

[^0]

Absolute Maximum Ratings（Note 1）		Recommended Operating
Supply Voltage（ V_{CC} ）	-0.5 V to +7.0 V	Conditions
DC Input Diode Current（ $\mathrm{I}_{\text {IK }}$ ）		Supply Voltage（ V_{CC} ）
$\mathrm{V}_{\mathrm{I}}=-0.5 \mathrm{~V}$	－20 mA	ACQ 2.0 V to 6.0 V
$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{C C}+0.5 \mathrm{~V}$	＋20 mA	ACTQ 4.5 V to 5.5 V
DC Input Voltage（ V_{l} ）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	Input Voltage（ V_{l} ） $\mathrm{OV}^{\text {to }} \mathrm{V}_{\mathrm{CC}}$
DC Output Diode Current（ l_{OK} ）		Output Voltage（ V_{O} ） 0 V to V_{CC}
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	－20 mA	Operating Temperature（ T_{A} ）$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	＋20 mA	Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$
DC Output Voltage（ V_{O} ）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	ACQ Devices
DC Output Source		$\mathrm{V}_{\text {IN }}$ from 30% to 70% of $\mathrm{V}_{\text {CC }}$
or Sink Current（ l_{O} ）	$\pm 50 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }}$＠3．0V，4．5V，5．5V $125 \mathrm{mV} / \mathrm{ns}$
DC V ${ }_{C C}$ or Ground Current per Output Pin（ $I_{\text {CC }}$ or $I_{G N D}$ ）	$\pm 50 \mathrm{~mA}$	Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$ ACTQ Devices
Storage Temperature（ $\mathrm{T}_{\mathrm{STG}}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
DC Latch－Up Source or		$\mathrm{V}_{\text {CC }}$＠4．5V， 5.5 V ， $125 \mathrm{mV} / \mathrm{ns}$
Sink Current	$\pm 300 \mathrm{~mA}$	
Junction Temperature（ T_{J} ）		to the device may occur．The databook specifications should be met，with－ out exception，to ensure that the system design is reliable over its power
PDIP	$140^{\circ} \mathrm{C}$	supply，temperature，and output／input loading variables．Fairchild does not recommend operation of FACT ${ }^{\text {TM }}$ circuits outside databook specifications．

DC Electrical Characteristics for ACQ

Symbol	Parameter	$V_{c c}$ （V）	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{1}}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.25 \\ & 2.75 \end{aligned}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{IL}$	Maximum LOW Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 2.99 \\ & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{l}_{\text {OUt }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
V_{OL}	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & 0.001 \\ & 0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
$\overline{I_{N}}$ （Note 4）	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
Iold	Minimum Dynamic Output Current（Note 3）	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$		5.5			－75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$I_{C C}$ （Note 4）	Maximum Quiescent Supply Current	5.5		4.0	40.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{GND} \end{aligned}$
l_{Oz}	Maximum 3－STATE Leakage Current	5.5		± 0.25	± 2.5	$\mu \mathrm{A}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \hline \end{aligned}$

Symbol	Parameter	V_{cc} （V）	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	1.1	1.5		V	Figure 1，Figure 2 （Note 5）（Note 6）
$\overline{\mathrm{V}}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	－0．6	－1．2		V	Figure 1，Figure 2 （Note 5）（Note 6）
$\overline{\mathrm{V}} \mathrm{IHD}$	Minimum HIGH Level Dynamic Input Voltage	5.0	3.1	3.5		V	（Note 5）（Note 7）
$\overline{\mathrm{V} \text { ILD }}$	Maximum LOW Level Dynamic Input Voltage	5.0	1.9	1.5		V	（Note 5）（Note 7）
Note 2：All outputs loaded；thresholds on input associated with output under test． Note 3：Maximum test duration 2.0 ms ，one output loaded at a time． Note 4：$I_{I N}$ and $I_{C C} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit $@ 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ ． Note 5：DIP package． Note 6：Max number of outputs defined as（n）．Data inputs are driven 0V to 5 V ．One output＠GND． Note 7：Maximum number of data inputs（ n ）switching．（ $n-1$ ）inputs switching $0 V$ to 5 V （ACQ）．Input－under－test switching： 5 V to threshold（ $\mathrm{V}_{\mathrm{ILD}}$ ）， 0 V to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right) \cdot \mathrm{f}=1 \mathrm{MHz}$ ． DC Electrical Characteristics for ACTQ							
Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\mathrm{V}_{1 \mathrm{H}}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum LOW Level Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \hline \end{aligned}$
V_{OH}	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	V	IOUT $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.85 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 8) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 8) \end{aligned}$
1 IN	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
loz	Maximum 3－STATE Leakage Current	5.5		± 0.25	± 2.5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
${ }^{\text {CCT }}$	Maximum I ${ }_{\text {CC }} /$ Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
Iold	$\begin{aligned} & \text { Minimum Dynamic } \\ & \text { Output Current (Note 9) } \end{aligned}$	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
І－hd		5.5			－75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
ICC	Maximum Quiescent Supply Current	5.5		4.0	40.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \end{aligned}$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	1.1	1.5		V	Figure 1，Figure 2 （Note 10）（Note 11）
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	－0．6	－1．2		V	$\begin{aligned} & \hline \text { Figure 1, Figure } 2 \\ & (\text { Note 10)(Note 11) } \end{aligned}$
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	5.0	1.9	2.2		V	（Note 10）（Note 12）
VILD	Maximum LOW Level Dynamic Input Voltage	5.0	1.2	0.8		V	（Note 10）（Note 12）
Note 8：All outputs loaded；thresholds on input associated with output under test． Note 9：Maximum test duration 2.0 ms ，one output loaded at a time． Note 10：DIP package． Note 11：Max number of outputs defined as（n）．Data inputs are driven 0 V to 3 V ．One output＠GND．							

DC Electrical Characteristics for ACTQ（Continued）
Note 12：Max number of data inputs（ n ）switching．（ $n-1$ ）inputs switching 0 V to 3 V （ACTQ）．Input－under－test switching
3 V to threshold（ $\mathrm{V}_{\text {ILD }}$ ）， 0 V to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right), \mathfrak{f}=1 \mathrm{MHz}$ ．

AC Electrical Characteristics for ACQ

Symbol	Parameter	V_{CC} （V） （Note 13）	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 90 \end{aligned}$			$\begin{aligned} & 70 \\ & 85 \end{aligned}$		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & \hline 3.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.0 \end{gathered}$	ns
$\begin{aligned} & \overline{t_{\mathrm{PHZ}}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 9.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{OSHL}}$ t^{\prime} OSLH	Output to Output Skew（Note 14） CP to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	ns

Note 13：Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Note 14：Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device．The specification applies to any outputs switching in the same direction，either HIGH－to－LOW（ $\mathrm{t}_{\mathrm{OSHL}}$ ）or LOW－to－HIGH（ $\mathrm{t}_{\mathrm{OSLH}}$ ）．Parameter guaranteed by design．

AC Operating Requirements for ACQ

Symbol	Parameter	V_{cc} （V）	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
		（V） （Note 15）	Typ	Guaranteed Minimum		
t_{s}	Setup Time，HIGH or LOW D_{n} to CP	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	ns
t_{H}	Hold Time，HIGH or LOW D_{n} to CP	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns
t_{W}	CP Pulse Width， HIGH or LOW	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	ns

Note 15：Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

AC Electrical Characteristics for ACTQ

Symbol	Parameter	V_{Cc} （V） （Note 16）	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
${ }^{\text {f MAX }}$	Maximum Clock Frequency	5.0	85			80		MHz
$\begin{array}{\|l\|} \hline \mathrm{t}_{\mathrm{PLL}} \\ \mathrm{t}_{\text {PHL }} \end{array}$	Propagation Delay CP to $\overline{\mathrm{O}}_{\mathrm{n}}$	5.0	2.0	7.0	9.0	2.0	9.5	ns
$\begin{array}{\|l\|} \hline \mathrm{t}_{\text {PZH }} \\ \mathrm{t}_{\text {PZL }} \end{array}$	Output Enable Time	5.0	2.0	7.0	9.0	2.0	9.5	ns
$\begin{array}{\|l\|l\|} \hline \mathrm{t}_{\mathrm{PHZ}} \\ \mathrm{t}_{\mathrm{PLLZ}} \end{array}$	Output Disable Time	5.0	1.0	8.0	10.0	1.0	10.5	ns
$\mathrm{t}_{\mathrm{OSHL}}$ tosLh	Output to Output Skew（Note 17） CP to $\overline{\mathrm{O}}_{\mathrm{n}}$	5.0		0.5	1.0		1.0	ns
Note 16：Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ ． Note 17：Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device．The specification applies to any outputs switching in the same direction，either HIGH－to－LOW（tosHL）or LOW－to－HIGH（tosLh）．Parameter guaranteed by design．								

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests．The following is a brief description of the setup used to measure the noise characteristics of FACT．

Equipment：

Hewlett Packard Model 8180A Word Generator
PC－163A Test Fixture
Tektronics Model 7854 Oscilloscope
Procedure：
1．Verify Test Fixture Loading：Standard Load 50 pF ， 500Ω ．
2．Deskew the HFS generator so that no two channels have greater than 150 ps skew between them．This requires that the oscilloscope be deskewed first．It is important to deskew the HFS generator channels before testing．This will ensure that the outputs switch simultaneously．
3．Terminate all inputs and outputs to ensure proper load－ ing of the outputs and that the input levels are at the correct voltage．
4．Set the HFS generator to toggle all but one output at a frequency of 1 MHz ．Greater frequencies will increase DUT heating and effect the results of the measure－ ment．
5．Set the HFS generator input levels at 0 V LOW and 3 V HIGH for ACT devices and OV LOW and 5V HIGH for $A C$ devices．Verify levels with an oscilloscope．

Note 19： $\mathrm{V}_{\mathrm{OHV}}$ and $\mathrm{V}_{\text {OLP }}$ are measured with respect to ground reference．
Note 20：Input pulses have the following characteristics：$f=1 \mathrm{MHz}$ ， $\mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$ ，skew $<150 \mathrm{ps}$ ．

FIGURE 1．Quiet Output Noise Voltage Waveforms
$\mathrm{V}_{\mathrm{OLP}} / \mathrm{V}_{\mathrm{OLV}}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$ ：
－Determine the quiet output pin that demonstrates the greatest noise levels．The worst case pin will usually be the furthest from the ground pin．Monitor the output volt－ ages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture．Do not use an active FET probe．
－Measure $\mathrm{V}_{\text {OLP }}$ and $\mathrm{V}_{\text {OLV }}$ on the quiet output during the worst case for active and enable transition．Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case active and enable transition．
－Verify that the GND reference recorded on the oscillo－ scope has not drifted to ensure the accuracy and repeat－ ability of the measurements．
$V_{\text {ILD }}$ and $V_{\text {IHD }}$ ：
－Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture．Do not use an active FET probe．
－First increase the input LOW voltage level， V_{IL} ，until the output begins to oscillate or steps out a min of 2 ns ． Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits，or on output HIGH levels that exceed V_{IH} limits．The input LOW voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {ILD }}$ ．
－Next decrease the input HIGH voltage level， V_{IH} ，until the output begins to oscillate or steps out a min of 2 ns ． Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits，or on output HIGH levels that exceed V_{IH} limits．The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\mathrm{IHD}}$ ．
－Verify that the GND reference recorded on the oscillo－ scope has not drifted to ensure the accuracy and repeat－ ability of the measurements．

FIGURE 2．Simultaneous Switching Test Circuit

Physical Dimensions inches（millimeters）unless otherwise noted（Continued）

20－Lead Small Outline Package（SOP），EIAJ TYPE II，5．3mm Wide Package Number M20D
Physical Dimensions inches（millimeters）unless otherwise noted（Continued）

20－Lead Plastic Dual－In－Line Package（PDIP），JEDEC MS－001，0．300＂Wide Package Number N20A
Fairchild does not assume any responsibility for use of any circuitry described，no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications．
LIFE SUPPORT POLICY
FAIRCHILD＇S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION．As used herein：

1．Life support devices or systems are devices or systems which，（a）are intended for surgical implant into the body，or（b）support or sustain life，and（c）whose failure to perform when properly used in accordance with instructions for use provided in the labeling，can be rea－ sonably expected to result in a significant injury to the user．

2．A critical component in any component of a life suppor device or system whose failure to perform can be rea－ sonably expected to cause the failure of the life support device or system，or to affect its safety or effectiveness．
www．fairchildsemi．com

[^0]: FACT $^{T M}$ ，Quiet Series ${ }^{T M}$ ，FACT Quiet Series ${ }^{T M}$ and GTO ${ }^{T M}$ are trademarks of Fairchild Semiconductor Corporation．

