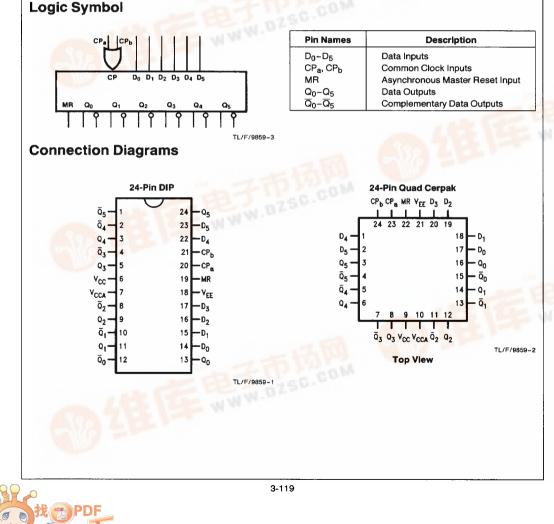
National Semiconductor 查询"100151DC"供应商

F100151 Hex D Flip-Flop

General Description

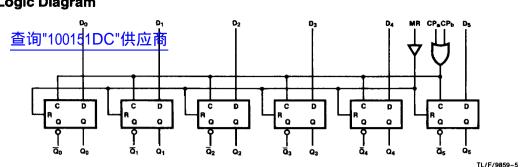
The F100151 contains six D-type edge-triggered, master/ slave flip-flops with true and complement outputs, a pair of common Clock inputs (CP_a and CP_b) and common Master Reset (MR) input. Data enters a master when both CP_a and CP_b are LOW and transfers to the slave when CP_a and CP_b (or both) go HIGH. The MR input overrides all other inputs


and makes the Q outputs LOW. All inputs have 50 $k\Omega$ pull-down resistors.

10015

3

Refer to the F100351 datasheet for: PCC packaging Lower power Military versions Extended voltage specs (-4.2V to -5.7V)


Ordering Code: See Section 8

Powered by ICminer.com Electronic-Library Service CopyRight 2003

Logic Diagram

100151

Truth Table (Each Flip-flop)

Synchronous Operation

	ing	Outputs		
Dn	CPa	Q _n (t+1)		
L	~	L	L	L
н		L L	L	н
L	L	~	L	L
н	L	~	L	н
х	н	~	L	Q _n (t)
х		н	L	Q _n (t)
х	L	L	L	Q _n (t)

Asynchronous Operation

	Outputs			
Dn	CPa	MR	Q _n (t + 1)	
х	х	x	н	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

t = Time before CP positive transition

t+1 = Time after CP positive transition

Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

 If Military/Aerospace specified devices are required, please contractil the National September Sales Office/Distributors for availability and specifications.

 Storage Temperature
 -65°C to +150°C

 Maximum Junction Temperature (TJ)
 +150°C

DC Electrical Characteristics

 $V_{EE} = -4.5V$, $V_{CC} = V_{CCA} = GND$, $T_C = 0^{\circ}C$ to $+85^{\circ}C$ (Note 3)

Symbol	Parameter	Min	Тур	Max	Units	Conditions (Note 4)		
VOH	Output HIGH Voltage - 1025 - 955 - 880 mV	mV	$V_{IN} = V_{IH (Max)}$	Loading with				
VOL	Output LOW Voltage	-1810	-1705	- 1620		or V _{IL (Min)} 50Ω t	50Ω to −2.0V	
VOHC	Output HIGH Voltage	- 1035			mv	$V_{IN} = V_{IH (Min)}$	Loading with	
VOLC	Output LOW Voltage			-1610		or V _{IL (Max)}	50Ω to −2.0V	
VIH	Input HIGH Voltage	-1165		-880	mV	Guaranteed HIGH Signal for All Inputs		
VIL	Input LOW Voltage	- 1810		-1475	mV	Guaranteed LOW for All Inputs	Signal	
ήL	Input LOW Current	0.50			μΑ	$V_{IN} = V_{IL}$ (Min)		

Case Temperature under Bias (T_C)

VEE Pin Potential to Ground Pin

Output Current (DC Output HIGH)

Operating Range (Note 2)

Input Voltage (DC)

DC Electrical Characteristics

 $V_{EE}=-4.2V,\,V_{CC}=\,V_{CCA}=$ GND, T_{C} = 0°C to +85°C (Note 3)

Symbol	Parameter	Min	Тур	Max - 870	Units	Conditions (Note 4)		
VOH	Output HIGH Voltage	-1020			m∨	V _{IN} = V _{IH (Max)}	Loading with	
VOL	Output LOW Voltage	- 1810		- 1605		or V _{IL (Min)}	50Ω to -2.0	
VOHC	Output HIGH Voltage	- 1030			mV	$V_{IN} = V_{IH (Min)}$	Loading with	
VOLC	Output LOW Voltage			- 1595		or V _{IL (Max)}	50Ω to -2.0V	
VIH	Input HIGH Voltage	-1150		-870	m∨	Guaranteed HIGH Signal for All Inputs		
VIL	Input LOW Voltage	- 1810		1475	mV	Guaranteed LOW for All Inputs	Signal	
կլ	Input LOW Current	0.50			μA	VIN = VIL (Min)		

DC Electrical Characteristics

 $V_{FF} = -4.8V$, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0^{\circ}C$ to $+85^{\circ}C$ (Note 3)

Symbol	Parameter	Min	Тур	Max	Units	Conditions (Note 4)		
VOH	Output HIGH Voltage	-1035		-880	mV	VIN = VIH (Max)	Loading with	
VOL	Output LOW Voltage	- 1830		- 1620		or V _{IL (Min)}	50Ω to −2.0V	
VOHC	Output HIGH Voltage	- 1045			mV	$V_{iN} = V_{iH}$ (Min)	Loading with 50Ω to -2.0	
VOLC	Output LOW Voltage			- 1610		or VIL (Max)		
VIH	Input HIGH Voltage	-1165		- 880	mV	Guaranteed HIGH Signal for All Inputs		
VIL	Input LOW Voltage	- 1830		- 1490	mV	Guaranteed LOW Signal for All Inputs		
կլ	Input LOW Current	0.50			μΑ	V _{IN} = V _{IL (Min)}		

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2V to -4.8V.

Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

0°C to +85°C

VFE to +0.5V

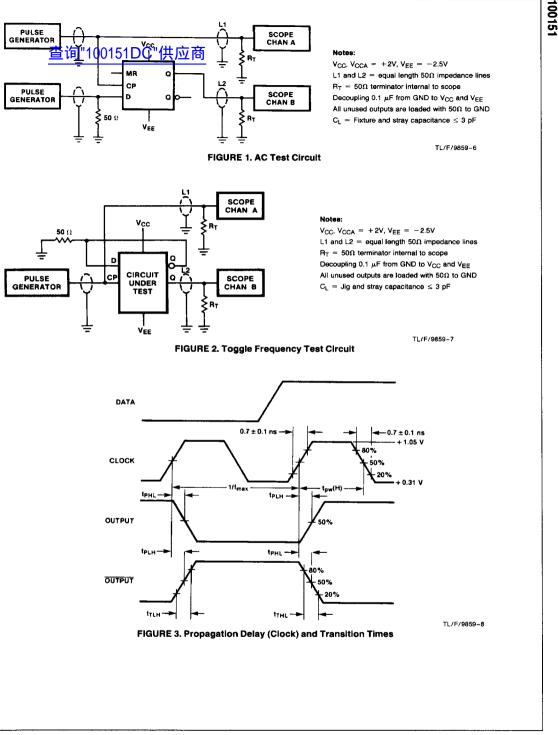
-50 mA

-7.0V to +0.5V

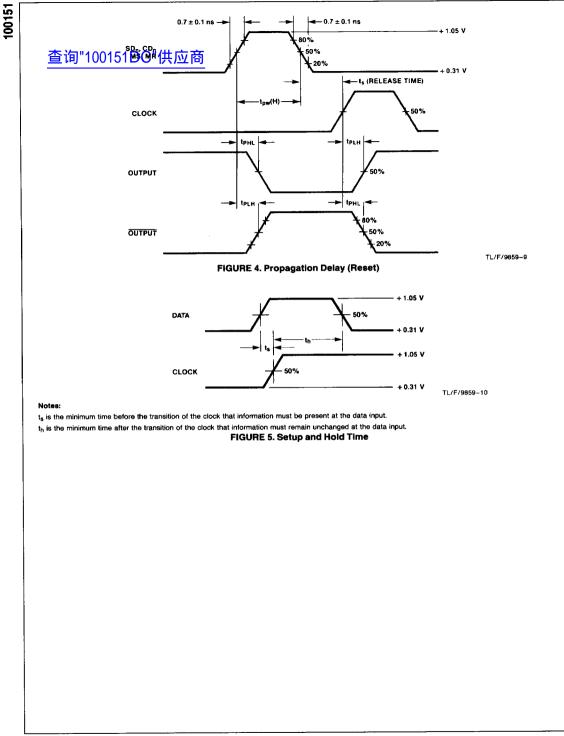
-5.7V to -4.2V

DC Electrical Characteristics

 V_{EE} = -4.2V to -4.8V unless otherwise specified, V_{CC} = V_{CCA} = GND, T_C = 0°C to +85°C


Symbol		Min	Тур	Max	Units	Conditions
	$\begin{array}{c} \text{Input HIGH Current} \\ \text{MR} \\ \text{D}_0\text{-}\text{D}_5 \\ \text{CP}_a, \text{CP}_b \end{array}$			450 225 520	μΑ	V _{IN} = V _{IH (Max)}
IEE	Power Supply Current	-210	- 155	- 98	mA	Inputs Open

Ceramic Dual-In-Line Package AC Electrical Characteristics v_{EE} = -4.2V to -4.8V, v_{CC} = v_{CCA} = GND


Symbol	Parameter	T _C = 0°C		$T_C = +25^{\circ}C$		T _C = +85°C		Units	Conditions
		Min	Max	Min	Max	Min	Max		Conditions
f _{max}	Toggle Frequency	375		375		375		MHz	Figures 2 and 3
t _{PLH} t _{PHL}	Propagation Delay CP _a , CP _b to Output	0.80	2.20	0.80	2.20	0.90	2.40	ns	Figures 1 and 3
t _{PLH} t _{PHL}	Propagation Delay MR to Output	1.20	2.90	1.30	3.00	1.20	3.10	ns	Figures 1 and 4
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.45	1.80	0.45	1.70	0.45	1.80	ns	Figures 1 and 3
t _s	Setup Time D ₀ -D ₅ MR (Release Time)	0.70 2.30		0.70 2.30		0.70 2.60	-	ns	Figure 5 Figure 4
t _h	Hold Time D ₀ -D ₅	0.70		0.70		0.70		ns	Figure 5
t _{pw} (H)	Pulse Width HIGH CP _a , CP _b , MR	2.00		2.00		2.00		ns	Figures 3 and 4

Cerpak AC Electrical Characteristics $v_{EE}=-4.2V$ to $-4.8V,\,v_{CC}=v_{CCA}=$ GND

Symbol	Parameter	T _C = 0°C		$T_C = +25^{\circ}C$		T _C = +85°C		Units	Conditions
		Min	Max	Min	Max	Min	Max	Units	Conditions
f _{max}	Toggle Frequency	375		375		375		MHz	Figures 2 and 3
t _{PLH} t _{PHL}	Propagation Delay CP _a , CP _b to Output	0.80	2.00	0.80	2.00	0.90	2.20	ns	Figures 1 and 3
t _{PLH} t _{PHL}	Propagation Delay MR to Output	1.20	2.70	1.30	2.80	1.20	2.90	ns	Figures 1 and 4
tтін t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.45	1.70	0.45	1.60	0.45	1.70	ns	Figures 1 and 3
t _s	Setup Time D ₀ -D ₅ MR (Release Time)	0.60 2.20		0.60 2.20		0.60 2.50		ns	Figure 5 Figure 4
t _h	Hold Time D ₀ -D ₅	0.60		0.60		0.60		ns	Figure 5
t _{pw} (H)	Pulse Width HIGH CP _a , CP _b , MR	2.00		2.00		2.00		ns	Figures 3 and 4

3

