LM2695 Evaluation Board 询LM2695供应商

National Semiconductor Application Note 1444 Dennis Morgan February 2006

Introduction

The LM2695EVAL evaluation board provides the design engineer with a fully functional buck regulator, employing the constant on-time (COT) operating principle. This evaluation board provides a 10V output over an input range of 12V -30V. The circuit delivers load currents to 1A, with current limit set at ≈ 1.3A. The board is populated with all external components except R5, C8 and C11. These components provide options for changing the current limit threshold, and managing the output ripple as described later in this document.

The board's specification are:

Input Voltage: 12V to 30V

Output Voltage: 10V

Maximum load current: 1.0A

Minimum load current: 0A

Current Limit: 1.3A

Measured Efficiency: 96.3% (V_{IN} = 12V, I_{OUT} = 300 mA)

Nominal Switching Frequency: 380 kHz

Size: 2.25 in. x 0.88 in. x 0.47 in

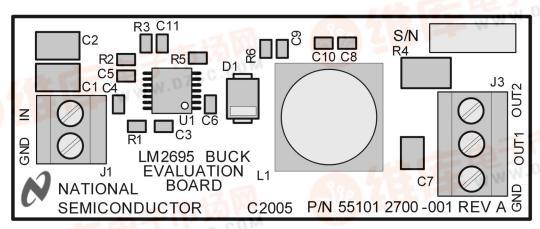


FIGURE 1. Evaluation Board - Top Side

Theory of Operation

Refer to the evaluation board schematic in Figure 6, which contains a simplified block diagram of the LM2695. When the circuit is in regulation, the buck switch is on each cycle for a time determined by R1 and V_{IN} according to the equation:

$$t_{ON} = \frac{1.3 \times 10^{-10} \times R1}{V_{IN}}$$

The on-time of this evaluation board ranges from ≈2300 ns at V_{IN} = 12V, to \approx 900 ns at V_{IN} = 30V. The on-time varies inversely with V_{IN} to maintain a nearly constant switching frequency. At the end of each on-time the Minimum Off-Timer ensures the buck switch is off for at least 250 ns. In normal operation, the off-time is much longer. During the off-time, the output capacitor (C7) is discharged by the load current. When the output voltage falls sufficiently that the voltage at FB is below 2.5V, the regulation comparator initiates a new on-time period. For stable, fixed frequency operation, ≈25 mV of ripple is required at FB to switch the regulation comparator. Refer to the LM2695 data sheet for a more detailed block diagram, and a complete description of the various functional blocks.

Board Layout and Probing

The pictorial in Figure 1 shows the placement of the circuit components. The following should be kept in mind when the board is powered:

1) When operating at high input voltage and high load current, forced air flow is recommended.

2) The LM2695, and diode D1 may be hot to the touch when operating at high input voltage and high load current.

3) Use CAUTION when probing the circuit at high input voltages to prevent injury, as well as possible damage to the

Board Layout and Probing (Continued)

used to connect the load becomes important. Ensure there is not a significant drop in the wires between this evaluation board and the load.

Board Connection/Start-up

The input connections are made to the J1 connector. The load is normally connected to the OUT1 and GND terminals of the J3 connector. Ensure the wires are adequately sized for the intended load current. Before start-up a voltmeter should be connected to the input terminals, and to the output terminals. The load current should be monitored with an ammeter or a current probe. It is recommended that the input voltage be increased gradually to 12V, at which time the output voltage should be 10V. If the output voltage is correct with 12V at V_{IN}, then increase the input voltage as desired and proceed with evaluating the circuit.

Output Ripple Control

The LM2695 requires a minimum of 25 mVp-p ripple at the FB pin, in phase with the swtiching waveform at the SW pin, for proper operation. In the simplest configuration that ripple is derived from the ripple at $V_{\rm OUT1}$, generated by the inductor's ripple current flowing through R4. That ripple voltage is attenuated by the feedback resistors, requiring that the ripple amplitude at $V_{\rm OUT1}$ be higher than the minimum of 25 mVp-p by the gain factor. Options for reducing the output ripple are discussed below, and the results are shown in the graph of Figure 9.

A) **Minimum Output Ripple:** This evaluation board is supplied configured for minimum ripple at V_{OUT_1} by setting R4 to zero ohms, and including components R6, C9 and C10. The output ripple, which ranges from 3mVp-p at V_{IN} = 12V to 8 mVp-p at V_{IN} = 30V, is determined primarily by the ESR of

output capacitor (C7), and the inductor's ripple current, which ranges from 50 mAp-p to 195 mAp-p over the input voltage range. The ripple voltage required by the FB pin is generated by R6, C9 and C10 since the SW pin switches from -1V to $V_{\rm IN}$, and the right end of C9 is a virtual ground. The values for R6 and C9 are chosen to generate a 30-40 mVp-p triangle waveform at their junction. That triangle wave is then coupled to the FB pin through C10. The following procedure is used to calculate values for R6, C9 and C10:

1) Calculate the voltage V_A:

$$V_A = V_{OUT} - (V_{SW} \times (1 - (V_{OUT}/V_{IN})))$$

where $V_{\rm SW}$ is the absolute value of the voltage at the SW pin during the off-time (typically 1V), and $V_{\rm IN}$ is the minimum input voltage. For this circuit $V_{\rm A}$ calculates to 9.83V. This is the DC voltage at the R6/C9 junction, and is used in the next equation.

2) Calculate the R6 x C9 product:

$$R6 \times C9 = \frac{(V_{IN} - V_A) \times t_{ON}}{\Delta V}$$

where t_{ON} is the maximum on-time (\approx 2300 ns), V_{IN} is the minimum input voltage, and ΔV is the desired ripple amplitude at the R6/C9 junction, 30 mVp-p for this example.

R6 x C9 =
$$\frac{(12V - 9.83V) \times 2300 \text{ ns}}{0.03V}$$
 = 1.66 x 10⁻⁴

R6 and C9 are then chosen from standard value components to satisfy the above product. For example, C9 can be 1000 pF requiring R6 to be $166 \text{ k}\Omega$. C10 is chosen to be $0.01 \mu\text{F}$, large compared to C9. The circuit as supplied on this EVB is shown in Figure 2.

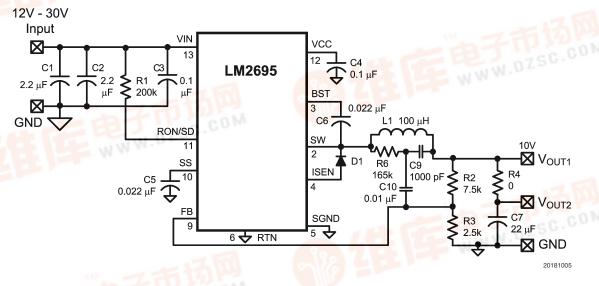


FIGURE 2. Minimum Ripple Using R6, C9, C10

B) Intermediate Ripple Level Configuration: This configuration generates more ripple at $V_{\rm OUT1}$ than the above configuration, but uses one less capacitor. If some ripple can be

tolerated in the application, this configuration is slightly more economical, and simpler. R4 and C8 are used instead of R6, C9, and C10, as shown in Figure 3.

找了PDF 维库 pdf.dzsc.com

www.national.com 2

Output Ripple Control (Continued)

查询LM2695供应商

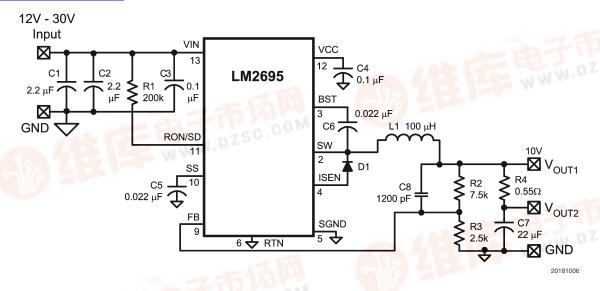


FIGURE 3. Intermediate Ripple Level Configuration Using C8 and R4

R4 is chosen to generate ≥25 mV - 30 mVp-p at V_{OUT1}, knowing that the minimum ripple current in this circuit is 50 mAp-p at minimum V_{IN}. C8 couples that ripple to the FB pin without the attenuation of the feedback resistors. C8's minimum value is calculated from:

$$C8 = \frac{t_{ON(max)}}{(R2//R3)}$$

where $t_{ON(max)}$ is the maximum on-time (at minimum V_{IN}), and R2//R3 is the equivalent parallel value of the feedback resistors. For this evaluation board $t_{ON(max)}$ is approximately

2300 ns, and R2//R3 = 1.875 k Ω , and C8 calculates to a minimum of 1200 pF. The resulting ripple at V_{OUT1} ranges from 27 mVp-p to 105 mVp-p over the input voltage range.

C) Lowest Cost Configuration: This configuration is the same as option B above, but without C8. Since 25 mVp-p are required at the FB pin, R4 is chosen to generate 100 mV at V_{OUT1} , knowing that the minimum ripple current in this circuit is 50 mAp-p at minimum V_{IN} . To allow for tolerances, 2.2 Ω is used for R4. The resulting ripple at V_{OUT1} ranges from \approx 110 mVp-p to \approx 420 mVp-p over the input voltage range. If the application can tolerate this ripple level, this is the most economical solution. The circuit is shown in Figure 4.

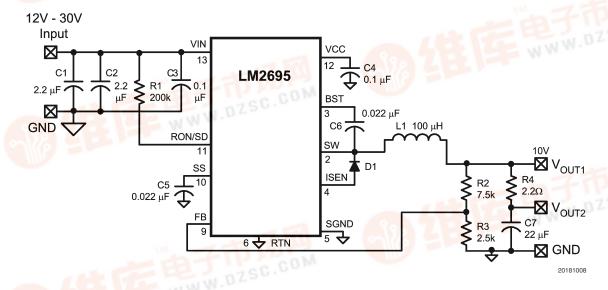


FIGURE 4. Lowest Cost Configuration

D) Alternate Lowest Cost Configuration: A low ripple output can be obtained by connecting the load to $V_{\text{OUT}2}$ in the

circuits of options B or C above. Since R4 slightly degrades load regulation, this alternative may be viable for applica-

Output Ripple Control (Continued)

M2695供应 load current is relatively constant. If this method is used, ensure R4's power rating is appropriate.

Increasing the Current Limit

The current limit threshold is nominally 1.25A, with a minimum guaranteed value of 1.0A. If, at maximum load current, the lower peak of the inductor current (I_{PK}^- in Figure 5) exceeds 1.0A, resistor R5 must be added between SGND and ISEN to increase the current limit threshold to equal or exceed the lower peak. This resistor diverts some of the recirculating current from the internal sense resistor so that a higher current level is needed to switch the internal current limit comparator. I_{PK}^- is calculated from:

$$I_{PK-} = I_{O(max)} - \frac{I_{OR(min)}}{2}$$

where $I_{O(max)}$ is the maximum DC load current, and $I_{OR(min)}$ is the minimum ripple current calculated using Equation 1.

$$I_{OR(min)} = \frac{V_{OUT} \times (V_{IN(min)} - V_{OUT})}{L1_{max} \times F_{S(max)} \times V_{IN(min)}}$$
(1)

where $V_{\rm IN(min)}$ is the minimum input voltage, $V_{\rm OUT}=10V$, $L1_{\rm max}$ is the maximum inductor value based on the manufacturer's tolerance, and $F_{\rm S(max)}$ is the maximum switching frequency (380 kHz + 25% = 475 kHz for this evaluation board). R5 is calculated from:

$$R_5 = \frac{1.0A \times 0.11\Omega}{I_{PK-} - 1.0A}$$
 (2)

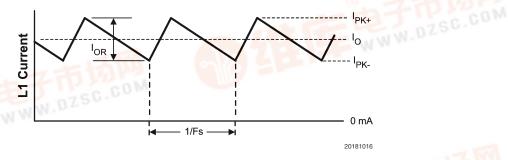
where 0.11Ω is the minimum value of the internal resistance from SGND to ISEN. The next smaller standard value resis-

tor should be used for R5. With the addition of R5 it is necessary to check the average and peak current values to ensure they do not exceed the LM2695 limits. At maximum load current the average current through the internal sense resistor is:

$$I_{AVE} = \frac{I_{O(max)} \times R_5 \times (V_{IN(max)} - V_{OUT})}{(R5 + 0.11\Omega) \times V_{IN(max)}}$$

If I_{AVE} is less than 1.5A no changes are necessary. If it exceeds 1.5A, R5 must be reduced. The upper peak of the inductor current ($I_{\text{PK+}}$), at maximum load current, is calculated using the following:

$$I_{PK+} = I_{O(max)} + \frac{I_{OR(max)}}{2}$$
 (4)


where I_{OR(max)} is calculated using Equation 5.

$$I_{OR(max)} = \frac{V_{OUT1} \times (V_{IN(max)} - V_{OUT1})}{L1_{min} \times F_{S(min)} \times V_{IN(max)}}$$
(5)

where L1_{min} is the minimum inductor value based on the manufacturer's tolerance, and F_{S(min)} is the minimum switching frequency (380 kHz - 25% = 285 kHz for this evaluation board). If I_{PK+} exceeds 2A , the inductor value must be increased to reduce the ripple amplitude. This will necessitate recalculation of I_{OR(min)}, I_{PK-}, and R5. When the circuit is in current limit, the upper peak current out of the SW pin can be as high as

$$I_{PK+(CL)} = \frac{1.5A \times (150 \text{ m}\Omega + R_5)}{R_5} + I_{OR(max)}$$
(6)

The inductor L1 and diode D1 must be rated for this current.

FIGURE 5. Inductor Current

Minimum Load Current

The LM2695 requires a minimum load current of ≈500 µA to ensure the boost capacitor (C6) is recharged sufficiently during each off-time. In this evaluation board, the minimum

load current is provided by the feedback resistor (R2, R3), allowing the board's minimum load current at V_{OUT2}) to be specified at zero.

www.national.com 4

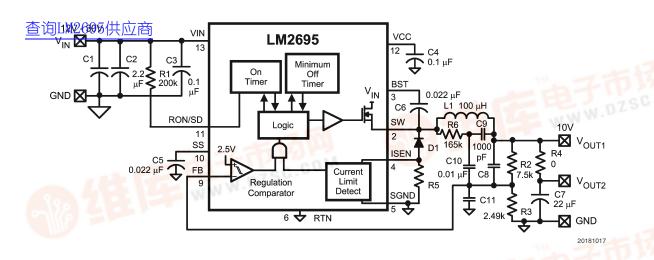


FIGURE 6. Evaluation Board Schematic

Bill of Materials

Item	Description	Mfg., Part Number	Package	Value
C1, 2	Ceramic Capacitor	TDK C4532X7R2A225M	1812	2.2 μF, 100V
C3	Ceramic Capacitor	TDK C2012X7R2A104M	0805	0.1 μF, 100V
C4	Ceramic Capacitor	TDK C2012X7R1C104M	0805	0.1 μF, 16V
C5, 6	Ceramic Capacitor	TDK C2012X7R1C223M	0805	0.022 μF, 16V
C7	Ceramic Capacitor	TDK C3225X7R1C226M	1210	22 μF, 16V
C8		Unpopulated	0805	DZSI
C9	Ceramic Capacitor	TDK C2012X7R2A102M	0805	1000 pF
C10	Ceramic Capacitor	TDK C2012X7R2A103M	0805	0.01 µF
C11		Unpopulated	0805	
D1	Schottky Diode	Diodes Inc. DLFS160	Power DI 123	60V, 1A
L1	Power Inductor	TDK SLF12575T-101M1R9, or Cooper	12.5 mm x 12.5 mm	100 μH, 1.9A
		Bussmann DR125-101		
R1	Resistor	CRCW08052003F	0805	200 kΩ
R2	Resistor	CRCW08057501F	0805	7.50 kΩ
R3	Resistor	CRCW08052491F	0805	2.49 kΩ
R4	Resistor	CRCW2512000ZR67	2512	0 Ω
R5		Unpopulated	0805	44
R6	Resistor	CRCW08051653F	0805	165 kΩ
U1	Switching Regulator	National Semiconductor LM2695MH	TSSOP - 14EP	

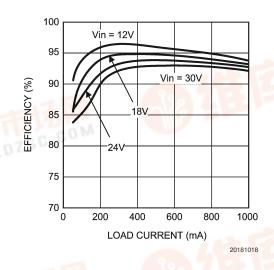


FIGURE 7. Efficiency vs Load Current

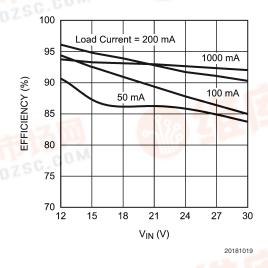


FIGURE 8. Efficiency vs Input Voltage

Circuit Performance (Continued)

查询LM2695供应商

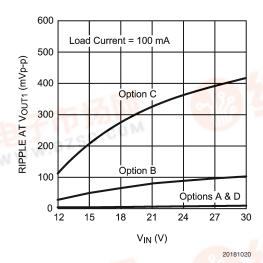
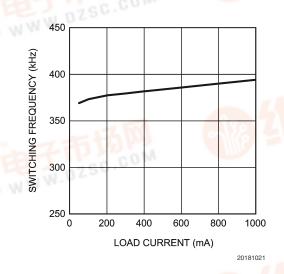
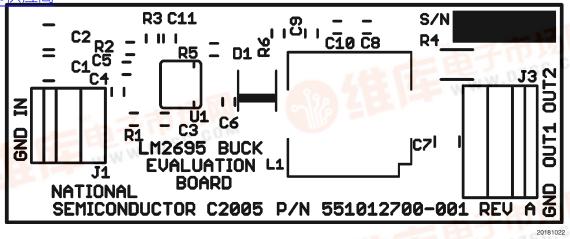
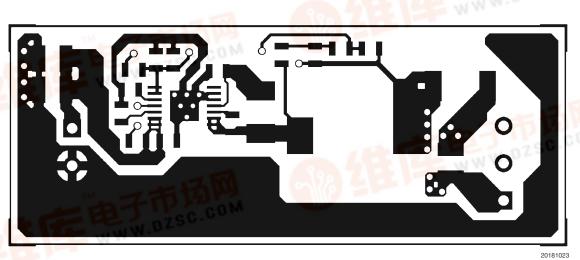


FIGURE 9. Output Voltage Ripple


FIGURE 10. Switching Frequency vs. Load Current

Board Silkscreen

Board Top Layer

Board Bottom Layer (viewed from top)

Notes

查询LM2695供应商

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com

Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com **National Semiconductor** Japan Customer Support Cente Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

