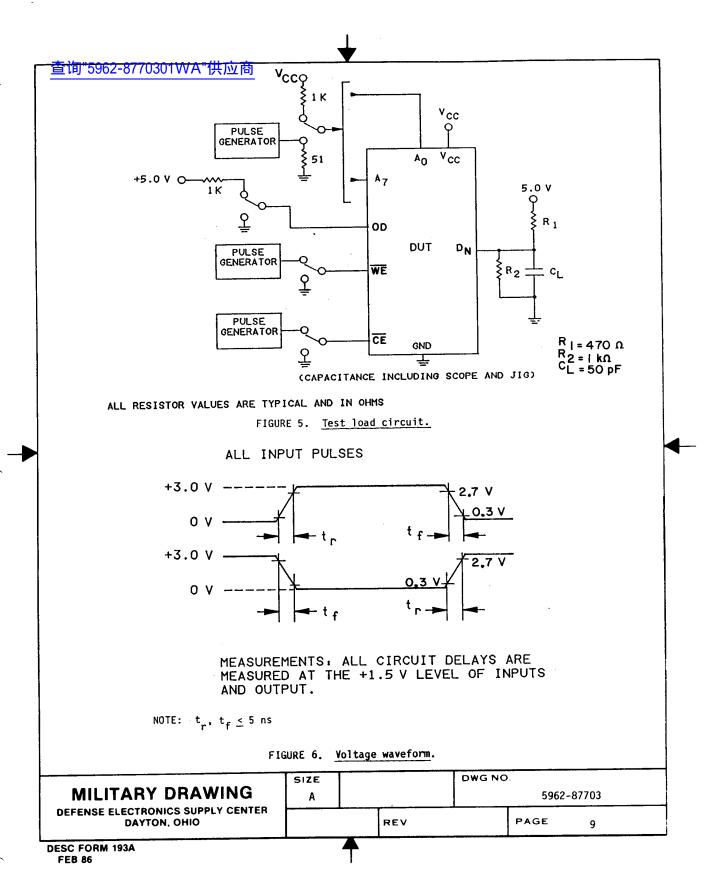
Test	 Symbol	Conditions $\frac{1}{2}$		Group A	Lim	its	<u>i</u> Unit
		$-55^{\circ}C < T_C < +125^{\circ}C$ 4.75 V $<$ V _{CC} $<$ 5.25 V See figures 4 and 5	type	subgroups	Min	Max	
Output enable time from CE to output	tce	See figures 6 and 7	A11	9,10,11		50	ns
Output disable time from OD to output	t _{OD}		A11	9,10,11		50	ns
Output disable time from CE to output	t _{CD}		A11	9,10,11		50	ns
irite pulse width $8/$	t _{WP}		01	9,10,11	45		ns
	<u> </u>	 	02,03	 	40	<u> </u>	<u>i</u>
etup time from write to WE	t _{SWC}	 	A11	9,10,11	10		ns
lold time from WE to	t _{WHC}		All	9,10,11	10	1	ns
etup time from data	twsp		01	9,10,11	45		ns
in to write		 	02,03		50	ļ	
lold time from write to data in	t _{WHD}		A11	9,10,11	10	<u> </u>	ns
etup time from address to write	twsa	 	A11	9,10,11	10		ns
old time from write to address	t _{WHA}	 	All	9,10,11	15		ns
etup time from OD to CE	t _{S0}	[A11	9,10,11	5	 	ns
lold time from CE to	l t _{HO}	T I	T A11	9,10,11	5		ns

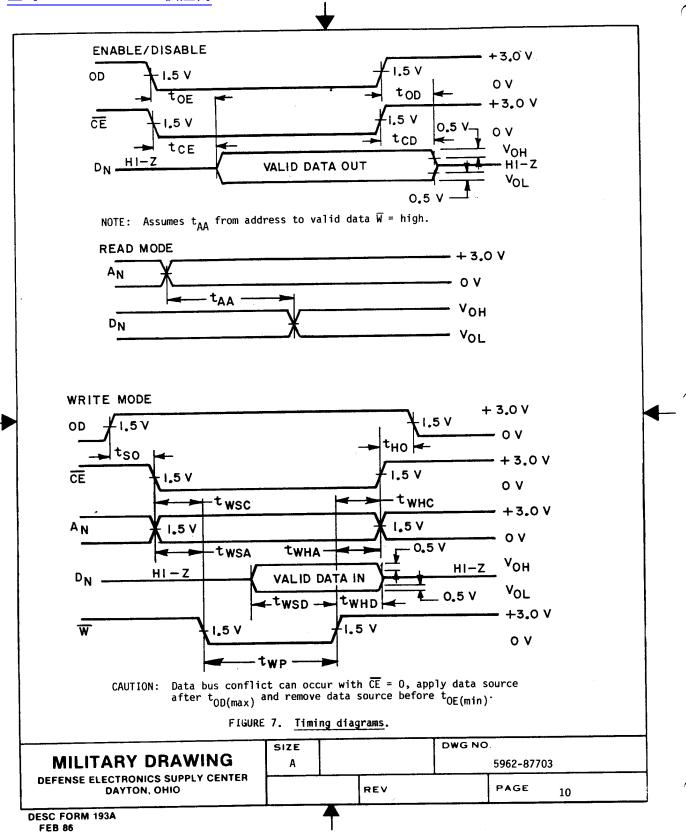
1/ All voltage values are with respect to network ground terminal. 2/ The operating case temperature ranges are quantities. The operating case temperature ranges are guaranteed with transverse air flow exceeding 400 linear feet per minute and a 2 minute warmup. This test condition will be guaranteed by testing at -40°C using instant on testing. Typical thermal resistance values of the package at maximum temperature

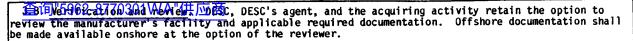
are: θ_{JC} junction-to-case at 400 fpm air flow: 50°C/W. θ_{JC} junction-to-case still air: 90°C/W. θ_{JC} junction-to-case: 20°C/W.

Test each pin one at a time.


Measured with a logic low stored. Output sink current is supplied through a resistor to $V_{\rm CC}$. Measured with a logic high.


Duration of the short circuit should not exceed 1 second.


 I_{CC} is measured with the write enable and memory enable inputs grounded, all other inputs at 4.5 V and the output open. 7/


Minimum required to guarantee a write into the slowest bit.

MILITARY DRAWING	SIZE A		DWG NO	62-87703	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		 REV		PAGE	7

- 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STD-883).
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-SID-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 7 functional testing snall include verification of instruction set.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.

MILITARY DRAWING	SIZE		DWG NO. 5962-87703	*
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV	PAGE	11

	TABLE	II.	Electrical	test	requirements.
--	-------	-----	------------	------	---------------

 MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
 Interim electrical parameters (method 5004)	
 Final electrical test parameters (method 5004)	1*, 2, 3, 7, 8, 9
Group A test requirements (method 5005)	1, 2, 3, 7, 8, 9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3
Additional electrical subgroups for group C periodic inspections	

^{*} PDA applies to subgroup 1.

- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
- 6. NOTES
- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO

SIZE
A
5962-87703

REV
PAGE
12

Military drawing part number	Vendor CAGE number	Vendor <u>1</u> / similar part number
5962-8770301WX	18324	82\$212/BWA
5962-8770302WX	07263	934790MQB
5962-8770303WX	07263	93479ADMQB

1/ Caution. Do not use this number for item acquirsition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number	Vendor name and address
18324	Signetics, Incorporated 4130 S. Market Court Sacramento, CA 95834
07263	Fairchild 4 1111 39th Avenue, SE Puvallup, WA 98373

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO

DESC FORM 193A

SIZE
A

DWG NO
5962-87703

PAGE
13

FEB 86